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1 Introduction

Estimating the precise location within a distribution where signi�cant structural

changes occur is a critical task in many areas, including economics, actuarial sci-

ence, and �nance. Such points, often referred to as splicing points, mark transitions

where the distribution may exhibit di¤erent characteristics that are better captured

by distinct models on either side. For example, in the context of income distributions,

this might correspond to a threshold beyond which a di¤erent regime or model is ne-

cessary to accurately describe the �elite income�tier. In the �eld of non-life insurance,

a handful of severe losses within a collection of policies beyond some threshold can

signi�cantly contribute to the total claim amount. In geophysics and hydrology, stud-

ies examine catastrophic disasters from the perspective of signi�cant event analysis.

It is widely recognized that a single model cannot capture characteristics over the

entire range of such distributions. Typically, in income distributions, the segment

above a certain threshold is modeled separately from the bulk of the data, which

lies below this threshold; see Cowell et al. (1998) and Jenkins (2017), for instance.

Moreover, modelling the whole range of a loss distribution is of particular importance

and interest in actuarial science, particularly in non-life insurance. Then, splicing

(e.g., Klugman et al., 2019) or composite modelling (e.g., Cooray and Ananda, 2005;

Scollnik and Sun, 2012) -- the practice of modelling the parts below and above a

threshold di¤erently -- is frequently employed.

The aim of this paper is to propose a nonparametric method of �nding a threshold

in these distributions. Accordingly, the words �threshold�and �splicing point�are

used exchangeably hereinafter, whenever no confusion may arise. Our estimation

strategy is grounded on prior knowledge (or stylized facts) about shapes of the un-

derlying distributions of interest. Our particular focus is on the distributions of

nonnegative economic and �nancial variables including incomes, wages, consumption

expenditures, short-term interest rates, and actuarial losses. These variables are

examples of cost variables. Distributions of cost variables have support on R+ with
a natural boundary at the origin and are highly right-skewed, with a concentration

of observations near the origin and fewer data points as values increase. As will be

revealed shortly, we employ a speci�c kernel to capture these characteristics while

avoiding possible misspeci�cation by relying on a particular parametric model. In

addition, we translate the problem of threshold estimation into that of change point
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detection, which has been actively studied in statistics. Our translation or inter-

pretation of the problem is motivated by the original idea of splicing, which refers to

the technique of combining two di¤erent probability density functions (pdfs) for the

two regions below and above a threshold or a splicing point, and continuity of the

distribution at this point is not required.1

Following the literature on change point detection (e.g., Chu and Cheng, 1996;

Couallier, 1999; Huh, 2002), we take the absolute di¤erence of two kernel density

estimates as the diagnostic function and de�ne its maximizer as the splicing point

estimator.2 Nonetheless, our procedure remarkably di¤ers from previous ones. While

they are designed to work in the central part of a distribution (i.e., near the peak), a

threshold that divides the bulk and less dense regions is expected to be situated far

from the peak of the distribution. To overcome such di¢ culty while exploiting prior

information on shapes of cost distributions, we adopt the asymmetric gamma kernel

by Chen (2000); our contribution is the �rst work in which an asymmetric kernel is

applied for the problem of splicing point estimation in composite models of density

or regression curves, to the best of our knowledge. For a data point u 2 R+, a design
point x 2 R+ and a smoothing parameter b > 0, the gamma kernel is de�ned as

KG(x;b) (u) =
ux=b exp (�u=b)
bx=b+1� (x=b+ 1)

1 fu � 0g ; (1)

where � (a) =
R1
0
ta�1 exp (�t) dt for a > 0 is the gamma function, and 1 f�g denotes

an indicator function. A nonnegative random variable Z is said to obey the gamma

distribution having the shape parameter � > 0 and the scale parameter � > 0,

which is denoted as G (�; �) in shorthand notation hereinafter, if its pdf is given by

f (z) = z��1 exp (�z=�)1 fz � 0g = f��� (�)g. Observe that the gamma kernel can
be interpreted as the pdf of G (x=b+ 1; b).

The use of asymmetric kernels, particularly the gamma kernel described in (1),

represents a signi�cant methodological contribution in our threshold estimation ap-

proach. This kernel o¤ers several advantages over traditional symmetric kernels that

1Many authors (e.g., Cooray and Ananda, 2005; Scollnik and Sun, 2012) additionally impose
di¤erentiability of the pdf at the splicing point to make the entire density smooth and reduce the
number of parameters. This practice has computational advantage now that the splicing point can
be expressed as a function of other model parameters. However, such a restriction on parameters
results in less �exibility. From this viewpoint, Reynkens et al. (2017) �rst estimate the splicing
point and then compute estimates of remaining model parameters.

2An alternative approach is proposed by Desmet et al. (2010), who transform kernel density
estimation into kernel regression estimation via prebinning and applying an existing method of
discontinuity detection for nonparametric regression curves. This approach has the disadvantage
that prebinning substantially reduces the sample size which can be used for regression estimation.
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are worth highlighting. The gamma kernel provides adaptive smoothing by automat-

ically changing shapes across design points while requiring only a single smoothing

parameter to generate a variety of shapes. This property enables e¤ective calibration

of right-skewed densities with support on R+, such as those typically found in cost
distributions.

Beyond these initial advantages, the gamma kernel o¤ers additional bene�ts that

strengthen our methodology. First, the gamma kernel naturally respects the bound-

ary constraints of the data, eliminating the boundary bias problem that occurs with

symmetric kernels near the origin. Since many �nancial and actuarial data sets have

a natural lower bound at zero, this property ensures more accurate density estima-

tion in the critical region near this boundary. Second, the gamma kernel maintains

optimal convergence rates in mean integrated squared error (MISE) within the class

of nonnegative kernel density estimators (see, e.g., Chen, 2000, p.477 ). Third, the

gamma kernel�s adaptability to di¤erent degrees of data concentration is especially

bene�cial when dealing with unequally distributed data. Its variable bandwidth prop-

erty automatically provides more smoothing in regions with sparse data (often in the

tails) and less smoothing in regions with dense data. Fourth, the asymmetric nature

of the gamma kernel aligns naturally with the inherent asymmetry present in skewed

distributions. This alignment improves the accuracy of threshold identi�cation by

better capturing the underlying structure of the data. Fifth, our method bene�ts

from the gamma kernel�s capability to maintain nonnegative estimates throughout

the support range, which is mathematically consistent with the nonnegative nature

of the variables we typically analyze in cost distribution applications.

Our splicing point estimator is super-consistent (i.e., its convergence rate exceeds
p
n, where n is the sample size) and asymptotically normal when suitably implemen-

ted. While the estimator shares its asymptotic properties with the existing literat-

ure (e.g., Chu and Cheng, 1996; Couallier, 1999; Huh, 2002), our proof strategy is

totally di¤erent. The gamma kernel admits neither the location-scale transforma-

tion Kh (u� x) = K f(u� x) =hg =h with a bandwidth h (> 0) nor exchangeability
between u and x, unlike standard symmetric kernels. Instead, approximations to

the incomplete gamma, digamma and polygamma functions studied by Funke and

Hirukawa (2019, 2024) are tailored for the technical proofs. This proof strategy is

novel and of independent interest; see the Appendix and/or the Supplemental Ma-

terial for more details. It is also demonstrated that a uniform approximation to our

diagnostic function has a unique maximum. So far existence of the maximum in

the diagnostic function has been simply suggested, not formally proven, in the liter-
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ature, although it is a key ingredient for consistency of the splicing point estimator.

A concern is that the proposed estimator tends to generate negative biases in �nite

samples. However, an elementary bias correction can instantly improve bias proper-

ties of the estimator without in�ating its variance, and thus we advocate putting the

bias-corrected version to practical use.

The integration of asymmetric gamma kernels into threshold selection methodo-

logy represents a signi�cant methodological innovation in the statistical literature, as

it combines the boundary-respecting properties of asymmetric kernels with rigorous

mathematical foundations to deliver improved convergence properties and bias re-

duction -- a contribution that addresses fundamental challenges in optimal threshold

detection for data with natural boundaries.

Acknowledging that threshold estimation is a notoriously di¢ cult problem, many

authors have proposed various threshold detection methods, mainly in the �eld of non-

life insurance. Below a summary of di¤erent types of approaches are provided with

emphasis on speci�c di¢ culties that arise. The approaches are divided roughly into

three categories, namely, (i) heuristic approaches, (ii) graphical diagnostics and (iii)

automated procedures. For (i), a threshold is de�ned as a �xed quantile (DuMouchel,

1983) or determined by some formula depending on the sample size (Loretan and

Phillips, 1994); see Scarrott and MacDonald (2012) for more details. Despite no

theoretical justi�cation, these methods are used by actuaries in practical applications.

Examples of (ii) include the Hill plot and its variants, which were extensively ana-

lyzed by Kratz and Resnick (1996) for their theoretical properties and stability. The

mean excess plot (Davison and Smith, 1990) and various quantile-based visualiza-

tion techniques systematically reviewed by Drees et al. (2020) have become standard

tools in extreme value analysis. Complementing these approaches, Reiss and Thomas

(2007) develop a procedure to identify regions of stability among extreme value in-

dex estimates, whereas Neves and FragaAlves (2004) provide further analysis on the

tuning parameters required for optimal threshold selection. For practical applications

where sample size considerations are paramount, Ferreira et al. (2003) propose the

formula k =
p
n as a systematic approach to determining appropriate thresholds.

These approaches are easy to grasp and thus used regularly, whereas there is room

for practitioners�discretion at the stage of identifying a threshold.

Recent research has shifted toward (iii) such as the minimumKolmogorov-Smirnov

(KS) distance procedure (Clauset et al., 2009; Drees et al., 2020), sequential goodness-

of-�t testing (e.g., Bader et al., 2018), and the minimum quantile discrepancy and

automated Eye-Balling methods (Danielsson et al., 2019). A signi�cant category
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within these procedures involves selecting thresholds based on goodness-of-�t of the

generalized Pareto distribution (GPD), where the threshold is chosen as the low-

est level above which the GPD provides adequate �t to the exceedances (Dupuis,

1999; Choulakian and Stephens, 2001; Northrop and Coleman, 2014). These ap-

proaches employ various techniques, including comparing the empirical distribution

to the �tted GPD via goodness-of-�t tests (Wadsworth, 2016) or by minimizing the

distance between them (Pickands 1975; Gonzalo and Olmo, 2004), with the latter

approach theoretically analyzed again by Drees et al. (2020). The KS and Anderson-

Darling tests are commonly applied in this context. Another related method is the

root mean square error (RMSE) approach by Li et al. (2014), which measures the

di¤erence between analytical and observed cumulative distribution functions (cdfs)

of exceedances at di¤erent thresholds, with the threshold having the lowest RMSE

considered optimal. While these approaches are conceptually straightforward, error

control remains challenging due to the ordered nature of the hypotheses, with stand-

ard multiple testing methods like false discovery rate (Benjamini, 2010a,b) not being

directly applicable. Another promising approach treats the data as a mixture of dis-

tributions, with a GPD for the tail and another distribution for the bulk joined at

the threshold (MacDonald et al., 2011; Wadsworth and Tawn, 2012; Naveau et al.,

2016). By considering the threshold as a parameter to estimate, these methods ac-

count for uncertainty from threshold selection in inferences, although care is needed

to ensure the bulk and tail models remain robust to misspeci�cation. These proced-

ures circumvent arbitrariness but rely on a certain parametric model of the tail part

including GPD. There is also a class of theoretically motivated procedures that target

the optimal sample fraction for speci�c estimation tasks, such as the estimation of

high probabilities (Hall and Weissman, 1997) or the Hill estimator.

Beyond these categories, Langousis et al. (2016) identify several additional special-

ized approaches for threshold selection. These include methods based on asymptotic

results about estimators of tail distribution properties, such as the Jackson (Jackson,

1967) and Lewis (Lewis, 1965) kernel statistics, modi�ed by Goegebeur et al. (2008)

to enhance the performance of the Hill estimator. Another signi�cant approach is the

automated version of the mean residual life (MRL) plot. For more complex scenarios,

resampling-based estimators have been developed, although these are computationally

demanding and often require practitioners to select tuning parameters (Danielsson et

al., 2001), which may render them unsuitable for smaller sample sizes (Ferreira et al.,

2003). Our threshold detection procedure will be able to serve as a more objective

and �exible alternative to these methods.
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Furthermore, there will be potentially many applications of our proposal. The

de�nition of a �cost�is not strict, actually. Our threshold estimation procedure is

expected to work equally for non-cost variables (e.g., quantities demanded, transac-

tion volumes, etc.), as long as shapes of their distributions have similarities to those

of costs. It can be also employed for threshold detection prerequisite for tracing out

the evidence of illegal trading (James et al., 2023) and implementing extreme changes

in changes (CIC) estimation (Sasaki and Wang, 2024), for instance.

The remainder of this paper is organized as follows. Section 2 overviews the

splicing point estimation using the gamma kernel and then recommends its practical

implementation. In Section 3, convergence properties of the proposed estimator,

namely, strong consistency and asymptotic normality, are explored. Section 4 con-

ducts Monte Carlo simulations to compare �nite-sample behaviors of our splicing

point estimator with those of several existing competitive estimation methods. Our

aim is to show numerically the advantage of our proposal over these alternatives. In

Section 5, the proposed estimation approach is applied to a couple of real world data-

sets. Section 6 concludes. Proofs of theorems and propositions are provided in the

Appendix. Proofs of lemmata are deferred to the Supplementary Material, which is

available on the second author�s webpage.

This paper adopts the following notational conventions: �an � bn�means that

an=bn converges to 1; �an = o (bn)�signi�es that an=bn converges to 0; �an = O (bn)�

means that an=bn is bounded; and we say that �an � bn� if there exist constants

0 < c1 < c2 < 1 so that c1an � bn � c2an. For a function h (x) and a point

c, h(c�) = limx"c h(x), h(c+) = limx#c h(x) and h(m) (x) = dmh (x) =dxm denote the

left and right limits, and the mth-order derivative, respectively. The abbreviation

�a:s:�stands for �almost surely�. Finally, the expression �X d
= Y �reads �A random

variable X obeys the distribution Y .�

2 Our Proposal: An Informal Overview

2.1 Estimation of a Splicing Point

It is suspected that f (x), the pdf of a �cost�variableX 2 R+, is discontinuous at t0 on
a prespeci�ed closed interval I0 :=

�
t; t
�
with 0 < t < t <1. It is assumed that the

interval I0 is situated in the upper region of the underlying cost distribution. Prior

knowledge on the interval is not at all unrealistic, because quite often practitioners

have a rough idea about the location of the threshold through, for example, prelim-

inary threshold estimates, historical experiences and/or empirical quantiles. Against
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this background, our method can complement existing practices and objectify the

graphical analysis procedures mentioned in Section 1.

The model below basically follows those of Chu and Cheng (1996) and Couallier

(1999). A similar local structure can be also found in threshold detection problems

for nonparametric regression (e.g., Wu and Chu, 1993a,b; Joo and Qiu, 2009) and

deconvolution (e.g., Delaigle and Gijbels, 2006). It is assumed that the pdf f (x) for

x 2 I0 can be modelled locally as

f (x) = g (x) + d01 fx < t0g ; (2)

where g (x) is a su¢ ciently smooth function, and t0 2 I0 is the splicing point (or
threshold). The local structure (2) also implies the jump size

d0 := f
�
t�0
�
� f

�
t+0
�
;

where jd0j 2 (0;1) is assumed throughout.
Our problem is how to estimate the threshold t0 nonparametrically. Suppose that

there are n i.i.d. observations fXigni=1 at hand. If t0 were located in the bulk region,
as in the existing literature, splitting the entire sample into two sub-samples near t0
would cause no serious issue. Two sample sizes are roughly the same, and thus both

left and right limits of a density can be estimated equally well. This is clearly not the

case in our problem. Because t0 is located in the upper region, sample-splitting near

t0 results in imbalance in sample sizes of two sub-samples and an imprecise density

estimate from the right sub-sample. In view of this, we use the entire sample to

estimate both limits of the pdf. To do so, we introduce �shifted�gamma kernels

KG(x;b;��) (�), which are de�ned as pdfs of gamma distributions G f(x��) =b+ 1; bg,
i.e.,

KG(x;b;��) (u) :=
u(x��)=b exp (�u=b)

b(x��)=b+1� f(x��) =b+ 1g1 fu � 0g ;

where b (= bn > 0) is the smoothing parameter, �(= �n > 0) plays the role of a shift

parameter, and each parameter shrinks towards zero at a certain rate. Obviously,

KG(x;b;��) (�) collapse to Chen�s (2000) original gamma kernel (1) when � = 0. The
kernels can be interpreted as those designed to smooth the data o¤ the target design

point x by a margin of �. In addition, they put the maximum weight at sightly left

or right of x because they have their modes at x��.
Our threshold estimator is derived from the di¤erence between two density estim-

ates, which is generated by introducing a shift parameter �. Let the shifted density

estimators be

f̂� (x) := f̂�b;� (x) :=
1

n

nX
i=1

KG(x;b;��) (Xi) :
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Also de�ne

Ĵ (x) := f̂� (x)� f̂+ (x) ;

where a single, common value is chosen for the smoothing parameter b in both density

estimates, as in Chu and Cheng (1996), Couallier (1999) and Huh (2002). Following

these articles, we also utilize
���Ĵ (x)��� as the diagnostic function for threshold detection.

The estimator of the splicing point t0, denoted as t̂, is de�ned as the maximizer of���Ĵ (x)��� on x 2 I0, i.e.,
t̂ := argmax

x2I0

���Ĵ (x)��� :
2.2 Recommended Estimation Procedure

Monte Carlo results in Section 4 indicate that t̂ tends to underestimate t0. However,

it turns out that the negative bias can be alleviated substantially, with no additional

cost of spread, by an elementary bias correction. In practice, we recommend the

bias-corrected version of the proposed estimator

~t := t̂+ b

for a suitably chosen smoothing parameter b. A theoretical foundation of the bias

correction can be found in Remark 2, and its necessity is also visualized in Figure 1.

Superior �nite-sample properties of ~t over t̂ are con�rmed in Section 4.

We can compute ~t in the following steps:

1. Prespecify the interval I0 that is likely to cover the splicing point t0.

2. Put the shift parameter� = b� for � = 0:70 and select the smoothing parameter

b via the modi�ed likelihood cross-validation method given by (11)-(12). Both

the exponent � in � and the choice method for b are based on our judgments

from the Monte Carlo study and real data examples.

3. Find the maximizer of
���Ĵ (x)��� on x 2 I0 and take it as t̂.

4. Obtain the bias-corrected estimate ~t = t̂+b using the value of b selected in Step

2.

3 Large-Sample Properties of the Splicing Point
Estimator

In this section convergence properties of the estimator t̂ are documented. Our par-

ticular focus is on its consistency and asymptotic normality. In the course of this,
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we demonstrate existence of a unique maximum in a certain uniform approximation

to
���Ĵ (x)��� on x 2 I0, which constitutes a key condition for consistency of t̂. The

asymptotic distribution of t̂ also hints that a simple form of its leading bias enables

us to derive the bias-corrected estimator ~t.

3.1 Regularity Conditions

Convergence results below rely on the fact that
���Ĵ (x)��� can be approximated by the

di¤erence between two incomplete gamma functions. To deliver the results, we

impose the following regularity conditions.

Assumption 1. fXigni=1 2 R+ are i.i.d. random variables.

Assumption 2.

(i) The pdf f (x) is uniformly bounded on x 2 R+.

(ii) The local structure (2) holds, g(2) (x) is uniformly bounded on x 2 R+, and
g(3) (x) is Lipschitz continuous and bounded on x 2 I0.

Assumption 3. Tuning parameters b and � satisfy b;�! 0,

b3=4

�
+

�

b1=2+�1
+
b1=2�4�1

n1��2�2
! 0 (3)

for some arbitrarily small �1; �2 > 0, and

lnn

nb3=2��
= O (1) (4)

for some � 2 [0; 1), as n!1.

All these assumptions are standard for uniform approximations to asymmetric ker-

nel estimators. Similar conditions can be found, for example, in Funke and Hirukawa

(2024). It follows from Assumption 2(ii) that f (1)(t�0 ) = f
(1)(t+0 ). Two boundedness

conditions on derivatives of the smoothed component g (�) also serve as important
ingredients for approximations to E

n
Ĵ (p) (x)

o
on x 2 I0 for p = 0; 1; 2. This type

of condition has been often imposed in simulation studies on change point detection

(e.g., Wu and Chu, 1993a,b; Chu and Cheng, 1996).

Assumption 3 controls the shrinkage rates of tuning parameters b and �. The

condition (3) draws the following important conclusions: (i) b = o (�); (ii) b1=2 =
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o (�2=b); and (iii) � = o
�
�3=b3=2

�
. These are frequently used to controls remainder

terms in the asymptotic expansions. It also follows from b = o (�) and � = o
�
b1=2
�

that although the shift parameter � should shrink to zero more slowly than the

smoothing parameter b, the convergence rate of � must not be too slow (or must be

faster than b1=2, to be more precise). Couallier (1999), for instance, also imposes a

similar rate requirement. The condition (3) also implies that

lnn

nb1=2
=

�
b1=2�4�1

n1��2�2

��
lnn

n�2

��
�

b1=2+�1

�2
b6�1 ! 0:

This result serves as a prerequisite for Proposition 1, as will be revealed shortly.

The other condition (4) is an additional technical requirement for strong uniform

consistency of t̂.

3.2 Consistency

Below asymptotic properties of the splicing point estimator t̂ are explored. Our

analysis starts from a uniform approximation to f̂� (x) on I0, which is documented

in the next proposition. To save space, we adopt the following shorthand notation

whenever no confusion may arise: K�
x (u) = KG(x;b;��) (u); Kx (u) = KG(x;b) (u);

a� = (x��) =b; and z0 = t0=b.

Proposition 1. If Assumptions 1-3 hold, then

sup
x2I0

����E nf̂� (x)o��g (x)� g(1) (x)� + d0 Z t0

0

K�
x (u) du

����� = O (b) (5)

and

sup
x2I0

���f̂� (x)� E nf̂� (x)o��� = O r lnn

nb1=2

!
a:s:; (6)

as n!1.

A direct outcome from Proposition 1 is that

sup
x2I0

���Ĵ (x)� E nĴ (x)o��� = O r lnn

nb1=2

!
a:s:

It also follows from
������Ĵ (x)���� ���E nĴ (x)o������ � ���Ĵ (x)� E nĴ (x)o��� that
���Ĵ (x)��� = ���E nĴ (x)o���+O r lnn

nb1=2

!
a:s:
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uniformly on I0. In short,
���E nĴ (x)o��� constitutes the dominant term in

���Ĵ (x)���, or
the e¤ect of the location x on the magnitude of

���Ĵ (x)��� appears only in the value of���E nĴ (x)o��� in a �rst-order asymptotic sense. This result also plays a key role in the
proof of Theorem 1 below; see the Appendix for more details.

It follows from (5) and Assumption 2(ii) that
���E nĴ (x)o��� can be further approx-

imated by ���E nĴ (x)o��� := jd0j J (x) +O (�) (7)

uniformly on I0, where

J (x) =

����Z t0

0

K�
x (u) du�

Z t0

0

K+
x (u) du

����
=

Z t0

0

K�
x (u) du�

Z t0

0

K+
x (u) du

= P
�
a� + 1; z0

�
� P

�
a+ + 1; z0

�
;

and P (a; z) :=  (a; z) =� (a) is a normalized version of the lower incomplete gamma

function  (a; z) =
R z
0
ta�1 exp (�t) dt for a; z > 0. The reasons why P (a� + 1; z0) �

P (a+ + 1; z0) holds are that P (a� + 1; z0) = Pr (Y � � z0) for Y �
d
= G (a� + 1; 1)

(i.e., P (a� + 1; z0) are cdfs of Y � evaluated at z0) and that the larger the shape

parameter is, the �atter the gamma distribution becomes.

We are about to demonstrate strong consistency of t̂. Before proceeding, it is

curious whether J (x) on x 2 I0 indeed has a unique maximum at t0 (or within a

shrinking neighborhood of t0 even if it is not maximized exactly at this point). In

reality, however, it is quite cumbersome to look into the local property of J (x) ana-

lytically. Fortunately, several approximations to the incomplete gamma function are

available, and we rely on one of them. More speci�cally, we employ equation (1)

of Pagurova (1965) to approximate the normalized lower incomplete gamma func-

tions P (a� + 1; z0) around the standard normal cdf. The next proposition refers to

properties of the approximation and the maximizer of the approximated function.

Proposition 2. If Assumption 3 holds, then the followings hold true.

(i) De�ne

Q (x) :=

�
x+ t0
x3=2

�
�

�
x� t0p
bx

�
;

where � (�) is the pdf of N (0; 1). Then,

sup
x2I0

����J (x)�Q (x)� �

b1=2

����� = O� �3

b3=2

�
;
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as n!1.

(ii) Q (x) on I0 has a unique maximum at x = t� 2 (t0 � b; t0).

FIGURE 1 ABOUT HERE

Before establishing strong consistency of t̂, we show by some numerical illustration

that maximizing
���Ĵ (x)��� is a well-de�ned problem. A discontinuous density f (x) and

the diagnostic function
���Ĵ (x)��� are drawn in Panel (a) of Figure 1. Model 1-A in

Section 4 is chosen for this illustration. The density is discontinuous at t0 = 4 with

a magnitude of discontinuity d0 = 0:15. The diagnostic function is computed from

a Monte Carlo sample of sample size 500 under tuning parameters b = 0:05 and

� = b0:70.

Propositions 1 and 2 jointly imply that
���Ĵ (x)��� � jd0j J (x) � jd0jQ (x) ��=b1=2�

holds in theory. This result tempts us to make a visual inspection of shapes of these

three curves. The curves around the true threshold t0 = 4 are plotted in Panel (b)

of Figure 1. Notice that the panel magni�es the area surrounding t0 to visualize

preciseness of the approximations. It can be immediately found that all three curves

are single-peaked around the true threshold, which con�rms well-de�nedness of the

optimization problem. Approximating
���Ĵ (x)��� by jd0j J (x) looks decent, whereas the

discrepancy between the two curves suggests that the approximation errors which

are asymptotically negligible may not be ignored in �nite samples. Furthermore,

jd0jQ (x)
�
�=b1=2

�
approximates jd0j J (x) quite well; rather, they are almost indis-

tinguishable. For reference, Panel (b) also indicates maximizers of
���Ĵ (x)��� and Q (x)

are t̂ � 3:8693 and t� � 3:9502, respectively. It follows from b = 0:05 that the latter

con�rms Proposition 2(ii).

The function Q (x) has the following properties. Observe that

b�1=2Q (x) =

r
t20=b

2�x3
exp

(
�(t

2
0=b) (x� t0)

2

2t20x

)�
x+ t0
t0

�
;

where
p
(t20=b) = (2�x

3) exp
�
� (t20=b) (x� t0)

2 = (2t20x)
	
is the pdf of the inverse Gaus-

sian distribution IG (t0; t20=b). Because the shape parameter of this distribution

t20=b!1, the pdf is close to a normal one for a su¢ ciently small b > 0. In addition,
the distribution has mean t0 and variance bt0. It follows that the pdf roughly behaves

like N (t0; bt0), and thus, heuristically, the shape of Q (x) also looks like a bell curve

centered around t0.

Strong consistency of t̂ for t0 is formally delivered in the theorem below.

12



Theorem 1. Let cn := b1=2+�1 for �1 de�ned in Assumption 3. If Assumptions 1-3

hold, then
��t̂� t0�� = O (cn) a:s: as n!1.

The proof of Theorem 1 closely follows that of Theorem 1 in Chu and Cheng

(1996); see the Appendix for more details. Some readers may wonder why Theorem

2.1 of Newey and McFadden (1994) is not employed. There are two reasons for

not relying on this theorem. First, we can immediately see the followings: Q (x) is

uniquely maximized at x = t�; I0 is compact; and Q (x) is continuous. The problem

is that while
�
b1=2=�

� ���Ĵ (x)��� is uniformly approximated by jd0jQ (x) on I0, Q (x) still
depends on n through b. Therefore, Theorem 2.1 of Newey and McFadden (1994) is

not directly applicable. Second, while Theorem 2.1 of Newey and McFadden (1994)

can lead to (weak) consistency t̂
p! t0, it says nothing about the convergence rate. In

contrast, Theorem 1 above and cn = o
�
b1=2
�
jointly establish that

��t̂� t0�� = op �b1=2�.
As will be seen in Lemma A8 in the Appendix, the weak consistency of t̂ with this

rate plays a key role in establishing the asymptotic normality of t̂.

3.3 Asymptotic Normality

The theorem below documents asymptotic normality of t̂. The asymptotic distribu-

tion is derived indirectly, as in Chu and Cheng (1996, Theorem 1), Couallier (1999,

Théorème 2) and Delaigle and Gijbels (2006, Theorem 3.1). The indirect deriva-

tion comes from the fact that t̂ solves the �rst-order condition Ĵ (1)
�
t̂
�
= 0. Then,

a mean-value expansion of the left-hand side around t̂ = t0 is made, and suitable

approximations to the incomplete gamma, digamma and polygamma functions are

utilized in the expansion; see the Supplemental Material for more details. This is

possible because unlike f (x), its estimates f̂� (x) are smooth functions even at t0 due

to di¤erentiability of shifted gamma kernels K�
x (�) with respect to x.

Theorem 2. If Assumptions 1-3 hold, thenr
n

b1=2
�
t̂� t0 � (�b)

	 d! N (0; V0) := N

 
0;
3
p
�t
1=2
0

4d20

�
f(t�0 ) + f(t

+
0 )

2

�!
as n!1.

Remark 1. While it is di¢ cult to obtain asymptotic bias and variance of t̂ in light

of the indirect nature, the asymptotic distribution in Theorem 2 implies the �rst two

moments of t̂. The dominant bias term of t̂ is �b regardless of the position of t0.
The expression of the term is much simpler than what is obtained by Couallier (1999,

13



Théorème 2). The di¤erence arises from di¤erent assumptions on the local structure

of the pdf f on I0; invoke that our Assumption 2(ii) follows the setup by Chu and

Cheng (1996). As discussed in Remark 2 below, simplicity of the dominant bias

term enables us to make the bias correction of t̂ straightforward. Moreover, V0, the

coe¢ cient of the dominant variance term, suggests that the larger the magnitude of

discontinuity jd0j, the easier the estimation of t0. It can be also recognized that the
farther t0 moves away from the origin, the less precise its estimator becomes. Finally,

both bias and variance terms are free of the shift parameter �. A similar result is

obtained in Théorème 2 of Couallier (1999); to put it another way, � does not a¤ect

convergence properties of t̂ in a �rst-order asymptotic sense.

Remark 2. As will be seen in the next section, t̂ tends to yield negative biases in

�nite samples, i.e., it is likely to underestimate the location of the splicing point, which

coincides with what Theorem 2 predicts. However, the theorem also suggests that

the bias can be corrected straightforwardly by adding b to t̂. This is the foundation of

the bias-corrected estimator ~t = t̂+ b described in Section 2.2. Indeed, the proofs of

Lemma A6 and Theorem 2 jointly imply that the leading bias of ~t is O (�2), whereas

its variance is still O
�
b1=2=n

�
. It will be con�rmed in the Monte Carlo study shortly

that ~t is a remedy for better �nite-sample properties.

Remark 3. An approximation to the mean squared error (AMSE) of t̂ is

AMSE
�
t̂
�
= b2 +

b1=2

n
V0 = O

�
b2 +

b1=2

n

�
; (8)

where O (b2) and O
�
b1=2=n

�
terms are leading squared bias and variance of t̂, respect-

ively. The AMSE for the threshold parameter implied by Théorème 2 of Couallier

(1999) is in the form of O (h4 + h=n), where h is the the bandwidth for standard

symmetric kernels. It can be found that this AMSE and (8) are of the same order

of magnitude by recognizing that b � h2. Furthermore, it follows from (8) that

no bias-variance trade-o¤ occurs, because a smaller b makes both squared bias and

variance terms smaller.

Remark 4. Some readers may wonder how to pick b and � for super-consistency

of t̂. Then, for arbitrarily small �1; �2 > 0 as given in Assumption 3, put � � b� for
some � 2 (1=2 + �1; 3=4) and b � n�� for some � 2 (0; (1� �2) = (2�� 1=2 + 4�1)).
It is straightforward to see that such � and b jointly satisfy (3). In addition, when
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� 2 (1=2; 3=4), we have

1� �2
1 + 4�1

<
1� �2

2�� 1=2 + 4�1
<
2 (1� �2)
1 + 12�1

;

where the two bounds (1� �2) = (1 + 4�1) and 2 (1� �2) = (1 + 12�1) are slightly below
1 and 2, respectively. Using this, we may draw the following three conclusions on

the convergence rate of t̂:

1. We are always allowed to pick � > 1=2. Then, AMSE
�
t̂
�
= o (n�1), or t̂

becomes super-consistent.

2. It is even possible to set � = 2=3, in particular. This value balances orders

of magnitude in the squared bias and variance so that O (b2) = O
�
b1=2=n

�
=

O
�
n�4=3

�
. As a consequence, AMSE

�
t̂
�
= O

�
n�4=3

�
. It is also clear that

the AMSE convergence rate of t̂ is determined by the exponent �. AMSE
�
t̂
�
=

O (b2) (i.e., the squared bias dominates) for � � 2=3, andAMSE
�
t̂
�
= O

�
b1=2=n

�
(i.e., the squared bias becomes asymptotically negligible) otherwise. The latter

case corresponds to an �undersmoothing�scenario so that nb3=2 ! 0 holds. As

a consequence, the asymptotic normality statement in Theorem 2 reduces top
n=b1=2

�
t̂� t0

� d! N (0; V0).

3. The best possible rate is AMSE
�
t̂
�
= O (n�2+") for an arbitrarily small " > 0.

The rate can be attained by setting � and � slightly above 1=2 and slightly

below 2, respectively. Chu and Cheng (1996) and Couallier (1999) also report

that their threshold estimators can attain the same convergence rate under the

best case scenario.

Furthermore, it is not hard to see that for � and b de�ned above, we can always

�nd some � 2 [0; 1) satisfying (4). To see this, observe that (4) holds if nb3=2�� !1
at a polynomial rate. The rate requirement is attained for case 1 by setting � slightly

above 1=2 and � = 0. For case 2, � = 2=3 and any � 2 (0; 1) can jointly establish
a polynomial divergence of nb3=2��. Finally, for case 3, � slightly below 2 and �

slightly below 1 lead to nb3=2�� !1 at a polynomial rate.

Remark 5. As long as f (x) can be locally modelled as or well-approximated by (2),

both t̂ and ~t become super-consistent when implemented as in Remark 4. It follows

that regardless of whether a parametric (e.g., GPD) or nonparametric model (e.g.,

Markovitch and Krieger, 2000) is �tted to the upper part, our splicing point estimator

15



can be safely used as a threshold estimate without deteriorating the convergence

rate for the model of the upper part of the distribution. In addition, Table 1 of

Clauset et al. (2009) lists examples of non-power law distributions that behave like

the GPD. Clauset et al. (2009) even argue that �tting a power law distribution in

their procedure has nothing to do with a plausible match of the distribution with

the data, and they recommend a goodness-of-�t test as a post-estimation analysis.

Super-consistency of our estimators does no harm to convergence rates of the test

statistics, either.

4 Finite-Sample Performance

4.1 Monte Carlo Design

We consider two alternative models in the simulation study. For each model, 1000

Monte Carlo replications of fXigni=1 with sample size n 2 f250; 500g are simulated.
In the �rst case, the univariate random variable X 2 R+ is drawn from a log-

normal-like distribution. What di¤ers from a usual log-normal distribution is that

a quadratic term is added to the pdf on the interval [0; t0) = [0; 4). Speci�cally, the

pdf f (x) is

f (x) =

�
1

1 + (2=3)Dt0

�"
1

x�
p
2�
exp

(
�(lnx� �)

2

2�2

)
+ S (x)

#
; (�; �) =

�
1

5
;
3

4

�
;

where

S (x) := D
�
1� f(x� t0) =t0g2

�
1 fx < t0g

and

d0 = f (t0�)� f
�
t+0
�
=

D

1 + (2=3)Dt0
:

The shift parameter D takes two values, and D = 1=4; 3=22 yield d0 = 0:15; 0:10,

respectively. The former and latter cases are labelled as �Model 1-A�and �Model

1-B�. It also follows from f (1)(t�0 ) = f
(1)(t+0 ) that (2) is satis�ed in the neighborhood

of the splicing point t0 = 4.

This design is in some sense similar to that of Chu and Cheng (1996), who consider

the density f(x) constructed by splicing left and right sides of two normal distributions

with zero mean but di¤erent variances. In their design, f(0�) 6= f(0+) but f (1)(0�) =
f (1)(0+), and thus (2) holds in the neighborhood of the origin (aside from the fact

that the threshold lies in the middle part).
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In the second case, the nonnegative random variable X is generated by some

distribution spliced at t0 = 4. The pdf f (x) in this case takes the general form

f (x) = fL (x)1 fx < t0g+ (1� cL) fR (x)1 fx � t0g ;

where fL (x) is some density function truncated at t0, fR (x) is another density func-

tion with support on [t0;1), and cL :=
R t0
0
f (x) dx =

R t0
0
fL (x) dx ensures unity of

the integral of f (x) over its entire support R+; in other words, fL (x) and fR (x) rep-
resent bulk and upper part models, respectively. This scenario is labelled as �Model

2�.

Throughout the Weibull distribution with density

fL (x) =
�

�

�x
�

���1
exp

n
�
�x
�

��o
; (�; �) =

�
3;
11

4

�
:

is considered as the bulk part of Model 2. Densities of the following distributions

are examined for the tail part, and three cases are denoted as �Model 2-A�, �Model

2-B�and �Model 2-C�, depending on the corresponding tail model:

fR (x) =

8>>>>><>>>>>:

1
s

n
1 + �(x�t0)

s

o�(1+1=�)
1 fx � t0g ; (�; s) =

�
1
4
; 4
�

[A: GPD]
k
`
exp

n�
1
`

�ko�x�t0+1
`

�k�1
exp

n
�
�
x�t0+1

`

�ko
1 fx � t0 � 1g ;

(k; `) =
�
1
4
; 1
�

[B: Translated Weibull]
1
&

q
2
�
exp

n
� (x�t0)2

2&2

o
1 fx � t0g ; & = 4

q
2
�

[C: Half-Normal ]

;

where f
�
t�0
�
= fL (4) and f

�
t+0
�
= (1� cL) fR (4).

Drees et al. (2020, p.83) argue that discontinuity of the density at the threshold

is an easy scenario for the threshold detection method by Clauset et al. (2009).

Model 2-A is most favorable to existing threshold detection methods because of the

chosen level of discontinuity. The tail part in Model 2-B, also known as a stretched

exponential distribution, re�ects that again it seemingly behaves like a power law

distribution (Clauset et al., 2009). Because this pdf is unbounded at the boundary

of the support t0� 1, it is truncated at t0. Model 2-C adopts a (shifted) half-normal
distribution for the tail part. This distribution has a normal-type thin tail. Because

our splicing point estimator is grounded on no particular parametric model for the

tail part, we are curious to see how tail thickness in�uences �nite-sample properties

of our estimator.

Each of three cases violates (2) by construction but may be more realistic, because

it is hard to judge whether the local structure (2) indeed holds in real data. Moreover,

the bulk model and the jump size d0 = f
�
t�0
�
�f

�
t+0
�
are common across three cases
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of Model 2. The only di¤erence is the tail modelling. In short, Model 2 is designed

to investigate how robust our estimator is against violation of an important regularity

condition and how our estimator behaves toward di¤erent tail models.

Table 1 presents the mode of the distribution of X, the constant cL, left and right

limits of the density at the splicing point f
�
t�0
�
, and the jump size d0 = f

�
t�0
�
�f
�
t+0
�
.

More than 95% of observations concentrate on the interval [0; t0) (i.e., in the bulk

region) in each model, and all models but Model 2-C have polynomially decaying

tails. These features reasonably mimic properties of cost distributions.

TABLE 1 ABOUT HERE

Our estimation procedure for t0 is implemented as follows. There are two optim-

izations required, namely, (i) the one for tuning parameters (b;�) and (ii) the other

for the search of the splicing point. For (i), Remark 4 suggests � 2 (1=2; 3=4), and
thus we restrict our attention to four values, namely, � 2 f0:55; 0:60; 0:65; 0:70g. A
few cross-validation (CV) methods for b are investigated, and their details are de-

ferred to the next section. For each CV method, candidates of b are taken from

100 equally-spaced grids over the interval [0:005; 0:500]. For (ii), after (b;�) are

determined, the threshold location is searched via a numerical optimization routine

for the diagnostic function
���Ĵ (x)��� on the interval I0 = [3; 5].3 Once the splicing point

estimator t̂ is obtained as the maximizer of
���Ĵ (x)���, the bias-corrected estimator is

computed as ~t = t̂+ b.

Finite-sample performances of t̂ and ~t are compared with those of existing (i)

kernel-smoothed competitive threshold estimation procedures and (ii) automated

threshold detection methods. For (i), we focus on the procedure by Chu and

Cheng (1996) [CC]. The CC diagnostic function is
���ĴCC (x)��� = ���f̂1 (x)� f̂2 (x)���,

where f̂j (x) = (nh)�1
Pn

i=1Kj f(Xi � x) =hg ; j = 1; 2, for the kernels K1 and K2

to be speci�ed shortly and a common bandwidth h (> 0). As in our method, the

maximizer of
���ĴCC (x)��� on I0 is de�ned as the threshold estimator. The kernels K1

and K2 are fourth-order polynomial ones. These are

K1 (u) =
�
0:4857� 3:8560u+ 2:8262u2 + 19:1631u3 + 11:9952u4

�
� 1 fu 2 [�1; 0:2012]g ;

3The reason why di¤erent algorithms are utilized for (i) and (ii) is as follows. While a numerical
optimization routine substantially reduces computation time for (i), it often �nds local extrema
and corner solutions because of a high degree of nonlinearity in CV criteria. A grid search can

circumvent these issues. In contrast,
���Ĵ (x)��� is concave on I0, and a numerical optimization routine

helps expedite computation for (ii).
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and K2 (u) = K1 (�u) for all u. These kernels are also employed for threshold

detection in nonparametric regression curves by Wu and Chu (1993a,b). The CC

procedure is implemented as in ours. After the bandwidth value is found via grid

search for a CV criterion in the next section, the threshold location is searched via

numerical optimization for the diagnostic function
���ĴCC (x)��� on I0.

For (ii), we investigate the followings: (a) the minimum KS distance procedure

between the empirical and GPD-based distribution functions by Clauset et al. (2009)

[KS]; (b) the minimum quantile discrepancy criterion for the mean absolute deviation

between empirical and GPD-based quantiles by Danielsson et al. (2019) [Q-MAD];

(c) the minimum quantile discrepancy criterion for the sup-norm between empirical

and GPD-based quantiles by Danielsson et al. (2019) [Q-SUP]; (d) the automated

Eye-Balling method based on tail index estimates by Danielsson et al. (2019) [AEB];

and (e) the Anderson-Darling sequential testing procedure by Bader et al. (2018)

[ADST]. For (e), candidates of thresholds are 20 empirical percentiles from 50:0%

until 97:5% with an increment of 2:5%, i.e., f50:0%; 52:5%; : : : ; 95:0%; 97:5%g. The
5% level of signi�cance is used for testing, and p-values for multiple tests are adjusted

by the ForwardStop procedure.

All simulations are conducted on R. In particular, R-packages �poweRlaw�, �tea�

and �eva�are employed to implement automated threshold detection methods (a),

(b)-(d) and (e), respectively.

4.2 Smoothing Parameter Selection

Selecting the smoothing parameter b is the most important practical issue. In our

context, values of (b;�) must be determined before threshold location search so that

the diagnostic function can be �xed on I0. However, Remark 3 does not help resolve

this issue. There is no optimal choice for b on the basis of the bias-variance trade-

o¤. Theorem 2 provides no guidance for �, either, because it does not automatically

guarantee that any� satisfying (3) works equally well in �nite samples. Furthermore,

to the best of our knowledge, there is no decisive conclusion on selecting the tuning

parameter in the context of threshold estimation; in fact, Chu and Cheng (1996)

adopt �xed bandwidths in their Monte Carlo study.

Taking the dependence of � on b into account, we tailor Huh�s (2012) approach

to construct a few CV criterion functions. Before proceeding, put � = b� for a given

�. Accordingly, f̂� (x) are rewritten as f̂�b (x;�), which signify the dependence of
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density estimates on (b; �). Also let

f̂�b;�i (x;�) :=
1

n� 1

nX
j=1;j 6=i

K�
x (Xj)

be density estimates using the sample with the ith observation eliminated. Finally,

denote the number of observations falling into I0 as n0 :=
Pn

i=1 1 fXi 2 I0g.
The CV criterion function by Huh (2012) is de�ned as the sum of CV criteria for

two density estimates that construct the diagnostic function for threshold location

estimation. We incorporate this idea into three CV criterion functions. The minim-

izer of each criterion function is taken as the corresponding CV smoothing parameter.

The �rst one is the least-squares cross-validation (LSCV) criterion. It is de�ned as

CVLS (b;�) = CV
�
LS (b;�) + CV

+
LS (b;�) ; (9)

where

CV �LS (b;�) :=

Z
I0

n
f̂�b (x;�)

o2
dx� 2

n0

X
i:Xi2I0

f̂�b;�i (Xi;�) : (10)

The remaining two criteria are likelihood-based ones. One is the simple likelihood

cross-validation (LCV) criterion, which is analogous to L̂2 (h) of Marron (1985) and

equation (2.1) of Van Es (1991). It is given by

CVL (b;�) = CV
�
L (b;�) + CV

+
L (b;�) ;

where

CV �L (b;�) := �
X
i:Xi2I0

ln
n
f̂�b;�i (Xi;�)

o
is the negative log-likelihood. The other is the modi�ed LCV (MLCV) criterion,

which corresponds to L̂5 (h) of Marron (1985) and equation (2.2) of Van Es (1991).

It takes the form of

CVML (b;�) = CV
�
ML (b;�) + CV

+
ML (b;�) ; (11)

where

CV �ML (b;�) := �
" X
i:Xi2I0

ln
n
f̂�b;�i (Xi;�)

o
�

nX
i=1

Z
I0

K�
Xi
(u) du

#

= �
" X
i:Xi2I0

ln
n
f̂�b;�i (Xi;�)

o
�

nX
i=1

�
P

�
Xi ��
b

+ 1;
t

b

�
� P

�
Xi ��
b

+ 1;
t

b

��#
; (12)
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and the second term is intended to eliminate the endpoint e¤ect of the interval I0 =�
t; t
�
. Corresponding threshold location estimates are labelled �SG-LS�, �SG-L�

and �SG-ML�, where �SG�abbreviates �shifted gamma�. For their bias-corrected

versions, we put �-BC�at the end.

Finally, choosing the bandwidth h is also required to implement the CC procedure.

The LSCV analogous to (9)-(10) (i.e., �nding a minimizer of the sum of two LSCV

criteria for f̂1 (x) and f̂2 (x)) is adopted.

TABLE 2 ABOUT HERE

4.3 Results

Table 2 presents several performance measures of threshold estimators. These in-

clude the bias, standard deviation and RMSE of each threshold estimator over 1000

Monte Carlo samples. In addition, for CC and SG estimators, Monte Carlo aver-

ages and standard deviations (in parentheses) of CV tuning parameters are reported

for reference. Furthermore, there is no guarantee that automated threshold detec-

tion methods necessarily yield threshold estimates falling into the interval I0. For

these methods, percentages of threshold estimates inside I0 out of 1000 Monte Carlo

samples are provided.

Properties of the tail parts in Model 2-C and other four models di¤er; while the

tail for the former decays exponentially fast, the latter has a polynomially decaying

tail. Therefore, it is reasonable to evaluate the Monte Carlo results from the former

and the latter separately.

4.3.1 Models 1-A, 1-B, 2-A, and 2-B

We start from examining the results from automated threshold detection methods.

Q-MAD generates the smallest RMSE for Models 1-A, 1-B and 2-A, whereas ADST

yields the smallest RMSE for Model 2-B. In addition, more than 90% of estimates

from Q-MAD are inside I0 for each model and sample size, despite no restriction on

the parameter space. While Models 2-A and 2-B are thought to be more favorable

than Models 1-A and 1-B for these automated methods, Q-MAD is comparable to SG

methods in terms of RMSE for the latter case. There are also general tendencies of

underestimation by KS and Q-MAD and overestimation by AEB. No clear tendencies

can be observed in ADST. In particular, the degree of overestimation by AEB is

considerable.
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CC also looks comparable to SG methods. It consistently overestimates the

location of the splicing point. However, the bias reduces with the sample size, and

jointly by the decrease in dispersion, its RMSE becomes smaller as the sample size is

larger.

There is also a general tendency in the results from SG methods. It can be im-

mediately found that the initial estimate t̂ tends to be negatively biased, as Theorem

2 predicts. Moreover, a short b makes both the bias and variance small, as suggested

in Remark 3. Accordingly, it can be reasonably conjectured that a CV algorithm

that can generate a small smoothing parameter value b̂ will contribute to the initial

estimate t̂ with good quality. Clearly, MLCV alone ful�lls this requirement. In

contrast, LSCV and LCV consistently give a large value of b̂, which leads to a con-

siderably biased t̂. This is the source of their poor performance, and the sizable bias

cannot be corrected completely even after adding a large b̂ to t̂.

In what follows, we look into SG-ML and SG-ML-BC more carefully. Although

the shift parameter � does not enter the asymptotic normality result in Theorem 2,

the choice of � (or the exponent �, to be more precise) matters in �nite samples.

For each model and sample size, smoothing parameter values via MLCV do not vary

much across four values of �. On the other hand, � = 0:70 (i.e., the smallest shift)

always results in the smallest RMSE among four initial SG-ML estimates. Because

bias correction is made by simply adding b̂ to the initial estimate t̂, additional vari-

ability through bias correction (i.e., estimation error of the correction term) is not

introduced. As a consequence, superiority of the smallest shift is maintained after

the bias correction. Indeed SG-ML-BC with � = 0:70 outperforms others in terms

of RMSE for Models 1-A and 1-B. Its RMSE is not the smallest for Models 2-A

and 2-B; an exception is Model 2-B with n = 500, to be more precise. For these

cases, however, the RMSE is simply larger than those from other bias corrected SG

methods, and it is still smaller than those from CC and �ve automated methods.

4.3.2 Model 2-C

It is of particular interest to see how threshold estimators behave in case of a thin

tail. Q-MAD continues to perform best among �ve automated threshold detection

methods for each sample size. It produces the smallest RMSE, and again more than

90% of estimates fall within I0. The performance of CC is also qualitatively similar

to above. The RMSE of SG-ML with � = 0:70 becomes worse than that of Q-MAD,

and as a result, Q-MAD outperforms SG-ML-BC in terms of RMSE even after the

bias correction. It is worth emphasizing that the RMSE of SG-ML with � = 0:70 is
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smaller than those of SG-LS and SG-L, and bias correction using a sizable b̂ merely

improves their RMSEs.

However, it is dubious whether this can be thought of as �satisfactory� for the

automated threshold detection method. Q-MAD is designed to detect the point

at which deviation from a GPD occurs, and the exponentially decaying tail contra-

dicts the premise of a thick tail. In this standpoint, results from other automated

methods could be more reasonable. Another lesson learnt here is that based on no

particular parametric model in the tail part, SG methods identify a jump point of

the distribution as the threshold, regardless of its tail thickness.

4.3.3 Summary

Invoke that the local structure (2) holds in the neighborhood of the true threshold

location for two cases of Model 1, whereas it is violated for three cases of Model 2.

It can be con�rmed from Monte Carlo results that SG-ML-BC with � = 0:70 is of

most practical relevance and importance, because its RMSE is by far the smallest

in favorable scenarios and in general less than those from other competing methods

even in unfavorable scenarios with deviation from (2).

5 Real Data Examples

5.1 Data Description

In this section our threshold estimation procedure is applied to two datasets on cost

variables that are made publicly available. The one is of actuarial losses and the

other of wages. Below each dataset is discussed in detail.

The �rst dataset is of Danish �re insurance losses. Since the seminal analysis by

McNeal (1997), the dataset has been arguably most popularly chosen for empirical

studies on non-life insurance. We extract the one named �danish� in R-package

�SMPracticals�. The dataset contains 2; 492 �re insurance losses denominated in

millions of Danish kroner from 1980 to 1990.

The second dataset is taken from Merged Outgoing Rotation Group Earnings

Data of the US Current Population Survey (CPS), also known as CPS Labor Extract,

which is available on the webpage of the National Bureau of Economic Research. We

extract hourly wages (the variable �earnhre�) earned by males from the dataset in

1979. Before proceeding, all observations denominated originally in US cents are

converted into US dollars. The original sample size is 54; 769. Considering the
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computation burden of kernel smoothing, we downsize the dataset to a sub-sample of

sample size 2; 709 by random sampling, which roughly accounts for 5% of the original.

Table 3 reports summary statistics of the datasets. Each distribution is right-

skewed and thus reasonably represents stylized facts of a �cost�distribution. It can

be also found that the distribution of the downsized dataset of US male wages well

represents that of the original.

TABLES 3-4 ABOUT HERE

5.2 Estimation Details

Based on simulation results in Section 4, we compare SG-ML(-BC) with � = 0:70

with KS, Q-MAD, Q-SUP, AEB, ADST, and CC. The tuning parameter for each

of SG-ML(-BC) and CC is taken from 100 equally-spaced grids over the interval

[0:005; 0:500], and then the threshold estimate t̂ is searched via a numerical optimiz-

ation routine of the corresponding diagnostic function.

The prespeci�ed interval I0 for each dataset roughly covers the upper part of

the distribution. In addition, Cooray and Ananda (2005) and Scollnik and Sun

(2012) estimate several di¤erent parametric composite models from the Danish �re

insurance dataset and obtain threshold estimates ranging roughly from 1 through

3. Using the same dataset, Reynkens et al. (2017) report the threshold estimate of

17 via a graphical method. The interval I0 for this dataset also incorporates these

empirical �ndings.

In addition, to implement ADST, we adopt the 5% level of signi�cance and the

ForwardStop procedure for p-value adjustments in multiple tests. Candidates of

thresholds are 54 empirical percentiles from 20:0% until 99:5% with an increment

of 1:5%, i.e., f20:0%; 21:5%; : : : ; 98:0%; 99:5%g, for Danish �re insurance losses and
34 empirical percentiles from 50:0% until 99:5% with an increment of 1:5%, i.e.,

f50:0%; 51:5%; : : : ; 98:0%; 99:5%g, for US male hourly wages. The range of percent-
iles for each dataset roughly coincides with the corresponding interval I0.

5.3 Results

Table 4 presents the estimation results. For the Danish �re insurance data, there

is no consensus in threshold estimates among �ve GPD-based detection methods,

except that those from KS and ADST are fairly close each other. The estimate from

SG-ML is close to those from KS and ADST, so is the one from its bias-corrected
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version SG-ML-BC. In contrast, the result from CC is problematic and recognized as

an example of estimation failure in that the threshold estimate is a corner solution.

On the other hand, all �ve GPD-based methods detect the threshold in the US

male wage distribution at 10 or larger, and in particular, KS, Q-MAD and Q-SUP pro-

duce very similar threshold estimates. SG-ML and SG-ML-BC also yield threshold

estimates near 10, which is considerably close to the results from Q-MAD and Q-SUP.

Once again, CC may have failed to estimate the threshold, because its estimate lies

almost on the boundary. Moreover, the threshold estimate by ADST corresponds to

the 99:5% empirical percentile; in other words, this method suggests deviations from

a GPD at all percentiles considered.

As the location of the threshold is unknown in each distribution, it is hard to

judge among all threshold estimators considered. Nonetheless, it is safe to say that

SG-ML(-BC) can serve as a good alternative to existing threshold detection methods.

6 Conclusion

It is widely recognized that a single model cannot describe the while range of a cost

distribution well. Accordingly, it is of growing importance and interest to �nd the

location of a threshold at which two di¤erent models are spliced, whereas this es-

timation problem is known to be notoriously di¢ cult. This paper has explored a

method of estimating the threshold of a cost distribution nonparametrically. Devel-

opment of our method stems from tailoring the existing techniques for change point

detection in statistics to stylized facts of cost distributions. The diagnostic function

is the absolute di¤erence of two kernel density estimates, and the maximizer of the

function over a prespeci�ed interval is de�ned as the threshold estimator. Because

it is located in the right tail region, we propose to compute two density estimates us-

ing the entire sample and shifted gamma kernels. Our proposed estimator is shown

to be super-consistent and asymptotically normal when suitably implemented. The

proof strategy is also new in that approximations to the incomplete gamma, digamma

and polygamma functions are utilized. Since the estimator tends to underestimate

the threshold location and its dominant bias term takes a simple form, we advocate

correcting its bias in a straightforward manner. It is con�rmed in the Monte Carlo

study that as a result of the bias correction, the negative bias is substantially elim-

inated with no additional price of spread. Several data-based methods of choosing

the smoothing parameter are also assessed via simulations. Our proposal is �nally

applied to two kinds of real world datasets. Judging from simulation results and real
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data examples, we recommend SG-ML-BC for practical use.
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A Appendix
The Appendix provides technical proofs of theorems and propositions. To save
space, we defer proofs of lemmata to the Supplemental Material. Before proceeding,
additional shorthand notation is introduced, and a few useful formulae related to the
gamma function are presented.

A.1 Additional Notation
	(x) = d ln � (x) =dx = �(1) (x) =� (x) and 	(m) (x) = dm	(x) =dxm signify the di-
gamma and polygamma functions, respectively. In addition, the following notation
is adopted in the proofs: R (a; z) = za exp (�z) =� (a+ 1) for a; z > 0; _K�

c (u) =

@K�
x (u) =@xjx=c; �K�

c (u) = @2K�
x (u) =@x

2jx=c;
...
K
�
c (u) = @3K�

x (u) =@x
3jx=c; Hi =

_K�
t0 (Xi)� _K+

t0 (Xi); and z� = (t0 ��) =b.

A.2 Useful Formulae on the Gamma Function
Stirling�s Formula.

� (a+ 1) =
p
2�aa+1=2 exp (�a)

�
1 +

1

12a
+O

�
a�2
��

as a!1: (A1)

Recursive Formula for the Lower Incomplete Gamma Function.
 (a+ 1; z) = a (a; z)� za exp (�z) for a; z > 0: (A2)

Recursive Formula for the Polygamma Function.

	(m) (a+ 1) = 	(m) (a) +
(�1)mm!
am+1

for a > 0 and m 2 f0; 1; 2; :::g : (A3)

A.3 Proof of Proposition 1
The proof requires the following lemmata.

Lemma A1. As b! 0,

sup
x2I0

����	�xb + 1��
�
ln
�x
b

�
+
b

2x

����� = O �b2� ;
sup
x2I0

����	(1) �xb + 1��
�
b

x
� b2

2x2

����� = O �b3� ; and
sup
x2I0

���	(m) �x
b
+ 1
���� = O (bm) for m � 2:
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Lemma A2. Let C0 := 2max
n
t�3=2; t

1=2
o
+ t�1=2. Then, as n!1,

sup
(x;u)2I0�R+

��� _K�
x (u)

��� � b�3=2r 2

�
C0:

LemmaA3. (Van der Vaart andWellner, 1996, Lemma 2.2.9) Let X1; : : : ; Xn

be independent random variables with bounded ranges [�M;M ] and zero means.
Then,

Pr

 �����
nX
i=1

Xi

����� > x
!
� 2 exp

�
� x2

2 (v +Mx=3)

�
for all x and v � V ar (

Pn
i=1Xi).

A.3.1 Proof of Proposition 1

Proof of (5). Because

E
n
f̂� (x)

o
=

Z 1

0

K�
x (u) g (u) du+ d0

Z t0

0

K�
x (u) du;

it su¢ ces to show that

sup
x2I0

����Z 1

0

K�
x (u) g (u) du�

�
g (x)� g(1) (x)�

	���� = O (b) : (A4)

Observe that
R1
0
K�
x (u) g (u) du = E fg (X�)g for X� d

= G (a� + 1; b). A second-
order Taylor expansion of g (X�) around X� = x yields

E
�
g
�
X��	 = g (x) + g(1) (x)E �X� � x

�
+
1

2
E
n
g(2)

�
�x�
� �
X� � x

�2o
for some �x� on the line segment joiningX� and x. Notice that

���E ng(2) (�x�) (X� � x)2
o��� �

supx2R+
��g(2) (x)��E (X� � x)2, where supx2R+

��g(2) (x)�� < 1 by Assumption 2(ii).
Furthermore, by the property of gamma random variables and Assumption 3, E (X� � x) =
��+ b and E (X� � x)2 = xb+�2 � 3�b+ 2b2 = fx+ o (1)g b. Then, (A4) imme-
diately follows.

Proof of (6). This part can be established by a minor modi�cation of the proof of
Theorem 2 in Funke and Hirukawa (2025). However, we present the proof for this
part in full in order for this paper to be self-contained. For ease of exposition, let
an :=

p
lnn= (nb1=2), ��in (x) := (1=n) [K

�
x (Xi)� E fK�

x (Xi)g], Nn := n1+�b�3=2 for
a su¢ ciently small � > 0, and jI0j := t� t. Then, the proof takes the following two
steps.

1. Split the interval I0 into Nn equally-spaced grids to create Nn sub-intervals with
length N�1

n jI0j, and replace the supremum with a maximization over �nite Nn
sub-intervals.

2. Employ Lemma A3 (Bernstein�s inequality) to bound the remainder term.
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Step 1. Let Ij; j = 1; : : : ; Nn; be the jth sub-interval. Also let xj be the right-
most point in Ij with x0 � t and xNn � t. Suppose that the design point x falls into
Ij. By the mean-value theorem Lemma A2 and Assumption 3,���K�

x (u)�K�
xj
(u)
��� � sup

(x;u)2I0�R+

��� _K�
x (u)

��� sup
x2Ij

jx� xjj

� O
�
b�3=2

�
O
�
N�1
n

�
= O

�
n�(1+�)

	
� O (an) :

It follows from Cr-inequality that

max
1�j�Nn

sup
x2Ij

�����
nX
i=1

��in (x)�
nX
i=1

��in (xj)

����� = O (an) : (A5)

Step 2. Before employing Bernstein�s inequality in Lemma A3, we must determ-
ine two bounds M and v. First, it holds that for a given x > �(> 0),

K�
x (u) �

b�1=2 (x��)�1=2 f1 + o (1)gp
2�

: (A6)

This can be con�rmed by recognizing that K�
x (u) is maximized at u = x � � and

employing (A1). Then, by (A6),

sup
(x;u)2I0�R+

��K�
x (u)

�� � b�1=2r 2

�t
;

and thus, by Cr-inequality,����in (x)�� � 2r 2

�t
n�1b�1=2 = 2

r
2

�t

a2n
lnn

=:M:

Second, Assumption 2(i) implies that there is some constant C 2 (0;1) so that
supx2R+ f (x) � C. Then,

V ar

(
nX
i=1

��in (x)

)
=

nX
i=1

V ar
�
��in (x)

	
=

nX
i=1

E
�
��in (x)

	2
�

nX
i=1

E

�
1

n
K�
x (Xi)

�2
� C

n

Z 1

0

�
K�
x (u)

	2
du:

Also let

A� (x) :=
b�1� (2a� + 1)

22a�+1�2 (a� + 1)
: (A7)
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Observe thatZ 1

0

�
K�
x (u)

	2
du = A� (x)

Z 1

0

u2a
�
exp f�u= (b=2)g

(b=2)2a
�+1 � (2a� + 1)

du = A� (x) ;

because the integrand in the middle term is the pdf of G (2a� + 1; b=2). Using (A1),
(x��)�1=2 = x�1=2 f1 + o (1)g and o (1) � 1 for a su¢ ciently large n gives

A� (x) =
b�1=2 (x��)�1=2 f1 + o (1)g

2
p
�

� b�1=2p
�t

uniformly on I0. In sum,

V ar

(
nX
i=1

��in (x)

)
� Cp

�t
n�1b�1=2 =

Cp
�t

a2n
lnn

=: v:

Lemma A3 establishes that for such M and v and an arbitrarily chosen K > 0,

Pr

8<:
�����
nX
i=1

��in (x)

����� > K
s

Cp
�t
an

9=; � 2 exp

8><>:� K2 lnn

2
�
1 + 2

3

q
2
�t
Kan=

q
Cp
�t

�
9>=>; :

It follows from an = o (1) that (2=3)
p
2= (�t)Kan=

q
C=
p
�t � 1 holds for a su¢ -

ciently large n. Accordingly,

Pr

8<:
�����
nX
i=1

��in (x)

����� > K
s

Cp
�t
an

9=; � 2 exp
�
� K2 lnn

2 (1 + 1)

�
= 2n�

K2

4 :

In the end,

Pr

8<: max
1�j�Nn

�����
nX
i=1

��in (xj)

����� > K
s

Cp
�t
an

9=;
�

NnX
i=1

max
1�j�Nn

Pr

8<:
�����
nX
i=1

��in (xj)

����� > K
s

Cp
�t
an

9=;
� Nn � max

1�j�Nn
Pr

8<:
�����
nX
i=1

��in (xj)

����� > K
s

Cp
�t
an

9=;
= O

�
Nnn

�K2

4

�
:

Moreover, (4) implies that

b�3=2 = O

(
n

1
1��

�
b
�
2

lnn

� 1
1��
)
� O

�
n

1
1��

�
;
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where the last inequality holds because b�=2= lnn is convergent. Then, picking K =

2
p
2 (1 + �) + 1= (1� �) yields Nnn�K

2=4 = O
�
n�(1+�)

	
so that

1X
n=1

Pr

8<: max
1�j�Nn

�����
nX
i=1

��in (xj)

����� > K
s

Cp
�t
an

9=; �
1X
n=1

O

�
1

n1+�

�
<1:

Therefore, by the Borel-Cantelli lemma,

max
1�j�Nn

�����
nX
i=1

��in (xj)

����� = O (an) a:s: (A8)

It follows from (A5) and (A8) that

sup
x2I0

���f̂� (x)� E nf̂� (x)o���
� max

1�j�Nn

�����
nX
i=1

��in (xj)

�����+ max
1�j�Nn

sup
x2Ij

�����
nX
i=1

��in (x)�
nX
i=1

��in (xj)

�����
= O (an) a:s:

This completes the proof. �

A.4 Proof of Proposition 2
Proof of (i). Dividing both sides of (A2) by � (a� + 1) and using � (a� + 1) =
a�� (a�), we have

P
�
a� + 1; z0

�
= P

�
a�; z0

�
�R

�
a�; z0

�
:

Then, J (x) can be rewritten as

J (x) =
�
P
�
a�; z0

�
� P

�
a+; z0

�	
�
�
R
�
a�; z0

�
�R

�
a+; z0

�	
: (A9)

Let y� solve the equation z0 = a� +
p
a�y�. Then,

y� =
z0 � a�p
a�

=
t0 � (x��)p
b (x��)

:

Now equation (1) of Pagurova (1965) is applied to P (a�; z0), where this equation can
be viewed as the Edgeworth expansion for a gamma cdf. In fact,

P
�
a�; z0

�
= P

�
a�; a� +

p
a�y�

�
= �

�
y�
�
� 1

3
p
a�
�(2)

�
y�
�
+Ra� ; (A10)

where � (�) is the cdf of N (0; 1). Also observe that �(j) (x) =: (�1)j Hj (x)� (x),
where the Hj (x) are Hermite polynomials (i.e., H0 (x) = 1, H1 (x) = x, H2 (x) =
x2 � 1, H3 (x) = x3 � 3x; : : :). The remainder term Ra� in (A10) is (1=a�) times
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higher-order derivatives of � (x) evaluated at y�. It follows from (A9) and (A10)
that

J (x) =
�
�
�
y�
�
� �

�
y+
�	
� 1
3

(
�(2) (y�)p

a�
� �

(2) (y+)p
a+

)
+ (Ra� �Ra+)�

�
R
�
a�; z0

�
�R

�
a+; z0

�	
:

Part (i) is established if all the followings are demonstrated:

sup
x2I0

������ �y��� � �y+�	�Q (x)� �

b1=2

����� = O� �3

b3=2

�
; (A11)

sup
x2I0

������(2) (y�)p
a�

� �
(2) (y+)p
a+

����� = O
�
�3

b3=2

�
; (A12)

sup
x2I0

jRa� �Ra+ j = O
�
�3

b3=2

�
; and (A13)

sup
x2I0

��R �a�; z0��R �a+; z0��� = O� �3

b3=2

�
: (A14)

Now, a third-order Taylor expansion of � (y�) around � = 0 yields

�
�
y�
�

= �

�
t0 � xp
bx

�
�
�
t0 + x

2x3=2

�
�

�
t0 � xp
bx

��
�

b1=2

�
+
1

2

��
t0 + x

4x3

�
�(1)

�
t0 � xp
bx

��
�2

b

�
+

�
3t0 + x

4x5=2

�
�

�
t0 � xp
bx

��
�2

b1=2

��
+O

�
�3

b3=2

�
; (A15)

where the O
�
�3=b3=2

�
rate is uniform on I0. Observing that the terms involving odd

orders of � survive after taking the di¤erence between � (y�) and � (y+) and recog-
nizing that the O

�
�=b1=2

�
term can be rewritten as � (1=2)Q (x)

�
�=b1=2

�
establish

(A11).
For (A12), notice that

1p
a�
=
b1=2p
x

�
1� �

2x
+O

�
�2
��
; (A16)

where the O (�2) rate is uniform on I0. Moreover, a second-order Taylor expansion
of �(2) (y�) around � = 0 yields

�(2)
�
y�
�
= �(2)

�
t0 � xp
bx

�
�
�
t0 + x

2x3=2

�
�(3)

�
t0 � xp
bx

��
�

b1=2

�
+O

�
�2

b

�
;

where the O (�2=b) rate is again uniform on I0. By (3),

sup
x2I0

������(2) (y�)p
a�

� �
(2) (y+)p
a+

����� � O �b1=2�O
�
�

b1=2

�
= O (�) = o

�
�3

b3=2

�
� O

�
�3

b3=2

�
;
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and thus (A12) is also shown. By a similar argument, jointly with 1=a� = O (b)
uniformly on I0,

sup
x2I0

jRa� �Ra+ j � O (b)O
�
�

b1=2

�
= O

�
�b1=2

�
= o

�
�3

b3=2

�
� O

�
�3

b3=2

�
;

which yields (A13).
Finally, using (A1) yields

R
�
a�; z0

�
=
za

�
0 exp (�z0)
� (a� + 1)

=

�
1 +O (1=a�)p

2�

�
1p
a�

�� z0
a�

�a�
exp

�
a� � z0

��
; (A17)

where f1 +O (1=a�)g =
p
2� = O (1) uniformly on I0. In addition,� z0

a�

�a�
exp

�
a� � z0

�
=: exp

�
a�
�
ln �� + 1� ��

�	
for �� := z0=a� > 0. It follows from ln ��+1��� � 0 that exp fa� (ln �� + 1� ��)g �
1 � O (1). Then, by (A16),

sup
x2I0

��R �a�; z0��R �a+; z0��� � O ��b1=2� = o� �3

b3=2

�
� O

�
�3

b3=2

�
;

and thus (A14) is also proven.

Proof of (ii). Notice that

Q(1) (x) =
q (x)

2bx7=2
�

�
x� t0p
bx

�
; (A18)

where q (x) := �bx (x+ 3t0)�(x� t0) (x+ t0)2. Heuristically, q (x) � � (x� t0) (x+ t0)2
for b � 0, and we can see that Q (x) is maximized at x � t0. To be more precise,
the maximizer of Q (x) is given by the solution of q (x) = 0 or �bx (x+ 3t0) =
(x� t0) (x+ t0)2. It is not hard to see that for a su¢ ciently small b > 0, the latter
has a unique solution on R+.
Let t� be the solution. Our argument so far suggests that t� � t0 for a su¢ ciently

small b > 0. Now we even conjecture that t� = t0 + cb for some jcj <1. To verify
this conjecture, consider that 0 = q (t�) = �b

�
(t0 + cb) (4t0 + cb) + c (2t0 + cb)

2	.
Because b > 0, c solves (t0 + cb) (4t0 + cb) + c (2t0 + cb)

2 = 0. This equation can be
further rewritten as b (c+ 1) (c+ 2t0=b)

2 = �t0c. Observe that the left- and right-
hand sides are cubic and downward sloping linear functions of c, respectively. For a
su¢ ciently small b > 0, �2t0=b < �1 holds, and in this case we can recognize that
the equation has a unique solution c 2 (�1; 0). This completes the proof. �
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A.5 Proof of Theorem 1
Because

��t̂� t0�� � ��t̂� t���+ jt� � t0j and we have already known in Proposition 2(ii)
that jt� � t0j � b, it su¢ ces to demonstrate that��t̂� t��� = O (cn) a:s: (A19)

The proof for (A19) closely follows the one for Theorem 1 of Chu and Cheng
(1996). We keep using the same notation as in the proof of (6) in Proposition 1.
In addition, de�ne � := fx : x 2 I0; jx� t�j > cn jI0jg. Also let w be an element of
En := fx0; x1; : : : ; xNng that is closest to t�, i.e.,

jw � t�j = min
0�j�Nn

jxj � t�j , w = arg min
s2En

js� t�j :

To show (A19), we need to prove that Pr
�
t̂ 2 �

	
= 0. However, the setn

supx2�

���Ĵ (x)��� � ���Ĵ (w)���o is larger than the set �t̂ 2 �	, and thus Pr�t̂ 2 �	 �
Pr
n
supx2�

���Ĵ (x)��� � ���Ĵ (w)���o is the case. In what follows, we establish that
Pr

�
sup
x2�

���Ĵ (x)��� � ���Ĵ (w)���� = 0: (A20)

Let x� := arg supx2�
���E nĴ (x)o���. Using (7) and Proposition 2 and invoking that

� = o
�
�3=b3=2

�
, we have���E nĴ (w)o���� sup
x2�

���E nĴ (x)o��� = jd0j fQ (w)�Q (x�)g� �

b1=2

�
+O

�
�3

b3=2

�
: (A21)

For a su¢ ciently large n, w is closer to t� than x�. Hence, Q (w)�Q (x�) > 0 is the
case. By the mean value theorem, Q (w) � Q (x�) = Q(1) ($) (w � x�) also holds,
where $ := �x� + (1� �)w for � (= �n) 2 (0; 1). Combining these, we may write
Q (w)�Q (x�) =

��Q(1) ($)�� jw � x�j.
Below the lower bound of

��Q(1) ($)�� jw � x�j is obtained. Before proceeding, the
following bounds are found to be useful:

jw � t�j � N�1
n jI0j = n�(1+�)b3=2 jI0j ; (A22)

jx� � t�j � cn jI0j ; (A23)

t0 � t� 2 (0; b) ; and (A24)

jx� � t0j � �b1=2 jI0j for some constant � > 0: (A25)

While (A22) and (A23) follow from the de�nitions of w and x�, respectively, (A24) is
the direct outcome of Proposition 2(ii). To obtain (A25), suppose that some point
x0 2 I0 and t0 are far apart in the sense that jx0 � t0j = O (b%) for some % 2 [0; 1=2).
For such x0, jx0 � t0j =

p
bx0 = O

�
b%�1=2

�
diverges, and thus Q (x0)! 0 exponentially

fast. Accordingly,
���E nĴ (x0)o��� = O ��3=b3=2

�
= o

�
�=b1=2

�
; in other words, such x0

cannot be x�. Therefore, a sensible range for x� must be the one given in (A25).
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It follows from (A18) that
��Q(1) ($)�� = �jq ($)j = �2b$7=2

�	
�
n
($ � t0) =

p
b$
o
.

The lower bound of this quantity can be found as follows. By (A22), (A24) and
(A25),

j$ � t0j � � jx� � t0j+ (1� �) jw � t0j
� � jx� � t0j+ (1� �) (jw � t�j+ jt� � t0j)
� ��b1=2 jI0j+ (1� �)

�
n�(1+�)b3=2 jI0j+ b

	
= b1=2 jI0j

�
�� + (1� �)

�
n�(1+�)b+

b1=2

jI0j

��
:

Because n�(1+�)b + b1=2= jI0j is convergent, we may put n�(1+�)b + b1=2= jI0j � � for
a su¢ ciently large n so that j$ � t0j � � jI0j b1=2. By $ 2 I0 =

�
t; t
�
, we also

have j$ � t0j =
p
b$ � � jI0j =

p
t so that �

n
($ � t0) =

p
b$
o
= �

n
j$ � t0j =

p
b$
o
�

� (� jI0j =
p
t). Moreover,

jq ($)j �
��($ � t0) ($ + t0)2��� jb$ ($ + 3t0)j = j$ � t0j ($ + t0)2 � b$ ($ + 3t0) :

Now by (A22)-(A24),

j$ � t0j � j$ � t�j � jt0 � t�j
� � jx� � t�j � f(1� �) jw � t�j+ jt0 � t�jg
� �cn jI0j �

�
(1� �)n�(1+�)b3=2 jI0j+ b

	
:

Invoke that
��Q(1) ($)�� = fQ (w)�Q (x�)g = jw � x�j. For a su¢ ciently large n,

w � t� is the case, and Q (x) in the vicinity of w is nearly �at. If $ were located
near w, we would have

��Q(1) ($)�� � ��Q(1) (t�)�� = 0. In reality,
��Q(1) ($)�� is still

positive (although it is close to zero); in short, � � 0 would contradict positivity of��Q(1) ($)��. On the other hand, concavity of Q (x) in the neighborhood of t� implies
that to maintain positivity of

��Q(1) ($)��, we must take $ near x� or set � far away
from zero. Therefore, we are allowed to take � > 1=2 (and thus 1 � � < 1=2) for a
su¢ ciently large n so that

j$ � t0j �
1

2
cn jI0j

�
1� b

cn

�
n�(1+�)b1=2 jI0j+

2

jI0j

��
:

It follows from (b=cn)
�
n�(1+�)b1=2 jI0j+ 2= jI0j

	
= o (1) that (b=cn)

�
n�(1+�)b1=2 jI0j+ 2= jI0j

	
�

1=2 holds for a su¢ ciently large n, and thus j$ � t0j � (jI0j =4) cn. Using $ 2 I0 =�
t; t
�
yields

jq ($)j � jI0j
4
cn (t+ t0)

2 � bt
�
t+ 3t0

�
=
cn
4

�
jI0j (t+ t0)2 � 4

b

cn
t
�
t+ 3t0

��
:

Again by 4 (b=cn) t
�
t+ 3t0

�
= o (1), we may put 4 (b=cn) t

�
t+ 3t0

�
� (1=2) jI0j (t+ t0)2

for a su¢ ciently large n. Therefore, jq ($)j � (jI0j =8) (t+ t0)2 cn, and thus��Q(1) ($)�� � jI0j (t+ t0)2

16t
7=2

�

�
� jI0jp
t

��cn
b

�
: (A26)
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For the lower bound of jw � x�j, it follows from (A22) and (A23) that

jw � x�j � jx� � t�j � jw � t�j � cn jI0j �N�1
n jI0j = cn

�
1� n�(1+�) b

3=2

cn

�
jI0j :

The fact that n�(1+�)b3=2=cn = o (1) implies that n�(1+�)b3=2=cn � 1=2 for a su¢ ciently
large n. Then, we have

jw � x�j � jI0j
2
cn: (A27)

Substituting (A26) and (A27) into (A21) gives���E nĴ (w)o���� sup
x2�

���E nĴ (x)o��� � 3L+O� �3

b3=2

�
;

where

L = Ln :=
jd0j jI0j2 (t+ t0)2

96t
7=2

�

�
� jI0jp
t

��
c2n�

b3=2

�
:

By this result and a straightforward calculation,

sup
x2�

���Ĵ (x)���� ���Ĵ (w)��� � 2 sup
x2I0

���Ĵ (x)� E nĴ (x)o���� 3L+O� �3

b3=2

�
:

However, by the de�nition of L and (3), each of
p
lnn= (nb1=2) and �3=b3=2 is of

smaller order of magnitude than c2n�=b
3=2 = b�1=2+2�1�, and thus

2

�
sup
x2I0

���Ĵ (x)� E nĴ (x)o���� L�+�O� �3

b3=2

�
� L

�
< 0

with probability one. Therefore, Pr
n
supx2�

���Ĵ (x)��� < ���Ĵ (w)���o = 1, and (A20) is
established. This completes the proof. �

A.6 Proof of Theorem 2
The proof requires the following lemmata.

Lemma A4. For a; z; � > 0 and m 2 f0; 1; 2; : : :g,

�m
 (a+m+ 1; z)

� (a+ 1)
=: pmP (a; z)� rmR (a; z) ;

where pm+1 = � (a+m+ 1) pm, rm+1 = � (a+m+ 1) rm+(�z)
m+1, and p0 = r0 = 1.

Lemma A5. As n!1,

P
�
z�; z0

�
=
1

2
� 1p

2�
p
t0

�
�

b1=2

�
+O

�
�2

b1=2

�
; and

R
�
z�; z0

�
=

b1=2p
2�
p
t0

�
1� �

2t0
� 1

2t0

�
�2

b

�
+O

�
max

�
b;
�3

b

���
:
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Lemma A6. As n!1,

E

��
b1=2

�

�
Ĵ (1) (t0)

�
! �

r
2

�

d0

t
3=2
0

:

Lemma A7. As n!1,

V ar

(r
nb5=2

�2
Ĵ (1) (t0)

)
! 3

2
p
�t
5=2
0

�
f(t�0 ) + f(t

+
0 )

2

�
:

Lemma A8. If
��t̂� t0�� = op �b1=2�, then, as n!1,�

b3=2

�

�
Ĵ (2) (�)

p! �
r
2

�

d0

t
3=2
0

for any � on the line segment joining t̂ and t0.

Lemma A9. As n!1, E jHij3 = O (�3=b4).

A.6.1 Proof of Theorem 2

By a mean-value expansion of the �rst-order condition Ĵ (1)
�
t̂
�
= 0, we have

0 = Ĵ (1) (t0) + Ĵ
(2)
�
�t
� �
t̂� t0

�
= E

n
Ĵ (1) (t0)

o
+
h
Ĵ (1) (t0)� E

n
Ĵ (1) (t0)

oi
+ Ĵ (2)

�
�t
� �
t̂� t0

�
(A28)

for some�t on the line segment joining t̂ and t0. Theorem 1 indicates that the condition
for Lemma A8 is satis�ed.
Rearranging (A28), we obtain

r
n

b1=2

24t̂� t0 �
8<:�E

�
Ĵ (1) (t0)

�
Ĵ (2)

�
�t
�

9=;
35

= �
r

n

b1=2
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Then, by Lemmata A6 and A8, the leading bias term for t̂ becomes
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To demonstrate asymptotic normality of
p
n=b1=2

�
b3=2=�

� h
Ĵ (1) (t0)� E

n
Ĵ (1) (t0)

oi
,

we also check Lyapunov�s condition. This quantity can be expressed as

nX
i=1

Yi :=

nX
i=1

r
b5=2

n�2
fHi � E (Hi)g :

Then, by Cr-inequality, Jensen�s inequality (due to the convexity of y3 for y � 0) and
Lemma A9,

E jYij3 � 8
�
b5=2

n�2

�3=2
E jHij3 = O

�
n�3=2b�1=4

�
:

It also follows from Lemma A7 that V ar (Yi) = O (n�1). Therefore,Pn
i=1E jYij

3

f
Pn

i=1 V ar (Yi)g
3=2
= O

�
1p
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�
! 0;

and Lyapunov�s condition is established.
Now we are allowed to employ a central limit theorem, in conjunction with Lemma

A7, to obtainr
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Then, it holds that for the right-hand side of (A29),
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by Lemma A8. This completes the proof. �
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Figure 1: The Diagnostic Function and Its Approximations

Table 1: Characteristic Numbers of Underlying Distributions

Model Distribution Mode cL f
�
t�0
�

f
�
t+0
�

d0
1 A Log-Normal + Quadratic (D = 1=4) 0:7499 0:9659 0:1728 0:0228 0:1500

B Log-Normal + Quadratic (D = 3=22) 0:7240 0:9583 0:1279 0:0279 0:1000
2 A Splicing with Weibull & GPD 2:4023 0:9539 0:1063 0:0115 0:0948

B Splicing with Weibull & Translated Weibull 2:4023 0:9539 0:1063 0:0115 0:0948
C Splicing with Weibull & Half-Normal 2:4023 0:9539 0:1063 0:0115 0:0948
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Table 2: Monte Carlo Results

n = 250 n = 500

Estim ator � Bias SD RMSE ĥ or b̂ % fI0g Bias SD RMSE ĥ or b̂ % fI0g

Model 1-A : Log-Normal + Quadratic (D = 1=4)

CC � 0:2260 0:6340 0:6731 0:0116 (0:0092) � 0:0487 0:5775 0:5796 0:0073 (0:0037) �

KS � �0:8770 0:5392 1:0295 � (�) 64:4% �0:5234 0:7046 0:8778 � (�) 70:7%
Q-MAD � �0:2990 0:1569 0:3376 � (�) 100:0% �0:3229 0:1962 0:3778 � (�) 99:7%
Q-SUP � �0:1039 0:4014 0:4146 � (�) 97:6% 0:0800 0:6708 0:6755 � (�) 91:3%
AEB � 0:6615 0:8305 1:0618 � (�) 72:9% 0:7181 0:5745 0:9197 � (�) 70:8%
ADST � �0:2662 0:7930 0:8365 � (�) 78:1% 0:2605 0:5359 0:5958 � (�) 90:2%

SG -LS 0:55 �0:6680 0:4375 0:7985 0:3302 (0:2182) � �0:7461 0:4079 0:8503 0:3716 (0:2027) �
0:60 �0:6578 0:4423 0:7927 0:3263 (0:2206) � �0:7351 0:4149 0:8441 0:3666 (0:2066) �
0:65 �0:6501 0:4444 0:7874 0:3221 (0:2220) � �0:7185 0:4243 0:8345 0:3585 (0:2113) �
0:70 �0:6333 0:4497 0:7767 0:3141 (0:2243) � �0:7053 0:4310 0:8266 0:3518 (0:2147) �

SG -LS-BC 0:55 �0:3378 0:2250 0:4058 � (�) � �0:3745 0:2078 0:4283 � (�) �
0:60 �0:3315 0:2273 0:4020 � (�) � �0:3685 0:2107 0:4245 � (�) �
0:65 �0:3280 0:2282 0:3996 � (�) � �0:3600 0:2155 0:4196 � (�) �
0:70 �0:3192 0:2313 0:3942 � (�) � �0:3535 0:2192 0:4160 � (�) �

SG -L 0:55 �0:5628 0:4462 0:7182 0:2725 (0:2076) � �0:6063 0:4269 0:7415 0:2914 (0:1987) �
0:60 �0:5118 0:4494 0:6811 0:2449 (0:2052) � �0:5363 0:4320 0:6886 0:2548 (0:1989) �
0:65 �0:4758 0:4468 0:6527 0:2262 (0:2011) � �0:4898 0:4288 0:6510 0:2311 (0:1939) �
0:70 �0:4590 0:4433 0:6381 0:2160 (0:1966) � �0:4608 0:4219 0:6247 0:2148 (0:1877) �

SG -L-BC 0:55 �0:2904 0:2474 0:3814 � (�) � �0:3149 0:2357 0:3933 � (�) �
0:60 �0:2668 0:2546 0:3688 � (�) � �0:2814 0:2417 0:3710 � (�) �
0:65 �0:2497 0:2575 0:3586 � (�) � �0:2587 0:2437 0:3554 � (�) �
0:70 �0:2430 0:2598 0:3557 � (�) � �0:2460 0:2437 0:3463 � (�) �

SG -ML 0:55 0:1375 0:4524 0:4728 0:0315 (0:0210) � 0:3265 0:5146 0:6094 0:0249 (0:0183) �
0:60 0:0465 0:3836 0:3864 0:0335 (0:0196) � 0:1547 0:4346 0:4613 0:0297 (0:0173) �
0:65 �0:0035 0:3204 0:3204 0:0351 (0:0188) � 0:0608 0:3497 0:3550 0:0326 (0:0166) �
0:70 �0:0352 0:2737 0:2759 0:0364 (0:0187) � 0:0101 0:2831 0:2832 0:0342 (0:0157) �

SG -ML-BC 0:55 0:1690 0:4378 0:4693 � (�) � 0:3514 0:4993 0:6105 � (�) �
0:60 0:0800 0:3714 0:3799 � (�) � 0:1845 0:4216 0:4602 � (�) �
0:65 0:0316 0:3098 0:3114 � (�) � 0:0933 0:3390 0:3516 � (�) �
0:70 0:0011 0:2639 0:2639 � (�) � 0:0443 0:2741 0:2777 � (�) �

Model 1-B : Log-Normal + Quadratic (D = 3=22)

CC � 0:3200 0:6223 0:6998 0:0139 (0:0126) � 0:1409 0:5942 0:6107 0:0086 (0:0056) �

KS � �0:9832 0:6012 1:1525 � (�) 59:4% �0:6664 0:6955 0:9632 � (�) 66:0%
Q-MAD � �0:3227 0:2688 0:4200 � (�) 99:3% �0:3638 0:2716 0:4540 � (�) 99:5%
Q-SUP � �0:0720 0:6380 0:6421 � (�) 92:5% 0:1549 0:9658 0:9782 � (�) 83:7%
AEB � 0:9418 0:8936 1:2983 � (�) 60:2% 1:0100 0:6164 1:1832 � (�) 53:5%
ADST � �0:6039 1:0622 1:2219 � (�) 56:5% 0:0711 0:9103 0:9131 � (�) 72:3%

SG -LS 0:55 �0:9517 0:2014 0:9727 0:4740 (0:1070) � �0:9940 0:0711 0:9965 0:4967 (0:0392) �
0:60 �0:9472 0:2109 0:9703 0:4717 (0:1115) � �0:9923 0:0808 0:9956 0:4958 (0:0444) �
0:65 �0:9363 0:2304 0:9642 0:4658 (0:1220) � �0:9914 0:0856 0:9951 0:4953 (0:0468) �
0:70 �0:9303 0:2398 0:9607 0:4625 (0:1273) � �0:9856 0:1130 0:9921 0:4925 (0:0590) �

SG -LS-BC 0:55 �0:4777 0:0973 0:4875 � (�) � �0:4973 0:0321 0:4983 � (�) �
0:60 �0:4755 0:1029 0:4865 � (�) � �0:4965 0:0367 0:4979 � (�) �
0:65 �0:4705 0:1122 0:4837 � (�) � �0:4961 0:0390 0:4976 � (�) �
0:70 �0:4679 0:1165 0:4822 � (�) � �0:4931 0:0545 0:4961 � (�) �

SG -L 0:55 �0:9171 0:2572 0:9525 0:4554 (0:1321) � �0:9809 0:1295 0:9894 0:4897 (0:0660) �
0:60 �0:8958 0:2857 0:9403 0:4437 (0:1469) � �0:9652 0:1737 0:9807 0:4819 (0:0875) �
0:65 �0:8789 0:3064 0:9308 0:4347 (0:1556) � �0:9605 0:1840 0:9780 0:4789 (0:0939) �
0:70 �0:8711 0:3138 0:9259 0:4304 (0:1592) � �0:9510 0:2031 0:9724 0:4740 (0:1029) �

SG -L-BC 0:55 �0:4617 0:1294 0:4794 � (�) � �0:4912 0:0649 0:4955 � (�) �
0:60 �0:4521 0:1439 0:4745 � (�) � �0:4833 0:0878 0:4912 � (�) �
0:65 �0:4443 0:1573 0:4713 � (�) � �0:4816 0:0925 0:4904 � (�) �
0:70 �0:4407 0:1616 0:4694 � (�) � �0:4770 0:1029 0:4880 � (�) �

SG -ML 0:55 0:0586 0:5252 0:5285 0:0379 (0:0278) � 0:2704 0:5556 0:6179 0:0308 (0:0246) �
0:60 �0:0557 0:4497 0:4532 0:0423 (0:0279) � 0:0642 0:4729 0:4772 0:0398 (0:0253) �
0:65 �0:1146 0:3854 0:4021 0:0450 (0:0275) � �0:0434 0:3983 0:4007 0:0454 (0:0259) �
0:70 �0:1498 0:3557 0:3859 0:0468 (0:0275) � �0:0943 0:3433 0:3560 0:0489 (0:0260) �

SG -ML-BC 0:55 0:0965 0:5064 0:5155 � (�) � 0:3012 0:5360 0:6149 � (�) �
0:60 �0:0133 0:4332 0:4334 � (�) � 0:1040 0:4549 0:4667 � (�) �
0:65 �0:0696 0:3706 0:3771 � (�) � 0:0020 0:3822 0:3822 � (�) �
0:70 �0:1030 0:3408 0:3560 � (�) � �0:0455 0:3280 0:3311 � (�) �
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Table 2: (continued)

n = 250 n = 500

Estim ator � Bias SD RMSE ĥ or b̂ % fI0g Bias SD RMSE ĥ or b̂ % fI0g

Model 2-A : Splicing w ith Weibull & GPD

CC � 0:3261 0:6679 0:7432 0:0104 (0:0228) � 0:1999 0:6443 0:6746 0:0060 (0:0023) �

KS � �1:3273 0:9856 1:6533 � (�) 9:1% �0:6556 1:8320 1:9458 � (�) 16:2%
Q-MAD � �0:2051 0:7303 0:7585 � (�) 97:5% 0:1488 1:4884 1:4958 � (�) 90:5%
Q-SUP � 0:3085 1:6298 1:6588 � (�) 86:4% 1:0775 2:9302 3:1221 � (�) 78:4%
AEB � 4:3704 2:9114 5:2514 � (�) 8:1% 4:2648 2:0070 4:7135 � (�) 2:9%
ADST � 1:0151 1:9948 2:2382 � (�) 49:1% 2:1329 1:5330 2:6266 � (�) 23:3%

SG -LS 0:55 �0:6238 0:1250 0:6362 0:1503 (0:0644) � �0:6202 0:0914 0:6269 0:1528 (0:0450) �
0:60 �0:6268 0:1260 0:6393 0:1550 (0:0675) � �0:6237 0:0914 0:6304 0:1578 (0:0473) �
0:65 �0:6290 0:1272 0:6417 0:1583 (0:0705) � �0:6265 0:0919 0:6333 0:1613 (0:0495) �
0:70 �0:6308 0:1282 0:6437 0:1608 (0:0728) � �0:6285 0:0935 0:6354 0:1635 (0:0514) �

SG -LS-BC 0:55 �0:4736 0:0848 0:4811 � (�) � �0:4674 0:0615 0:4714 � (�) �
0:60 �0:4717 0:0841 0:4792 � (�) � �0:4659 0:0601 0:4698 � (�) �
0:65 �0:4708 0:0840 0:4782 � (�) � �0:4652 0:0592 0:4690 � (�) �
0:70 �0:4700 0:0839 0:4775 � (�) � �0:4649 0:0592 0:4687 � (�) �

SG -L 0:55 �0:6196 0:1186 0:6309 0:1848 (0:0668) � �0:6224 0:0831 0:6279 0:1862 (0:0470) �
0:60 �0:6216 0:1233 0:6337 0:1767 (0:0660) � �0:6242 0:0871 0:6303 0:1779 (0:0466) �
0:65 �0:6231 0:1282 0:6362 0:1718 (0:0648) � �0:6259 0:0898 0:6323 0:1728 (0:0459) �
0:70 �0:6239 0:1346 0:6383 0:1692 (0:0638) � �0:6275 0:0915 0:6342 0:1701 (0:0452) �

SG -L-BC 0:55 �0:4348 0:0715 0:4407 � (�) � �0:4362 0:0491 0:4389 � (�) �
0:60 �0:4449 0:0759 0:4513 � (�) � �0:4464 0:0522 0:4494 � (�) �
0:65 �0:4514 0:0811 0:4586 � (�) � �0:4531 0:0547 0:4564 � (�) �
0:70 �0:4547 0:0881 0:4632 � (�) � �0:4574 0:0566 0:4609 � (�) �

SG -ML 0:55 �0:4484 0:3354 0:5600 0:0333 (0:0082) � �0:4259 0:3665 0:5619 0:0331 (0:0079) �
0:60 �0:4518 0:3036 0:5443 0:0332 (0:0074) � �0:4568 0:2998 0:5464 0:0332 (0:0064) �
0:65 �0:4506 0:2968 0:5395 0:0335 (0:0073) � �0:4697 0:2632 0:5384 0:0337 (0:0057) �
0:70 �0:4334 0:3124 0:5342 0:0340 (0:0075) � �0:4733 0:2508 0:5356 0:0343 (0:0057) �

SG -ML-BC 0:55 �0:4152 0:3313 0:5311 � (�) � �0:3928 0:3612 0:5336 � (�) �
0:60 �0:4186 0:3005 0:5153 � (�) � �0:4237 0:2964 0:5171 � (�) �
0:65 �0:4171 0:2940 0:5102 � (�) � �0:4360 0:2609 0:5081 � (�) �
0:70 �0:3994 0:3092 0:5051 � (�) � �0:4390 0:2487 0:5046 � (�) �

Model 2-B : Splicing w ith Weibull & Translated Weibull

CC � 0:3302 0:6788 0:7548 0:0116 (0:0351) � 0:1609 0:6716 0:6906 0:0058 (0:0020) �

KS � �1:4714 0:9325 1:7420 � (�) 12:4% �1:0546 3:0694 3:2455 � (�) 17:3%
Q-MAD � �0:2656 1:3378 1:3639 � (�) 97:2% 0:4715 4:2932 4:3190 � (�) 93:6%
Q-SUP � 0:1266 1:8973 1:9015 � (�) 92:1% 2:7196 16:7906 17:0094 � (�) 80:1%
AEB � 6:4959 13:3971 14:8889 � (�) 39:8% 3:7522 5:4395 6:6081 � (�) 37:6%
ADST � �0:6069 0:7234 0:9442 � (�) 85:3% �0:6242 0:4701 0:7814 � (�) 95:2%

SG -LS 0:55 �0:6123 0:1278 0:6255 0:1384 (0:0591) � �0:5991 0:0968 0:6068 0:1364 (0:0427) �
0:60 �0:6154 0:1283 0:6287 0:1425 (0:0619) � �0:6024 0:0974 0:6103 0:1405 (0:0448) �
0:65 �0:6175 0:1296 0:6309 0:1453 (0:0645) � �0:6050 0:0982 0:6130 0:1434 (0:0467) �
0:70 �0:6193 0:1307 0:6329 0:1473 (0:0665) � �0:6069 0:0993 0:6150 0:1453 (0:0484) �

SG -LS-BC 0:55 �0:4739 0:0899 0:4824 � (�) � �0:4626 0:0670 0:4675 � (�) �
0:60 �0:4730 0:0888 0:4812 � (�) � �0:4620 0:0658 0:4667 � (�) �
0:65 �0:4721 0:0883 0:4803 � (�) � �0:4616 0:0652 0:4662 � (�) �
0:70 �0:4720 0:0881 0:4801 � (�) � �0:4616 0:0649 0:4662 � (�) �

SG -L 0:55 �0:6036 0:1328 0:6181 0:1502 (0:0621) � �0:5977 0:0968 0:6055 0:1477 (0:0443) �
0:60 �0:6028 0:1397 0:6188 0:1428 (0:0614) � �0:5969 0:1013 0:6054 0:1404 (0:0438) �
0:65 �0:6022 0:1461 0:6196 0:1386 (0:0605) � �0:5969 0:1041 0:6059 0:1364 (0:0430) �
0:70 �0:6023 0:1518 0:6211 0:1368 (0:0596) � �0:5976 0:1056 0:6068 0:1346 (0:0423) �

SG -L-BC 0:55 �0:4534 0:0857 0:4615 � (�) � �0:4500 0:0611 0:4541 � (�) �
0:60 �0:4600 0:0925 0:4692 � (�) � �0:4565 0:0656 0:4612 � (�) �
0:65 �0:4635 0:0993 0:4741 � (�) � �0:4605 0:0687 0:4656 � (�) �
0:70 �0:4654 0:1061 0:4774 � (�) � �0:4630 0:0706 0:4683 � (�) �

SG -ML 0:55 �0:4056 0:3411 0:5300 0:0325 (0:0087) � �0:3769 0:3688 0:5273 0:0350 (0:0101) �
0:60 �0:4099 0:3227 0:5217 0:0326 (0:0082) � �0:4048 0:3125 0:5114 0:0355 (0:0090) �
0:65 �0:3956 0:3177 0:5074 0:0329 (0:0078) � �0:4224 0:2595 0:4958 0:0359 (0:0080) �
0:70 �0:3742 0:3280 0:4976 0:0330 (0:0077) � �0:4118 0:2559 0:4848 0:0359 (0:0078) �

SG -ML-BC 0:55 �0:3732 0:3370 0:5028 � (�) � �0:3418 0:3625 0:4982 � (�) �
0:60 �0:3774 0:3194 0:4944 � (�) � �0:3693 0:3079 0:4808 � (�) �
0:65 �0:3628 0:3147 0:4802 � (�) � �0:3865 0:2567 0:4640 � (�) �
0:70 �0:3412 0:3249 0:4711 � (�) � �0:3758 0:2532 0:4532 � (�) �
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Table 2: (continued)

n = 250 n = 500

Estim ator � Bias SD RMSE ĥ or b̂ % fI0g Bias SD RMSE ĥ or b̂ % fI0g

Model 2-C : Splicing w ith Weibull & Half-Normal

CC � 0:3235 0:6634 0:7381 0:0104 (0:0228) � 0:1936 0:6369 0:6657 0:0060 (0:0023) �

KS � �1:3201 0:3891 1:3762 � (�) 6:4% �1:2673 0:7162 1:4557 � (�) 2:2%
Q-MAD � �0:3307 0:3061 0:4506 � (�) 99:3% �0:2735 0:3994 0:4841 � (�) 96:5%
Q-SUP � 0:0444 0:9760 0:9770 � (�) 87:8% 0:1620 1:3087 1:3187 � (�) 84:8%
AEB � 1:6486 1:0892 1:9760 � (�) 30:2% 1:7211 0:7767 1:8882 � (�) 19:0%
ADST � �0:0373 1:3417 1:3422 � (�) 51:0% 1:1259 1:1772 1:6289 � (�) 39:7%

SG -LS 0:55 �0:6274 0:1236 0:6394 0:1549 (0:0661) � �0:6243 0:0900 0:6308 0:1576 (0:0463) �
0:60 �0:6304 0:1244 0:6425 0:1598 (0:0692) � �0:6279 0:0901 0:6343 0:1628 (0:0486) �
0:65 �0:6328 0:1256 0:6451 0:1634 (0:0721) � �0:6308 0:0905 0:6373 0:1666 (0:0506) �
0:70 �0:6344 0:1271 0:6470 0:1659 (0:0748) � �0:6330 0:0913 0:6395 0:1691 (0:0527) �

SG -LS-BC 0:55 �0:4725 0:0825 0:4796 � (�) � �0:4667 0:0596 0:4705 � (�) �
0:60 �0:4706 0:0818 0:4776 � (�) � �0:4651 0:0582 0:4687 � (�) �
0:65 �0:4693 0:0818 0:4764 � (�) � �0:4642 0:0573 0:4677 � (�) �
0:70 �0:4685 0:0819 0:4756 � (�) � �0:4639 0:0568 0:4674 � (�) �

SG -L 0:55 �0:6234 0:1163 0:6342 0:1948 (0:0690) � �0:6266 0:0805 0:6318 0:1970 (0:0487) �
0:60 �0:6257 0:1207 0:6373 0:1861 (0:0684) � �0:6288 0:0845 0:6344 0:1881 (0:0485) �
0:65 �0:6275 0:1255 0:6399 0:1808 (0:0674) � �0:6307 0:0872 0:6367 0:1827 (0:0479) �
0:70 �0:6284 0:1321 0:6422 0:1779 (0:0663) � �0:6325 0:0890 0:6388 0:1795 (0:0471) �

SG -L-BC 0:55 �0:4287 0:0683 0:4341 � (�) � �0:4296 0:0463 0:4321 � (�) �
0:60 �0:4396 0:0720 0:4455 � (�) � �0:4406 0:0492 0:4434 � (�) �
0:65 �0:4467 0:0771 0:4533 � (�) � �0:4480 0:0515 0:4510 � (�) �
0:70 �0:4505 0:0843 0:4584 � (�) � �0:4530 0:0533 0:4562 � (�) �

SG -ML 0:55 �0:4538 0:3291 0:5606 0:0337 (0:0086) � �0:4331 0:3675 0:5680 0:0340 (0:0085) �
0:60 �0:4587 0:3067 0:5517 0:0336 (0:0078) � �0:4606 0:2958 0:5473 0:0338 (0:0068) �
0:65 �0:4638 0:2877 0:5458 0:0339 (0:0075) � �0:4755 0:2557 0:5399 0:0344 (0:0062) �
0:70 �0:4526 0:2988 0:5423 0:0345 (0:0078) � �0:4852 0:2422 0:5423 0:0352 (0:0063) �

SG -ML-BC 0:55 �0:4202 0:3252 0:5313 � (�) � �0:3991 0:3618 0:5387 � (�) �
0:60 �0:4251 0:3035 0:5223 � (�) � �0:4267 0:2922 0:5172 � (�) �
0:65 �0:4299 0:2852 0:5159 � (�) � �0:4411 0:2532 0:5086 � (�) �
0:70 �0:4181 0:2959 0:5122 � (�) � �0:4500 0:2400 0:5100 � (�) �

Note: �Bias�, �SD�and �RMSE�are biases, standard deviations and RMSEs of
splicing point or threshold estimates over 1000Monte Carlo samples, respectively. For
kernel-smoothed threshold location estimation procedures, Monte Carlo averages and
standard deviations (in parentheses) of CV tuning parameters are presented under
the heading �ĥ or b̂�. For automated threshold detection methods, percentages of
threshold estimates falling into I0 are reported under the heading �% fI0g�.
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Table 3: Descriptive Statistics of Datasets

Data n Mean SD SK Min. Q1 Q2 Q3 90% 95% 99% Max.

(A) Danish Fire Insurance Losses (in millions of Danish kroner)

Original 2; 492 3:063 7:975 19:884 0:313 1:157 1:634 2:646 5:080 8:406 24:614 263:250

(B) US Male Hourly Wages (in US dollars)

Original 54; 769 6:136 2:972 3:013 0:500 3:850 5:630 8:000 9:980 11:000 14:793 99:990
Downsized 2; 709 6:080 2:858 1:525 1:000 3:750 5:550 8:000 9:954 11:000 14:640 40:000

Note: n = sample size; Mean = average; SD = standard deviation; SK = skewness;
Min. = minimum value; Q1 = �rst quartile; Q2 = median (i.e., second quartile); Q3
= third quartile; 90% = 90% quantile; 95% = 95% quantile; 99% = 99% quantile;
and Max. = maximum value.

Table 4: Results for Real Data Examples

Data Estimator Estimate of t0 Estimator � I0 Estimate of t0 ĥ or b̂

(A) Danish Fire Insurance Losses (in millions of Danish kroner)

Original KS 1:375 CC � [1; 30] 30:000 0:005
Q-MAD 29:037
Q-SUP 11:123 SG-ML 0:70 [1; 30] 1:861 0:235
AEB 25:288 SG-ML-BC � � 2:096 �
ADST 1:406

(B) US Male Hourly Wages (in US dollars)

Downsized KS 10:400 CC � [5; 15] 14:998 0:005
Q-MAD 10:000
Q-SUP 10:000 SG-ML 0:70 [5; 15] 9:524 0:140
AEB 13:500 SG-ML-BC � � 9:664 �
ADST 16:000
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