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Abstract
This paper documents a set of uniform consistency results with rates for nonparamet-
ric density and regression estimators smoothed by the gamma kernel having support 
on the nonnegative real line. It is known that this kernel can well calibrate the shapes 
of ‘cost’ distributions that are characterized by a sharp peak in the vicinity of the ori-
gin and a long right tail. In this paper, weak and strong uniform consistency and corre-
sponding convergence rates of gamma kernel estimators are explored in a multivariate 
framework. Our analysis is built on compact sets expanding to the nonnegative orthant 
and general sequences of smoothing parameters. The results are useful for asymptotic 
analysis of two-step semiparametric estimation using a first-step kernel estimate as a 
plug-in.

Keywords Boundary bias · Density derivative estimation · Density estimation · 
Gamma kernel · Nonparametric regression estimation · Uniform convergence

1 Introduction

Researchers and policy-makers are often interested in the distributions of non-
negative economic and financial variables including incomes, wages, consump-
tion expenditures, short-term interest rates, and actuarial losses. These variables 
are also examples of cost variables. Distributions of costs have two features in 
common. One is the existence of a natural boundary at the origin due to their 
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nonnegativity. The other is that cost distributions are highly right-skewed with 
a concentration of observations in the vicinity of the origin and a long tail with 
sparse data. These features can be also observed in distributions of non-cost vari-
ables such as quantities demanded and transaction volumes.

Consider the problem of estimating densities of cost distributions nonparametri-
cally via kernel smoothing. Then, two problems will arise when standard symmetric 
kernels are used. The first issue is the so-called boundary bias in the vicinity of the 
origin. Second, different amounts of smoothing should be made at different loca-
tions; to be more precise, while a short bandwidth is appropriate for the region near 
the boundary in order not to miss out the peak, a longer bandwidth is required to 
capture the shape of the tail part well. Accordingly, two distinct modifications must 
be made simultaneously for standard smoothing techniques. Boundary correction 
methods can handle the boundary issue; see, for instance, Sect. 3 of Karunamuni and 
Alberts (2005) for a concise review of the methods. To calibrate the density curves 
of cost variables well, we may resort to adaptive smoothing such as variable band-
width methods by Abramson (1982) and Terrell and Scott (1992).

It is quite cumbersome to modify standard smoothing techniques in two dif-
ferent directions. Then, smoothing by nonstandard asymmetric kernel functions 
has emerged as a viable alternative. Asymmetric kernels have two properties in 
common. First, the support of an asymmetric kernel matches that of the underly-
ing probability density function (pdf). Therefore, it is free of the boundary bias by 
construction. Second, shapes of the kernel vary according to the locations at which 
smoothing is made; in other words, the amount of smoothing changes in an adaptive 
manner. It is worth emphasizing that a single value of the smoothing parameter can 
generate a variety of shapes of an asymmetric kernel. From empirical standpoints, 
this is a clear advantage over the variable bandwidth methods for symmetric kernels, 
which require different bandwidth values for different design points.

Although asymmetric kernels possess aforementioned appealing properties, uni-
form consistency of asymmetric kernel estimators is yet to be fully explored. This 
paper aims at delivering weak and strong uniform convergence rates for nonpara-
metric estimators with support on ℝ+ smoothed by an asymmetric kernel. While 
a number of asymmetric kernels have been proposed for the last two decades, we 
specialize our analysis in one of the pioneered but still most popular asymmetric 
kernels -- the gamma kernel by Chen (2000). Our particular choice is grounded on 
three reasons. First, as presented in Table 1.1 of Hirukawa (2018), the gamma ker-
nel is frequently applied to empirical models in economics and finance due to its 
favorable evidence. Second, this kernel has been discussed as an example of bound-
ary kernels in textbooks (e.g., Racine, 2019), as well as the beta kernel by Chen 
(1999), which is yet another popular asymmetric kernel defined on the unit interval. 
Third, as will be discussed again shortly, asymmetric kernels cannot be expressed in 
the location-scale form that symmetric kernels take. Inevitably, kernel-specific argu-
ments are required for detailed asymptotic analyses of asymmetric kernel estimators, 
and analytical tractability of the estimators is a key issue. The gamma function is a 
building block for the gamma kernel, and there is rich literature on approximation 
techniques to the gamma and related functions as they are actively studied.
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For a data point u ∈ ℝ+ , a design point x ∈ ℝ+ and a smoothing parameter b > 0 , 
the gamma kernel is defined as

where Γ(a) = ∫ ∞

0
ta−1 exp (−t)dt for a > 0 is the gamma function, and 1{⋅} denotes 

an indicator function. A nonnegative random variable Z is said to obey the gamma 
distribution having the shape parameter 𝛼 > 0 and the scale parameter 𝛽 > 0 , 
which is denoted as G(�, �) in shorthand notation hereinafter, if its pdf is given by 
f (z) = z�−1 exp (−z∕�)1{z ≥ 0}∕{��Γ(�)} . Observe that the gamma kernel can be 
interpreted as the pdf of G(x∕b + 1, b).

To cope with multivariate problems, we construct a d-dimensional tensor product 
kernel

where u ∶=
(
u1,… , ud

)⊤
∈ ℝ

d
+
 , x ∶=

(
x1,… , xd

)⊤
∈ ℝ

d
+
 and 

b ∶=
(
b1,… , bd

)⊤
∈ ℝ

d
+
 are d-dimensional vectors of data points, design points 

and smoothing parameters, respectively. It is worth emphasizing that as in Hirukawa 
et al. (2022), different smoothing parameter values are allowed for different dimen-
sions. This is a sharp contrast to Hansen (2008) and Kristensen (2009), who provide 
uniform convergence results of sample average functionals using product symmetric 
kernels and a single bandwidth value to all dimensions.

Our analysis takes the same procedure as in Hansen (2008), Kristensen (2009) and 
Hirukawa et  al. (2022). The common approach across these authors is to start from 
examining a nonparametric estimator of

where m(x) ∶= E(Y|X = x) and f (x) is the marginal pdf of X . Based on this idea, 
the outline of our analysis can be described as follows. Given n i.i.d. observations {(
Yi,Xi

)}n

i=1
∈ ℝ ×ℝ

d
+
 , uniform consistency of the sample average functional of 

the form

for g(x) is investigated. Most of multivariate gamma kernel estimators such as the 
joint density estimator and the Nadaraya-Watson (NW) and local linear (LL) regres-
sion estimators can be expressed in this form. Therefore, weak and strong uniform 
convergence results of ĝG(x) can directly apply to these estimators. The remaining 
question is how to determine the interval on which weak and strong uniform con-
vergence rates of ĝG(x) are derived. Our focus is on its uniform consistency on a 
d-dimensional hyperrectangle inside ℝd

+
 that is either fixed or expanding to ℝd

+
 at a 

KG(x,b)(u) =
ux∕b exp (−u∕b)

bx∕b+1Γ(x∕b + 1)
1{u ≥ 0},

�G(x,b)(u) =

d∏
j=1

KG(xj,bj)
(
uj
)
=

d∏
j=1

uxj∕bj exp
(
−uj∕bj

)

b
xj∕bj+1

j
Γ
(
xj∕bj + 1

)1
{
uj ≥ 0

}
,

(1)g(x) ∶= m(x)f (x),

ĝG(x) ∶=
1

n

n∑
i=1

Yi�G(x,b)

(
Xi

)
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suitable rate. This framework enables us to employ Stirling’s approximation to the 
gamma function as a workhorse in technical proofs.

This paper contributes to the literature in various aspects. First, Hansen (2008) 
and Kristensen (2009) prove uniform consistencies with rates of nonparametric 
curve estimators using standard symmetric kernels on expanding or unbounded 
sets in multivariate frameworks. As mentioned above, unlike symmetric ker-
nels, the univariate gamma kernel cannot be expressed in the location-scale form 
(1∕b)K{(u − x)∕b} . Understandably, our proof strategies differ from those taken by 
Hansen (2008) and Kristensen (2009) substantially.

Second, this paper can be positioned as a complement to Hirukawa et al. (2022), 
who demonstrate weak and strong uniform convergences with rates for nonpara-
metric estimators using the beta kernel. The results therein are applied to the multi-
step estimation for two-sample regression models by Hirukawa et al. (2023). So far 
applications of the gamma kernel have been concentrated on purely nonparametric 
estimation problems like density and regression estimations. It is anticipated that the 
results in this paper can serve as theoretical justification when the gamma estimates 
are employed as the first-step nonparametric estimate for two-step semiparametric 
estimation. Examples of such estimation procedures include Robinson (1988), Newey 
(1994), Rilstone (1996), and Stengos and Yan (2001), to name a few.

Third, our uniform convergence results are established in a multivariate frame-
work, as in Hirukawa et al. (2022). Recently the literature on joint density estima-
tion using asymmetric kernels has been growing. Examples include Bouezmarni 
and Rombouts (2010), Funke and Kawka (2015), Ouimet (2021, 2022), Ouimet 
and Tolosana-Delgado (2022), and Bertin et al. (2023), as well as Hirukawa et al. 
(2022). In particular, Ouimet (2022) extends the scope of asymmetric kernels to the 
one built on the pdf of the Wishart distribution, and he explores convergence proper-
ties of the joint density estimator using the Wishart asymmetric kernel. Notice that 
the Wishart distribution is a matrix-variate analogue of the gamma distribution. In 
contrast, the study on asymmetric kernel regression estimation with multiple regres-
sors is still scarce. Examples other than Hirukawa et al. (2022) include Bouzebda 
et al. (2024) and Genest and Ouimet (2024), who examine the NW and LL regres-
sion estimators on the simplex using the Dirichlet kernel, respectively.

Last but not least, our companion paper (Funke and Hirukawa, 2024b) demon-
strates uniform consistency of the first-order density derivative estimators smoothed 
by the product gamma and beta kernels. These estimators are defined as a multivari-
ate extension of the one proposed by Funke and Hirukawa (2024a). A challenge lies 
in deriving uniform convergence rates of density derivative estimators when using 
the sample average functional-based approach. Consequently, we document the uni-
form convergence results in a separate paper. Interested readers may consult Funke 
and Hirukawa (2024b) for more details.

The remainder of this paper is organized as follows. Section 2 delivers weak and 
strong uniform convergence results for the sample average functional ĝG(x) on a 
compact set that is either fixed or expanding to the d-dimensional nonnegative ort-
hant. Subsequently, in Sect.  3, these results are applied to nonparametric density 
and regression estimators. Sect.  4 conducts Monte Carlo simulations. Inspired by 
Liu and Li (2023), this simulation study is designed to empirically confirm optimal 
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uniform convergence rates of gamma density and regression estimators. Sect. 5 con-
cludes. All proofs are given in the Appendix.

This paper adopts the following notational conventions: ‘ an = o
(
bn
)
 ’ signifies 

that an∕bn converges to 0; ‘ an = O
(
bn
)
 ’ means that an∕bn is bounded; we say that 

‘ an ≍ bn ’ if there exist constants 0 < c1 < c2 < ∞ so that c1an ≤ bn ≤ c2an ; 
�x = 𝜕∕𝜕x =

(
𝜕∕𝜕x1,… , 𝜕∕𝜕xd

)⊤ signifies the d-dimensional first-order partial 
derivative (or gradient) operator; h(1)

p
(x) =

�h(x)

�xp
 and h(2)

pq
(x) =

�2h(x)

�xp�xq
 denote the first- 

and second-order partial derivatives of a function h(x) , respectively; 
Ψ(x) = d lnΓ(x)∕dx = Γ(1)(x)∕Γ(x) is the digamma function; ‘a.s.’ means “almost 
surely”; ‖A‖ is the Frobenius norm of matrix A , i.e., ‖A‖ =

�
tr
�
A

⊤
A
��1∕2 ; and the 

expression ‘ X
d
= Y  ’ reads “A random variable X obeys the distribution Y.”

2  Main results

2.1  Weak uniform convergence of the sample average functional

Our analysis starts from demonstrating weak uniform consistency with a rate of the 
sample average functional ĝG(x) for g(x) on a d-hyperrectangle

where the boundary parameters � ∶=
(
𝜂1,… , 𝜂d

)⊤ either are fixed or shrink to zero 
at a suitable rate. Observe that in the latter scenario, �X expands to the d-dimen-
sional nonnegative orthant.

To deliver the result, we impose the following regularity conditions.

Assumption 1 
{(

Yi,Xi

)}n

i=1
∈ ℝ ×ℝ

d
+
 are i.i.d. random vectors.

Assumption 2 Let h(x) be either f (x) or g(x) . Then, there are constants 
L1, L2, L3, 𝛾 > 0 that satisfy the followings. 

 (i) |||h
(2)

jk
(x)

||| ≤ L1

[
L
−(2+𝛾)

2
1
{
xk < L2

}
+ x

−(2+𝛾)

k
1
{
xk ≥ L2

}]
 for all x ∈ ℝ

d
+
 and for 

all j, k ∈ {1,… , d}.
 (ii) ���h

(2)

jk
(x) − h

(2)

jk
(x�)

��� ≤ L3‖� − ��‖ for all x,x� ∈ ℝ
d
+
 and for all j, k ∈ {1,… , d}.

Assumption 3 There are constants 𝛿 > 0 and C1 ≥ 1 that satisfy E|Y|2+𝛿 < ∞ and

𝕊X = 𝕊X(�) ∶=

d∏
j=1

[
𝜂j, 𝜂

−1
j

]
⊆ ℝ

d
+
,

(2)sup
x∈ℝd

+

E
(
|Y|2+�|||X = x

)
f (x) ≤ C1.
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Assumption 4W
Sequences bj

(
= bj(n)

)
, 𝜂j

(
= 𝜂j(n)

)
> 0 satisfy the followings as n → ∞ . 

 (i) bj, �j → 0 for all j ∈ {1,… , d}.
 (ii) There is a sequence 𝜌(= 𝜌(n)) > 0 that satisfies bj∕�j ≍ � for all j ∈ {1,… , d} , 

� → 0 and � = o
(
min1≤j≤d �2j

)
.

 (iii) ln n∕

�
n

�∏d

j=1
bj�j

�
→ 0.

We begin our discussion on these regularity conditions by making a few remarks on 
Assumption 2. First, this assumption implies that second-order partial derivatives of 
f (x) and g(x) are Lipschitz continuous and uniformly bounded on ℝd

+
 . The condition 

(i) in Assumption 2 also regulates tail decay rates of second-order partial derivatives 
of f (x) and g(x) . As given in Lemma 1 in the Appendix, second- and higher-order 
moments of the univariate gamma kernel around the design point x depend on x, 
which is unbounded from above. This condition helps control the order of magni-
tude in the leading bias term of ĝG(x) , because it ensures uniform boundedness of 
|||h

(1)

j
(x)

||| and |||h
(2)

jj
(x)xj

||| on ℝd
+
 . Notice that an equivalent of the condition (i) cannot be 

found in the study of uniform convergence of beta kernel estimators by Hirukawa 
et al. (2022). While leading bias coefficients of univariate beta kernel estimators also 
depend on the design point, it is confined within the unit interval and thus this type 
of condition is unnecessary. Second, Assumption 2(i) also establishes uniform 
boundedness of f (x) ; in other words, there is a constant C0 ≥ 1 so that

Third, a sufficient condition for Assumption 2 that f (x) fulfills is that its second-
order partial derivatives decay exponentially in all dimensions, in addition to their 
Lipschitz continuity and uniform boundedness. Examples of such densities include 
those of multivariate gamma (e.g., Das and Dey, 2010), multivariate truncated 
normal (e.g., Horrace, 2005) and multivariate folded normal distributions (e.g., 
Chakraborty and Chatterjee, 2013), to name a few.

It follows from (2) in Assumption 3 that E
(
|Y|2+�|||X = x

)
 is allowed to diverge 

in the right tail but no faster than {f (x)}−1 . A similar condition can be found, for 
instance, in Hansen (2008, Assumption 2), Kristensen (2009, Assumption A3) and 
Hirukawa et al. (2022, Assumption 3).

Three conditions on the boundary parameter �j in Assumption 4W are intended 
for the case of an expanding set. Conditions (i) and (ii) jointly mean that �j shrinks 
to zero more slowly than bj does. As will be revealed in the Appendix, this is crucial 
for Stirling’s approximation to the gamma function. In addition, bj∕�j ≍ � in the 
condition (ii) merely indicates that the shrinkage rate of the ratio of bj to �j is identi-
cal across j. This does not automatically guarantee that the ratio bj∕�j itself, the 
numerator bj , or the denominator �j are identical across j. Moreover, 

(3)sup
x∈ℝd

+

f (x) ≤ C0.
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� = o
(
min1≤j≤d �2j

)
 is a technical requirement for controlling orders of magnitude in 

the remainder terms of the bias.
Theorem 1 below documents weak uniform consistency of ĝG(x) for g(x) on the 

slowly expanding d-hyperrectangle 𝕊X → ℝ
d
+
 as n → ∞ . Observe that the weak uni-

form convergence rate in this theorem is the same as what is obtained for the sample 
average functional smoothed by the product beta kernel in Hirukawa et al. (2022).

Theorem 1 If Assumptions 1-3 and 4W hold, then, as n → ∞, 

2.2  Strong uniform convergence of the sample average functional

Next, we demonstrate strong uniform consistency of ĝG(x) for g(x) when �X is 
allowed to expand slowly to ℝd

+
 . Before proceeding, the assumption on tuning 

parameters must be suitably strengthened.
Assumption 4S
Sequences bj

(
= bj(n)

)
, 𝜂j

(
= 𝜂j(n)

)
> 0 satisfy the followings as n → ∞ . 

 (i) bj, �j → 0 for all j ∈ {1,… , d}.
 (ii) There is a sequence 𝜌(= 𝜌(n)) > 0 that satisfies bj∕�j ≍ � for all j ∈ {1,… , d} , 

� → 0 and � = o
(
min1≤j≤d �2j

)
.

 (iii) There is a constant � ∈ [0, 1) that satisfies 

Observe that the condition (iii) in Assumption 4W is replaced by a stronger condi-
tion (4). Under this condition, the convergence mode in Theorem 1 can be strength-
ened to almost sure convergence. Again in this case, the strong uniform convergence 
rate becomes the same as that of the sample average functional using the product 
beta kernel in Hirukawa et al. (2022).

Theorem 2 If Assumptions 1-3 and 4S hold, then, as n → ∞, the statement in Theo-
rem 1 can be strengthened to almost sure convergence.

This section concludes by deriving the optimal weak and strong uniform conver-
gence rates of ĝG(x) on the slowly expanding �X . We concentrate on the optimal 
rates under the following sufficient conditions for Assumptions 4W and 4S. Let 

sup
x∈�X

��ĝG(x) − g(x)�� = Op

⎛
⎜⎜⎜⎝

d�
j=1

bj +

���� ln n

n

�∏d

j=1
bj𝜂j

⎞
⎟⎟⎟⎠
.

(4)
ln n

n

�∏d

j=1
bj�j

�
d�
j=1

1

bj�j

�1−�

= O(1).
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sequences b(= b(n)), 𝜂(= 𝜂(n)) > 0 satisfy b1,… , bd ≍ b , �1,… , �d ≍ � , and either 
(i) b + � + b∕�3 + ln n∕

{
n(b�)d∕2

}
→ 0 (for weak uniform convergence) or (ii) 

b + � + b∕�3 → 0 and ln n∕
{
n(b�)d∕2+1−�

}
= O(1) for some � ∈ [0, 1) (for strong 

uniform convergence) as n → ∞ . It follows from b∕�3 → 0 that we may take 
� ≍ b(1−�)∕3 for an arbitrarily small 𝜆 > 0 . Then, by Theorems 1 and 2, each of weak 
and strong uniform convergence rates of ĝG(x) reduces to b +

√
ln n∕

{
nbd(4−�)∕6

}
 . It 

is easy to see that two terms are balanced by b† ≍ (ln n∕n)6∕{12+d(4−�)} , which yields 
the optimal uniform convergence rate (ln n∕n)6∕{12+d(4−�)} , as well as the optimal 
boundary parameter �† ≍ (ln n∕n)2(1−�)∕{12+d(4−�)}.

3  Applications

3.1  Density estimation

In this section, Theorems 1 and 2 are applied to two nonparametric estimation prob-
lems. We start from presenting two theorems on weak and strong uniform conver-
gence for the joint density estimator using the product gamma kernel

Theorem 3 If Assumptions 1-3 and 4W hold, then, as n → ∞,

Theorem 4 If Assumptions 1-3 and 4S hold, then, as n → ∞, the statement in Theo-
rem 3 can be strengthened to almost sure convergence.

From Theorems 3 and 4, in particular, we can obtain the optimal weak and strong 
uniform convergence rates of f̂G(x) when �X is fixed and a single smoothing param-
eter b is employed for each dimension. Let �1,… , �d be fixed. Also consider a 
sequence b(= b(n)) > 0 that satisfies b1,… , bd ≍ b and either (i) 
b + ln n∕

(
nbd∕2

)
→ 0 (for weak uniform convergence) or (ii) b → 0 and 

ln n∕
(
nbd∕2+1−�

)
= O(1) for some � ∈ [0, 1) (for strong uniform convergence) as 

n → ∞ . In this setup, each of the weak and strong uniform convergence rates 
reduces to b +

√
ln n∕

(
nbd∕2

)
 , and it can be found that b∗ ≍ (ln n∕n)2∕(4+d) balances 

two terms. Under this b∗ , the optimal uniform convergence rate becomes 

f̂G(x) ∶=
1

n

n∑
i=1

�G(x,b)

(
Xi

)
.

sup
x∈�X

���f̂G(x) − f (x)
��� = Op

⎛⎜⎜⎜⎝

d�
j=1

bj +

���� ln n

n

�∏d

j=1
bj𝜂j

⎞⎟⎟⎟⎠
.
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(ln n∕n)2∕(4+d) . This rate coincides with Stone’s (1983) optimal global rate for non-
parametric density estimation. It is also straightforward to check that the 
(ln n∕n)2∕(4+d) rate is faster than (ln n∕n)6∕{12+d(4−�)} ( = the optimal uniform conver-
gence rate when �X slowly expands to ℝd

+
 ) in the previous section.

3.2  Regression estimation

Next, Theorems 1 and 2 are extended to the cases of nonparametric regression estima-
tion. We consider two most popular kernel regression estimators, namely, the NW and 
LL regression estimators. The NW estimator smoothed by the product gamma kernel is 
defined as

The LL estimator of m(x) and estimators of its first-order partial derivatives �xm(x) 
are given as the joint minimizer of the local least squares problem

The LL estimator m̃G(x) = �̃�(x) can be also expressed in a closed form as

where

This expression results from equation (2.1) of Ruppert and Wand (1994) and also 
appears in the proof of Theorem 10 in Hansen (2008).

When dealing with regression estimation, we must take care of the cases in which 
the marginal density f (x) becomes (close to) zero. Singularity of f (x) does occur as 
xj → ∞ for some j. It may be also the case that f (x) → 0 as xj → 0 for some j. Then, 

m̂G(x) ∶=

∑n

i=1
Yi�G(x,b)

�
Xi

�
∑n

i=1
�G(x,b)

�
Xi

� =
ĝG(x)

f̂G(x)
.

(
�̃�(x), �̃(x)

)
∶= argmin

(𝛼,�)

n∑
i=1

{
Yi − 𝛼 − �⊤

(
Xi − x

)}2
�G(x,b)

(
Xi

)
.

m̃G(x) ∶=
ĝG(x) − S1(x)

⊤S2(x)
−1T1(x)

f̂G(x) − S1(x)
⊤S2(x)

−1S1(x)
,

S1(x) =
1

n

n∑
i=1

(
Xi − x

)
�G(x,b)

(
Xi

)
,

S2(x) =
1

n

n∑
i=1

(
Xi − x

)(
Xi − x

)⊤
�G(x,b)

(
Xi

)
, and

T1(x) =
1

n

n∑
i=1

Yi
(
Xi − x

)
�G(x,b)

(
Xi

)
.
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we make an additional assumption as in Hansen (2008) and Hirukawa et  al. (2022) 
before stating two uniform convergence results for the kernel regression estimators.

Assumption 4 Let rn ∶= infx∈�X
f (x) > 0. Then, as n → ∞ , rn → 0 and the follow-

ings also hold true.

In reality, f (x) is unknown, so is rn . Therefore, we must estimate rn in order to ver-
ify the above conditions in practice. Now two theorems on uniform convergence of 
m̂G(x) and m̃G(x) are delivered.

Theorem 5 If Assumptions 1-3, 4W, and 5 hold, then, as n → ∞, 

Theorem 6 If Assumptions 1-3, 4S, and 5 hold, then, as n → ∞, the statements in 
Theorem  5 can be strengthened to almost sure convergence.

Several remarks are in order. First, recognizing that 
∑d

j=1
bj∕�j = O(�) , we can 

find that uniform convergence rates of m̂G(x) and m̃G(x) are the same as those for 
product beta kernel regression estimators in Theorems 5 and 6 of Hirukawa et al. 
(2022). A rationale is that since the gamma function is a common key building 
block for the gamma and beta kernels, similar structure appears in various aspects of 
asymptotic analysis for regression estimators smoothed by these kernels; see Chen 
(2002), for instance, for more details.

Second, the results for m̂G(x) in Theorems 5 and 6 are comparable with those in 
Theorems 8 and 9 of Hansen (2008), who derives weak and strong uniform con-
vergence rates of the NW estimator using multivariate symmetric kernels while 

r−1
n

⎛
⎜⎜⎜⎝

d�
j=1

bj +

���� ln n

n

�∏d

j=1
bj𝜂j

⎞
⎟⎟⎟⎠
→ 0 for m̂G(x).

r−2
n

⎛
⎜⎜⎜⎝
𝜌 +

���� ln n

n

�∏d

j=1
bj𝜂j

⎞
⎟⎟⎟⎠
→ 0 for m̃G(x).

(5)sup
x∈�X

��m̂G(x) − m(x)�� = Op

⎧⎪⎨⎪⎩
r−1
n

⎛⎜⎜⎜⎝

d�
j=1

bj +

���� ln n

n

�∏d

j=1
bj𝜂j

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭
, and

(6)sup
x∈�X

��m̃G(x) − m(x)�� = Op

⎧⎪⎨⎪⎩
r−2
n

⎛⎜⎜⎜⎝
𝜌 +

���� ln n

n

�∏d

j=1
bj𝜂j

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭
.
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allowing f (x) to shrink to zero at the rate rn in tail regions of the entire Euclidean 
space. Hansen (2008) demonstrates that the uniform convergence rates slow down 
from those of the corresponding sample average functional by a factor of the addi-
tional penalty term r−1

n
 . It follows from (5) that Hansen’s (2008) results continue to 

hold after replacing multivariate symmetric kernels with the product gamma kernel 
defined on the nonnegative orthant.

Third, there are some similarities and differences between the results for m̃G(x) 
in Theorems 5 and 6 and those in Theorems 10 and 11 of Hansen (2008). Hansen 
(2008) documents in these theorems that the penalty term is strengthened to r−2

n
 for 

the LL estimator smoothed by multivariate symmetric kernels. It can be found in 
(6) that expanding �X has two distinct effects on the uniform convergence rate of 
the product gamma LL estimator. Not only does �X assign a more stringent penalty 
r−2
n

 in comparison with the NW case but also the bias convergence decelerates from ∑d

j=1
bj to � because of its edge effect.

Fourth, as in the previous section, it is possible to obtain the optimal weak and 
strong uniform convergence rates of m̂G(x) and m̃G(x) for a fixed �X and a single 
smoothing parameter b. In this case, it may be safely assumed that f (x) is bounded 
away from zero uniformly on x ∈ �X so that rn is also fixed. In this setup, weak and 
strong uniform convergence rates of m̂G(x) and m̃G(x) once again reduce to 
b +

√
ln n∕

(
nbd∕2

)
 . Accordingly, the optimal uniform convergence rates of m̂G(x) 

and m̃G(x) are both (ln n∕n)2∕(4+d) . The rates agree with Stone’s (1982) optimal 
global rate for nonparametric regression estimation.

4  Monte Carlo study

In this section, we conduct a simulation study to empirically confirm optimal uni-
form convergence rates of gamma density and regression estimators. Our Monte 
Carlo design is largely inspired by the one in Liu and Li (2023). The sample size 
n varies from 100 to 500 such that n = nj = 100 + 20(j − 1) for j ∈ {1, 2,… , 21} . 
For each sample size n = nj , the number of replications is 100. The Monte Carlo 
sample 

{(
Xi, Yi

)}n

i=1
 is generated by Xi

d
= G(2, 1) and Yi = m

(
Xi

)
+ �i , where 

m(x) = ln (x + 1) , �i
d
= N

(
0, 0.052

)
 and Xi⊥⊥𝜖i . Using the Monte Carlo sample, 

we compute the gamma density estimate f̂G(x) for the marginal distribution of X 
and the gamma NW regression estimate m̂G(x) . The design points are chosen 
as x = xk = 0.5 + 0.01(k − 1) for k ∈ {1, 2,… , 501} so that all these points lie 
within the fixed interval �X = [0.5, 5.5] . Since �x is fixed and the pdf of G(2, 1) 
is bounded away from zero on �X , weak and strong optimal uniform convergence 
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rates of f̂G(x) and m̂G(x) become (ln n∕n)2∕5 under the optimal smoothing parameter 
b∗ ≍ (ln n∕n)2∕5.

To implement f̂G(x) and m̂G(x) , we consider two estimators of b∗ , namely, the 
rule-of-thumb (ROT) and cross-validation (CV) type ones. The ROT smooth-
ing parameter is common across density and regression estimates and defined as 
b̂ROT ∶= �̂�X(ln n∕n)

2∕5 , where �̂�X is the sample standard deviation of X. While the 
CV type ones differ between density and regression estimates, each is designed to 
minimize the corresponding uniform error bound (EB). The CV type smoothing 
parameter for f̂G(x) is defined as

where f̂G,b̂ROT (x) is the density estimate using b̂ROT as the pilot smoothing param-
eter, and f̂G,b,−i(x) ∶= {1∕(n − 1)}

∑n

�=1,�≠i KG(x,b)

�
X
�

�
 is the density estimate 

using the smoothing parameter b and the sample with the ith observation elimi-
nated. A pilot simulation study confirms that a smaller smoothing parameter value 
than b̂ROT tends to work well in our Monte Carlo design. Then, we choose the set 
B =

{
c�̂�X(ln n∕n)

2∕5 ∶ c ∈ {0.1, 0.2,… , 1.0}
}
 . The CV type smoothing parameter 

for m̂G(x) is also defined as

where the set B is the same as above, and m̂G,−i,b(x) is the NW estimate using the 
smoothing parameter b and the sample with the ith observation eliminated.

Finally, for h ∈ {f m} and ĥG ∈
{
f̂G, m̂G

}
 , the uniform error bound

is calculated, where ĥG,nj signifies the dependence of the estimate ĥG on the sample 
size nj . Then, we take an average of error bounds over 100 Monte Carlo samples. 
The average error bound is denoted as EB

(
ĥG,nj

)
.

If the gamma density or regression estimator is able to achieve its optimal uniform 

convergence rate, then the scatter plot of 
{(

ln
(
nj∕ ln nj

)
, lnEB

(
ĥG,nj

))}21

j=1
 for 

h ∈ {f m} should be close enough to form a straight line lnEB
(
ĥG,nj

)
=

(constant) + (−2∕5) ln
(
nj∕ ln nj

) . Each panel of Fig. 1 presents the scatter plot and its 
corresponding reference line. The reference line in blue has slope −2∕5 , and its inter-
cept is determined by ordinary least squares (OLS) after the slope is fixed at −2∕5 . It 

b̂CV ,f ∶= argmin
b∈B

CVf (b) ∶= argmin
b∈B

{
max

i∶Xi∈�X

|||f̂G,b̂ROT
(
Xi

)
− f̂G,b,−i

(
Xi

)|||
}
,

b̂CV ,m ∶= argmin
b∈B

CVm(b) ∶= argmin
b∈B

{
max

i∶Xi∈�X

|||Yi − m̂G,−i,b

(
Xi

)|||
}
,

EB
(
ĥG,nj

)
= sup

x∈�X

|||ĥG(x) − h(x)
||| ≈ max

1≤k≤501
|||ĥG

(
xk
)
− h

(
xk
)|||
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can be found that the points are distributed around the line. While at first glance the 
scatter plot for Regression [CV] is slightly off the reference line, a closer look reveals 
that it occurs for first few sample sizes and the deviation disappears as the sample size 
increases. For reference, OLS slope estimates implied by scatter plots are −0.33 for 
Density [ROT], −0.35 for Density [CV], −0.33 for Regression [ROT], and −0.69 for 
Regression [CV]. Monte Carlo results indicate that all in all, uniform error bounds of 
gamma density and regression estimators agree with their theoretical optimal conver-
gence rates.

5  Conclusion

In this paper, we have demonstrated weak and strong uniform convergence rates of 
joint density and regression estimators smoothed by the product gamma kernel. All 
such convergence results are established on a compact set that is either fixed within 
or expanding to the d-dimensional nonnegative orthant. Uniform convergences of 
density and regression estimators using the product gamma kernel can be obtained 
as applications of a sample average functional. The optimal uniform convergence 
rates on a fixed set of all these estimators concur with the corresponding best pos-
sible global convergence rates provided by Stone (1982, 1983). Finally, simulation 
results confirm optimal uniform convergence rates of the gamma density and regres-
sion estimators.

Fig. 1  ln-ln Plots for Gamma Density and Regression Estimators
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Appendix

A.1 Proof of Theorem 1

This proof requires the following lemmata. Lemma 1 presents moments of the uni-
variate gamma kernel around the design point x. E

(
�x − x

)3 and E
(
�x − x

)5 are not 
provided because these are not used in the proofs. Lemma 2(i) is a uniform version 
of Stirling’s approximation to the gamma function, whereas Lemma 2(ii) refers to 
a uniform approximation to the digamma function. Lemma 3 documents uniform 
bounds of the univariate gamma kernel and its first-order derivative with respect to 
the design point x. Lemma 4 states Bernstein’s inequality.

Lemma 1 Let �x
d
= G(x∕b + 1, b). Then, 

Lemma 2 Suppose that sequences b(= b(n)), 𝜂(= 𝜂(n)) > 0 satisfy  b, � → 0 and 
b∕� → 0 as n → ∞. Then, the followings hold true as n → ∞.

Lemma 3 Under the same condition as in Lemma 2, the followings hold true as 
n → ∞.

Lemma 4 (Van der Vaart and Wellner, 1996, Lemma 2.2.9). Let X1,… ,Xn be inde-
pendent random variables with bounded ranges [−M,M] and zero means. Then,

E
(
�x − x

)
= b,

E
(
�x − x

)2
= xb + 2b2,

E
(
�x − x

)4
= 3x2b2 + 26xb3 + 24b4, and

E
(
�x − x

)6
= 15x3b3 + 340x2b4 + 1044xb5 + 720b6.

(i) sup
x∈[�,�−1]

������
Γ(x∕b + 1)√

2�(x∕b)x∕b+1∕2 exp (−x∕b)
− 1

������
= O

�
b

�

�
.

(ii) sup
x∈[�,�−1]

����
Ψ(x∕b + 1) − ln (x∕b)

b∕(2x)
− 1

���� = O

�
b

�

�
.

(i) sup
(x,u)∈[�,�−1]×ℝ+

KG(x,b)(u) ≤
√

2

�
b
−

1

2 �
−

1

2 .

(ii) sup
(x,u)∈[�,�−1]×ℝ+

|||||
�KG(x,b)(u)

�x

|||||
≤ 4

√
2

�
b
−

3

2 �
−

3

2 .
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for all x and v ≥ Var
�∑n

i=1
Xi

�
.

A.1.1 Proof of Lemma 1

The formulae can be obtained by computing non-central moments of the gamma 
random variable. It is easiest and fastest to verify the formulae with the aid of 
Maple™ or Mathematica®.   ◻

A.1.2 Proof of Lemma 2

By the double inequality for the gamma function in Theorem of Alzer (2003),

Combining the double inequality for the digamma function in Theorem 5 of Gordon 
(1994) with with a recursive formula Ψ(z + 1) = Ψ(z) + 1∕z for z > 0 also yields

The results immediately follow from x ≥ � .   ◻

A.1.3 Proof of Lemma 3

Proof of (i) Recognize that ux∕b exp (−u∕b) is maximized at u = x , i.e., x is the mode 
of the pdf of G(x∕b + 1, b) . Hence, ux∕b exp (−u∕b) ≤ xx∕b exp (−x∕b) . It follows from 
Lemma 2(i) and b∕� = o(1) that

The result is established by recognizing that the o(1) term (in absolute value) is no 
greater than 1 for a sufficiently large n and that x ≥ �.

Proof of (ii) We consider the cases of u = 0 and u > 0 separately. For u = 0 , it suffices 
to show that limu↑0 �KG(x,b)(u)∕�x = limu↓0 �KG(x,b)(u)∕�x = 0 . If this is the case, then 
�KG(x,b)(0)∕�x = 0 and the result trivially holds. The zero left limit can be immedi-
ately established by KG(x,b)(u) ≡ 0 for u < 0 . To evaluate the right limit, observe that 
for u > 0,

Pr

(|||||

n∑
i=1

Xi

|||||
> x

)
≤ 2 exp

{
−

x2

2(v +Mx∕3)

}

������
Γ(x∕b + 1)√

2�(x∕b)x∕b+1∕2 exp (−x∕b)
− 1

������
≤ O

�
b

x

�
.

||||
Ψ(x∕b + 1) − ln (x∕b)

b∕(2x)
− 1

|||| ≤ O
(
b

x

)
.

KG(x,b)(u) ≤ xx∕b exp (−x∕b)

bx∕b+1
√
2�(x∕b)x∕b+1∕2 exp (−x∕b){1 + o(1)}

=
b−1∕2x−1∕2{1 + o(1)}√

2�
.
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Because x∕b ≥ 𝜂∕b > 0 is the case for the exponent for u in KG(x,b)(u) , we have 
limu↓0 KG(x,b)(u) = 0 . By L’Hôpital’s rule, limu↓0 (ln u)KG(x,b)(u) = 0 also holds. 
Hence, the right limit is shown to be zero.

For u > 0 , it follows from (7) that

We find the bound for A2 first. By Lemma 2(ii), b∕� = o(1) , x ∈
[
�, �−1

]
 and 

|ln z| ≤ max
{
z, z−1

}
 for z > 0,

Putting o(�) ≤ 1 for a sufficiently large n and using part (i) of this lemma, we have

Next, we work on A1 . Suppose that |ln u| ≤ max
{
u, u−1

}
= u−1 . In this case, 

u−1ux∕b exp (−u∕b) is maximized at u = x − b(≥ 𝜂 − b > 0 for a sufficiently large n) . 
Then, by Lemma 2(i) and (1 − b∕x)x∕b = e−1{1 + o(1)},

Since x−3∕2 ≤ �−3∕2 , (1 − b∕x)−1 ≤ (1 − b∕�)−1 and we may pick o(1) ≤ 1 
and b∕� ≤ 1∕2 for a sufficiently large n, we finally have u−1KG(x,b)(u) ≤
2
√
2∕�b−1∕2�−3∕2 . Alternatively, when |ln u| ≤ max

{
u, u−1

}
= u , a similar proce-

dure also yields uKG(x,b)(u) ≤ 2
√
2∕�b−1∕2�−3∕2 , and consequently,

The proof is completed by substituting (9) and (10) into (8).   ◻

(7)

�KG(x,b)(u)

�x
=

1

b

{
ln u − ln b − Ψ

(
x

b
+ 1

)}
KG(x,b)(u)

=
1

b

[
(ln u)KG(x,b)(u) −

{
ln b + Ψ

(
x

b
+ 1

)}
KG(x,b)(u)

]
.

(8)
b
|||||
�KG(x,b)(u)

�x

|||||
≤ |ln u|KG(x,b)(u) +

||||ln b + Ψ
(
x

b
+ 1

)||||KG(x,b)(u)

= A1 + A2 (say).

||||ln b + Ψ
(
x

b
+ 1

)|||| ≤ |ln x| + o(1) ≤ max
{
x, x−1

}
+ o(1) ≤ �−1{1 + o(�)}.

(9)A2 ≤ 2

√
2

�
b−1∕2�−3∕2.

u−1KG(x,b)(u) ≤ (x − b)x∕b−1 exp {−(x − b)∕b}

bx∕b+1
√
2�(x∕b)x∕b+1∕2 exp (−x∕b){1 + o(1)}

=
b−1∕2x−3∕2{1 + o(1)}√

2�(1 − b∕x)
.

(10)A1 ≤ max
{
u−1KG(x,b)(u), uKG(x,b)(u)

} ≤ 2

√
2

�
b
−

1

2 �
−

3

2 .
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A.1.4 Proof of Theorem 1

For ease of exposition, we additionally introduce the notations

The meaning of each notation will be clarified shortly.
Consider that

The proof is completed if the following two statements are demonstrated.

Proof of (11) Observe that

where the final equality comes from (1) and the gamma random vector 
�x ∶=

(
𝜉x1 ,… , 𝜉xd

)⊤ with �xj
d
= G

(
xj∕bj + 1, bj

)
 and �xj ⟂⟂ �xk for all j ≠ k . Then, by 

a second-order Taylor expansion of g
(
�x
)
 around �x = x,

an =

���� ln n

n

�∏d

j=1
bj𝜂j

,

𝜍in(x) =
1

n

�
Yi�G(x,b)

�
Xi

�
− E

�
Yi�G(x,b)

�
Xi

���
,

𝜏n = a−1∕(1+𝛿)
n

,

Ŷi = Yi1
���Yi�� ≤ 𝜏n

�
,

�̂�in(x) =
1

n

�
Ŷi�G(x,b)

�
Xi

�
− E

�
Ŷi�G(x,b)

�
Xi

���
,

Rn(x) =
1

n

n�
i=1

Yi1
���Yi�� > 𝜏n

�
�G(x,b)

�
Xi

�
, and

Nn = a
−
�
1+

1

1+𝛿

�

n

�
d�
j=1

bj𝜂j

�−
1

2
�

d�
j=1

1

bj𝜂j

�
.

sup
x∈�X

||ĝG(x) − g(x)|| ≤ sup
x∈�X

|||E
{
ĝG(x)

}
− g(x)

||| + sup
x∈�X

|||ĝG(x) − E
{
ĝG(x)

}|||.

(11)sup
x∈�X

|||E
{
ĝG(x)

}
− g(x)

||| = O

(
d∑
j=1

bj

)
.

(12)sup
x∈�X

|||ĝG(x) − E
{
ĝG(x)

}||| = Op

(
an
)
.

(13)
E
{
ĝG(x)

}
= E

{
E
(
Yi
||Xi

)
𝕂G(x,b)

(
Xi

)}
= E

{
m
(
Xi

)
𝕂G(x,b)

(
Xi

)}

= ∫
ℝ

d
+

m(u)f (u)𝕂G(x,b)(u)du = E
{
g
(
�x
)}

,
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for some x̄ on the line segment joining �x and x.

Using |||g
(1)

j
(x)

|||,
|||g

(2)

jj
(x)xj

|||,
|||g

(2)

jk
(x)

||| < ∞ and Lemma 1, we have ��B1
�� = O

�∑d

j=1
bj

�
 , 

��B2
�� = O

�∑d

j=1
bj

�
 and ��B3

�� = o
�∑d

j=1
bj

�
 uniformly on x ∈ �X . Furthermore, by 

Assumption 2(ii) and the Cauchy-Schwarz inequality, orders of magnitude in ||B4
|| and 

||B5
|| are determined by 

∑d

j=1

�
E

�
���x − x��2

�
�xj − xj

�4
��1∕2

 and 

∑d

j=1

∑d

k=1,k≠j
�
E

�
���x − x��2

�
�xj − xj

�2�
�xk − xk

�2��1∕2
 , respectively. Now, by 

Lemma 1 and x
�
≤ �−1

�
,

and as a result,

E
{
g
(
�x
)}

= g(x) +

d∑
j=1

g
(1)

j
(x)E

(
𝜉xj − xj

)
+

1

2

d∑
j=1

g
(2)

jj
(x)E

(
𝜉xj − xj

)2

+

d∑
j=1

d∑
k=1,k≠j

g
(2)

jk
(x)E

{(
𝜉xj − xj

)(
𝜉xk − xk

)}

+
1

2

d∑
j=1

E

[{
g
(2)

jj
(x̄) − g

(2)

jj
(x)

}(
𝜉xj − xj

)2
]

+

d∑
j=1

d∑
k=1,k≠j

E
[{

g
(2)

jj
(x̄) − g

(2)

jj
(x)

}(
𝜉xj − xj

)(
𝜉xk − xk

)]

= g(x) + B1 + B2 + B3 + B4 + B5 (say).

�
E

�
���x − x��2

�
�xj − xj

�4
�� 1

2

=

�
d�
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�
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=
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⎧⎪⎨⎪⎩
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�
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Similarly, for k ≠ j,

and thus

Finally, Assumption 4W(ii) leads to

d�
j=1

�
E

�
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�
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⎪⎨⎪⎩
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⎪⎬⎪⎭
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and thus ��B4
��, ��B5

�� = o
�∑d

j=1
bj

�
 uniformly on x ∈ �X . Therefore, (11) is 

established.

Proof of (12) As in the proofs of Theorem  2 in Hansen (2008) and Theorem  1 in 
Hirukawa et al. (2022), our proof takes the following three steps. 

1. Demonstrate that the error bound from replacing Yi with its truncated version Ŷi 
is Op

(
an
)
 uniformly on x ∈ �X.

2. Split each edge of the d-hyperrectangle �X into Nn equally-spaced grids to create 
Nd
n
 sub-hyperrectangles, and replace the supremum with a maximization over the 

finite Nd
n
 sub-hyperrectangles.

3. Employ Lemma 4 (Bernstein’s inequality) to bound the remainder term.

Step 1. A similar argument to the one in Step 1 for the proof of Theorem 1 in Hiru-
kawa et al. (2022) applies here. Recognize that ĝG(x) − E

�
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�
=
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that 
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Observe that the right-hand side is bounded by �−(1+�)
n

C1 by Assumption 3 and 

∫
ℝ

d
+

𝕂G(x,b)(u)du = 1 . Then, by the definition of �n , 
|||E
{
Rn(x)

}||| ≤ O
(
an
)
 uniformly 

on x ∈ �X . Finally,

can be obtained by Markov’s inequality.

Step 2. Let Ah be the hth sub-hyperrectangle for h ∈
{
1,… ,Nd

n

}
 . Also let xh be the 

most distant point from the origin in Ah , i.e., xh ∶= argmaxx∈Ah
‖x‖ . Suppose that 

the design point x falls into Ah . Then, the order of magnitude in 
supx∈Ah

���
∑n

i=1
�̂�in(x) −

∑n

i=1
�̂�in

�
xh
���� is determined by 

|||Ŷi
|||
|||�G(x,b)

(
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)
− �G(xh,b)

(
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)||| . Now, by the mean-value theorem,

for some x̃ on the line segment joining x and xh . Furthermore, by Lemma 3,
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}
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ℝ
d
+

E
(
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)
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It follows from supx∈Ah

‖‖x − xh
‖‖ = O

(
N−1
n

)
 and the definitions of �n and Nn that uni-

formly on (x,u) ∈ Ah ×ℝ
d
+
,

 Therefore,

Step 3. Before employing Bernstein’s inequality in Lemma 4, we must find two 

bounds M and v. First, by |||Ŷi
||| ≤ 𝜏n , Lemma 3 and ∫

ℝ
d
+

f (u)du = 1,

It follows from the definitions of an and �n that

Second,
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By Lyapunov’s inequality, (2), (3), and C0,C1 ≥ 1,

Moreover, by equation (3.2) of Chen (2000),

where

by equation (3.4) of Chen (2000) and x ∈
[
�, �−1

]
 , and the remaining part of (16) is 

the pdf of G(2x∕b + 1, b∕2) . Therefore, by the definition of an,

Lemma 4 establishes that for such M and v and an arbitrarily chosen K > 0,

Because an = o(1) by Assumption 4W(iii), it holds that 

(2∕3)
�
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√
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In the end,
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Pick K = 2
√
5d . Then, by the definition of Nn,

It also follows from the definition of an that n−1 = (ln n)−1a2
n

�∏d

j=1
bj�j

�1∕2

 . Substi-
tuting this into the right-hand side of (19) finally yields

as n → ∞ , which demonstrates that

Now, (14), (15) and (20) establish (12). This completes the proof.   ◻

A.2 Proof of Theorem 2

All notations in the proof of Theorem 1 are maintained, except that the definitions 
of �n and Nn are changed to �n = n(1+�)∕(2+�) and
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for an arbitrarily small 𝜖 > 0 . Then, the proof is boiled down to demonstrating that 
supx∈�X

|||ĝG(x) − E
{
ĝG(x)

}||| = O
(
an
)
 a.s.

This proof also takes three steps as in the proof of (12). First, by the argument in 
Step 1 for the proof of (12) and the definitions of �n and an,

Also by Markov’s inequality and Assumption 3,

Then, by the Borel-Cantelli lemma, for a sufficiently large n, ||Yn|| ≤ �n with prob-
ability 1. This implies that ||Yi|| ≤ �n for any i ≤ n with probability 1 for a sufficiently 
large n. It follows that Rn(x) = 0 with probability 1, i.e.,

uniformly on x ∈ �X.
Second, it follows from the argument in Step 2 for the proof of (12) and the defi-

nitions of �n and Nn that

Then, using (21) yields
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Accordingly,

where the last inequality holds because 
�∏d

j=1
bj�j

��∕2

∕ ln n is convergent. Then, 

picking K = 2
√
(d + 1)(1 + �) + d∕(1 − �) yields Nd

n
n−K

2∕4 = O
{
n−(1+�)

}
 so that

Therefore, by the Borel-Cantelli lemma,

The stated result is established by (22), (23) and (24). This completes the proof.   ◻

A.3 Proofs of Theorem 3 and 4

Put Yi ≡ 1 in Theorems 1 and 2, respectively.   ◻

A.4 Proofs of Theorem 5 and 6

Below we concentrate on the proof of Theorem 5. Switching the arguments based on 
Theorem 1 to those on Theorem 2 can immediately establish Theorem 6, and thus 
details are omitted.

Proof of (5) By Theorem 1,
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uniformly on x ∈ �X.
Proof of (6) The proof requires to find uniform bounds of ‖‖S1(x)∕f (x)‖‖ , ‖‖S2(x)∕f (x)‖‖ and ‖‖T1(x)∕f (x)

‖‖ . Our derivation starts from the third one. A similar 
argument to (13) yields E
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As a result,

Replacing g in E
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}
 with f also yields

Furthermore, we may write E
{
S2(x)

}
= E

{(
�x − x

)(
�x − x

)⊤
f
(
�x
)}

 . Then, by a 
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uniformly on x ∈ �X . Using (3), supx∈�X
E‖‖�x − x‖‖2 = O(�) and 1∕f (x) ≤

1∕ infx∈�X
f (x) = r−1

n
 , we have

Appropriate choices of M and v in Lemma 4 also yield 
supx∈�X

‖‖‖S2(x) − E
{
S2(x)

}‖‖‖ = Op

(
�an

)
 , and thus

sup
x∈�X

‖‖T1(x)
‖‖ = O(�) + Op

(
�

1

2 an

)
= Op

{
�

1

2

(
�

1

2 + an

)}
.

(27)sup
x∈�X

‖‖‖‖
T1(x)

f (x)

‖‖‖‖ ≤ supx∈�X

‖‖T1(x)
‖‖

infx∈�X
f (x)

= Op

{
r−1
n
�

1

2

(
�

1

2 + an

)}
.

(28)sup
x∈�X

‖‖‖‖
S1(x)

f (x)

‖‖‖‖ = Op

{
r−1
n
�

1

2

(
�

1

2 + an

)}
.

E
{
S2(x)

}
= f (x)

[
E
{(

�x − x
)(
�x − x

)⊤}

+
1

f (x)

d∑
j=1

E
{
f
(1)

j
(x̌)

(
�x − x

)(
�x − x

)⊤(
𝜉xj − xj

)}]

‖‖‖‖‖‖

d∑
j=1

E
{
f
(1)

j
(x̌)

(
�x − x

)(
�x − x

)⊤(
𝜉xj − xj

)}‖‖‖‖‖‖
≤ O

{
d∑
j=1

(
E

(
‖‖�x − x‖‖4

(
𝜉xj − xj

)2
)) 1

2

}
= O

(
𝜌

3

2

)

sup
x∈�X

‖‖‖‖‖
E
{
S2(x)

}
f (x)

‖‖‖‖‖
= O(�) + O

(
r−1
n
�

3

2

)
.

sup
x∈�X

‖‖‖‖
S2(x)

f (x)

‖‖‖‖ ≤ sup
x∈�X

‖‖‖‖‖
E
{
S2(x)

}
f (x)

‖‖‖‖‖
+

supx∈�X

‖‖‖S2(x) − E
{
S2(x)

}‖‖‖
infx∈�X

f (x)

= O(�) + O
(
r−1
n
�3∕2

)
+ Op

(
r−1
n
�an

)
.
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Assumption 4 implies that r−1
n
�1∕2 =

(
r−2
n
�
)1∕2

= o(1) , and thus r−1
n
�3∕2 = o(�) . 

Since r−1
n
an =

(
r−2
n
an
)1∕2

a
1∕2
n = o(1) , we also have r−1

n
�an = o(�) . As a consequence,

It follows from (27), (28) and (29) that

and

Using (25) and (26) and recognizing that r−1
n

�∑d

j=1
bj + an

�
= o

�
r−2
n

�
� + an

��
 , we 

may conclude that

uniformly on x ∈ �X.  ◻
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