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a b s t r a c t 

Discontinuity in density functions is of economic importance and interest. For instance, 

in studies on regression discontinuity designs, discontinuity in the density of a running 

variable suggests violation of the no-manipulation assumption. In line with this notion, 

estimation and testing procedures on discontinuity in densities with positive support are 

developed. The proposed approach is built on splitting the asymmetric, gamma kernel into 

two parts at a prespecified cutoff that is suspected to be a discontinuity point and con- 

structing two truncated kernels. The jump-size magnitude of the density at the cutoff

can be estimated nonparametrically by two kernels and a multiplicative bias correction 

method. The estimator is easy to implement, and its convergence properties are delivered 

by various approximation techniques on incomplete gamma functions. Based on the jump- 

size estimator, two versions of test statistics for the null of continuity at a given cutoff are 

also proposed. Moreover, estimation theory of the entire density in the presence of a dis- 

continuity point is explored. Monte Carlo simulations confirm nice finite-sample properties 

of the jump-size estimator and the test statistics. 
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1. Introduction 

The objective of this paper is to develop new estimation and testing procedures of discontinuity in density functions

with support on R + . Inference on possibly discontinuous densities has been explored in nonparametric statistics: examples

include Liebscher (1990) , Cline and Hart (1991) , and Chu and Cheng (1996) , to name a few. Discontinuity in densities is also

of economic importance and interest. Local randomization of a continuous running variable is a key requirement for the

validity of regression discontinuity designs (‘RDD’); if the value of the running variable falls into the left and right of the

cutoff strategically, then treatment effects are no longer point identified due to self-selection. Therefore, detection of dis-

continuity in the density of the running variable at the cutoff suggests evidence of such strategic behavior or manipulation

in RDD. Nonetheless, estimation and inference on discontinuity in densities have not attracted interest in econometrics up
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until recently. McCrary (2008) applies a bin-based local linear regression method to estimate the jump-size magnitude of a

density at a prespecified cutoff. Subsequently, Otsu et al. (2013) propose two versions of empirical likelihood-based inference

procedures grounded on binning and local likelihood methods. While our proposal can be viewed as an extension of these

articles, it has a unique feature. In our approach, jump sizes are estimated by means of density estimation techniques using

the kernels obtained through truncating asymmetric kernels at a given location that is suspected to be a discontinuity point,

unlike nonparametric regression or local likelihood approaches using standard symmetric kernels. 

Before proceeding, it is worth explaining why we specialize in asymmetric kernel smoothing. Empirical studies on dis-

continuity in densities frequently pay attention to the distributions of economic variables such as (taxable or relative) in-

comes ( Saez, 2010; Bertrand et al., 2015 ), wages ( DiNardo et al., 1996 ), school enrollment counts ( Angrist and Lavy, 1999 )

and proportion of votes for proposed bills ( McCrary, 2008 ). The distributions, if they are free of discontinuity points, can

be empirically characterized by two stylized facts, namely, (i) existence of a lower bound in support (most possibly at the

origin) and (ii) concentration of observations near the boundary and a long tail with sparse data. When estimating such

densities nonparametrically using symmetric kernels, we must rely either on a boundary correction method and an adaptive

smoothing technique (e.g., variable bandwidth methods) simultaneously , or on back-transforming the density estimator from

the log-transformed data to the original scale. The former is apparently cumbersome, and density estimates by the latter

often behave poorly (e.g., Cowell et al., 1998 ) although the method is popularly applied in empirical works. 

Asymmetric kernels with support on R + have emerged as a viable alternative that can accommodate the stylized facts.

Our motivation to employ asymmetric kernels can be discussed in the context of RDD. Existence of a boundary in the sup-

port of the density of the running variable may not be a serious issue unless the cutoff is near the boundary. Rather, we use

the adaptive smoothing property of asymmetric kernels as best as possible for our purposes. This capacity originates from

the fact that their shapes vary across design points where smoothing is made. The property is particularly advantageous

for capturing and inspecting the shape of the entire density of the positively-valued running variable that is assumed to be

right-skewed. Furthermore, this study focuses exclusively on the gamma kernel by Chen (20 0 0) 

K G ( x,b ) ( u ) = 

u 

x/b exp ( −u/b ) 

b x/b+1 �( x/b + 1 ) 
1 ( u ≥ 0 ) , 

where x ( ≥ 0) and b ( > 0) are the design point and smoothing parameter, respectively. Not only is the gamma kernel most

popular among all asymmetric kernels, but also there is rich literature on approximations to the gamma and incomplete

gamma functions, which are key ingredients for our asymptotic analyses. 

When the density has a discontinuity point, the jump-size magnitude at the point can be defined as the difference

between left and right limits of the density at the point. While nonparametric regression ( McCrary, 2008 ) and empirical

likelihood ( Otsu et al., 2013 ) methods have been applied to estimate the jump size, we attempt to have our jump-size esti-

mator preserve appealing properties of the gamma kernel. Accordingly, we split the gamma kernel into two parts at a given

cutoff where the density is suspected to be discontinuous, and make each part a legitimate kernel by re-normalization. The

left and right limits of the density can be estimated by two truncated kernels. Although the estimators are consistent and

their variance convergences are usual O 

(
n −1 b −1 / 2 

)
where n is the sample size, their bias convergences are O ( b 1/2 ), not the

usual O ( b ) rate. Then, we apply the multiplicative bias correction technique by Terrell and Scott (1980) to eliminate the un-

desirable O ( b 1/2 ) biases without inflating the order of magnitude in variance. Moreover, we take particular care of choosing

the smoothing parameter. Specifically, the method of power-optimality smoothing parameter selection by Kulasekera and

Wang (1998) is tailored to inference problems on discontinuous densities. 

Some readers may wonder why we avoid estimating the left and right limits of the density at the prespecified cutoff

using the beta ( Chen, 1999 ) and gamma kernels, respectively. The reason is bias and variance convergences of the beta and

gamma estimates when the cutoff is chosen as the boundary. In the vicinity of the cutoff, their bias convergences are usual

O ( b ). On the other hand, the variance convergences slow down to O 

(
n −1 b −1 

)
. Although the inferior rate is likely to adversely

affect power properties of our test, it is hard (or even impossible) to improve the rate to usual O 

(
n −1 b −1 / 2 

)
. In contrast, den-

sity estimates using the truncated kernels have the inferior bias convergence of O ( b 1/2 ) with the usual variance convergence

of O 

(
n −1 b −1 / 2 

)
maintained. While the slow bias convergence potentially has a negative impact on size properties of the

test, it can be improved to usual O ( b ) with no additional conditions (e.g., extra smoothness in the density), by means of a

multiplicative bias correction method. 

Our proposal has three contributions to the literature. First, unlike the binned local linear (‘BLL’) estimation by McCrary

(2008) , our kernel truncation approach always generates nonnegative density estimates and is free from choosing bin widths.

Our jump-size estimator is also easy to implement. Since it has a closed form, nonlinear optimization as in Otsu et al.

(2013) is unnecessary. While incomplete gamma functions are key components of our estimation and testing procedures,

standard statistical packages including GAUSS, Matlab and R prepare a command that can return values of the functions

either directly or in the form of gamma cumulative distribution functions. 

Second, in delivering convergence results of asymmetric kernel estimators, we utilize mathematical tools and proof

strategies that are totally different from those for nonparametric estimators smoothed by symmetric kernels. Asymptotic

results throughout this paper are built upon a few different approximation techniques on incomplete gamma functions;

such proof strategies are taken for the first time in the econometric literature, to the best of our knowledge. 
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Third, we also present estimation theory of the entire density in the presence of a discontinuity point. Indeed, Imbens

and Lemieux (2008) argue importance of graphical analyses in empirical studies on RDD, including inspections of densities

of running variables. It is demonstrated that density estimators smoothed by the truncated gamma kernels admit the same

bias and variance approximations as the gamma kernel density estimator does. Furthermore, the truncated gamma-kernel

density estimator is shown to be consistent even when the true density is unbounded at the origin. 

The remainder of this paper is organized as follows. Section 2 presents estimation and testing procedures of the density

at a prespecified location that is suspected to be a discontinuity point. As an important practical problem, a smoothing pa-

rameter selection method is also developed. Our particular focus is on the choice method for power optimality. In Section 3 ,

we discuss how to estimate the entire density when the density has a discontinuity point. Convergence properties of den-

sity estimates are also explored. Section 4 conducts Monte Carlo simulations to evaluate finite-sample properties of the

proposed jump-size estimator and test statistic. An empirical application on the validity of RDD is presented in Section 5 .

Section 6 summarizes the main results of the paper. All technical proofs and additional simulation results are made available

as a supplement, which is published online at the journal webpage. 

This paper adopts the following notational conventions: for a > 0, �( a ) = 

∫ ∞ 

0 t a −1 exp ( −t ) dt is the gamma function; for

a , z > 0, γ ( a, z ) = 

∫ z 
0 t 

a −1 exp ( −t ) dt and �( a, z ) = 

∫ ∞ 

z t a −1 exp ( −t ) dt = �( a ) − γ ( a, z ) denote the lower and upper incom-

plete gamma functions, respectively; 1 { ·} signifies an indicator function; and �·� denotes the integer part. 

2. Estimation and inference for discontinuity in the density 

2.1. Setup 

Suppose that we suspect discontinuity of the probability density function (‘pdf’) f ( x ) at a given point x = c ( > 0 ) , which

is assumed to be interior throughout. Also let 

f −( c ) := lim 

x ↑ c 
f ( x ) and f + ( c ) := lim 

x ↓ c 
f ( x ) 

be the lower and upper limits of the pdf at x = c, respectively. Our parameter of interest is the jump-size magnitude of the

density at c 

J ( c ) := f + ( c ) − f −( c ) . 

To check whether f is (dis)continuous at c , we first estimate J ( c ) nonparametrically and then proceed to a hypothesis testing

for the null of continuity of f at c , i.e., H 0 : J ( c ) = 0 , against the two-sided alternative. 

2.2. An issue in estimating two limits of the density 

To develop a consistent estimator of J ( c ), we start our analysis from estimating two limits of the density at c . Let { X i } n i =1 

be a univariate random sample drawn from a distribution that has the pdf f . When f is indeed discontinuous at c , a rea-

sonable method would be to estimate f −( c ) and f + ( c ) using sub-samples 
{

X −
i 

}
:= { X i : X i < c } and 

{
X + 

i 

}
:= { X i : X i ≥ c } ,

respectively. Instead of relying on nonparametric regression or local likelihood methods, we split the gamma kernel into

two parts at c , namely, 

K G ( x,b ) ( u ) := K 

L 
G ( x,b;c ) ( u ) + K 

U 
G ( x,b;c ) ( u ) , 

where 

K 

L 
G ( x,b;c ) ( u ) = 

u 

x/b exp ( −u/b ) 

b x/b+1 �( x/b + 1 ) 
1 ( 0 ≤ u < c ) and K 

U 
G ( x,b;c ) ( u ) = 

u 

x/b exp ( −u/b ) 

b x/b+1 �( x/b + 1 ) 
1 ( u ≥ c ) . 

However, neither K 

L 
G ( x,b;c ) ( u ) nor K 

U 
G ( x,b;c ) ( u ) is a legitimate kernel function in the sense that ∫ ∞ 

0 

K 

L 
G ( x,b;c ) ( u ) du = 

γ ( x/b + 1 , c/b ) 

�( x/b + 1 ) 
and 

∫ ∞ 

0 

K 

U 
G ( x,b;c ) ( u ) du = 

�( x/b + 1 , c/b ) 

�( x/b + 1 ) 
. 

Therefore, we make scale-adjustments to obtain the re-normalized truncated kernels as 

K 

−
G ( x,b;c ) ( u ) = 

�( x/b + 1 ) 

γ ( x/b + 1 , c/b ) 
K 

L 
G ( x,b;c ) ( u ) and K 

+ 
G ( x,b;c ) ( u ) = 

�( x/b + 1 ) 

�( x/b + 1 , c/b ) 
K 

U 
G ( x,b;c ) ( u ) . 

These kernels yield estimators of f −( c ) and f + ( c ) as 

ˆ f −( c ) = 

1 

n 

n ∑ 

i =1 

K 

−
G ( x,b;c ) ( X i ) 

∣∣∣
x = c 

= 

1 

n 

n ∑ 

i =1 

K 

−
G ( c,b;c ) ( X i ) and 

ˆ f + ( c ) = 

1 

n 

n ∑ 

i =1 

K 

+ 
G ( x,b;c ) ( X i ) 

∣∣∣
x = c 

= 

1 

n 

n ∑ 

i =1 

K 

+ 
G ( c,b;c ) ( X i ) . 

To explore asymptotic properties of these estimators, we make the following assumptions. For notational conciseness,

expressions such as ‘ f ± ( c )’ are used throughout, whenever no confusions may occur. 
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Assumption 1. { X i } n i =1 are i.i.d. random variables drawn from a univariate distribution with a pdf f having support on R + . 

Assumption 2. There is a neighborhood N around c such that the second-order derivative of the pdf f is Hölder-continuous

of order ς ∈ (0, 1] on N \ { c } . Also let f ( 
j ) 

− ( c ) := lim x ↑ c d j f ( x ) /dx j and f ( 
j ) 

+ ( c ) := lim x ↓ c d j f ( x ) /dx j for j = 1 , 2 . Then, f ± ( c ) > 0

and 

∣∣∣ f ( 
2 ) 

± ( c ) 

∣∣∣ < ∞ . 

Assumption 3. The smoothing parameter b ( = b n > 0 ) satisfies b + 

(
nb 3 / 2 

)−1 → 0 as n → ∞ . 

An equivalent to Assumption 2 can be found in McCrary (2008) and Otsu et al. (2013) . In particular, (local) Hölder-

continuity of the second-order density derivative f (2) ( ·) implies that for N = 

(
N , N 

)
with 0 < N < c < N < ∞ , there is a

constant L ∈ (0, ∞ ) such that ∣∣ f ( 2 ) ( s ) − f ( 2 ) ( t ) 
∣∣ ≤ L | s − t | ς , ∀ s, t ∈ ( N , c ) and 

∣∣ f ( 2 ) 
(
s ′ 
)

− f ( 2 ) 
(
t ′ 
)∣∣ ≤ L 

∣∣s ′ − t ′ 
∣∣ς , ∀ s ′ , t ′ ∈ 

[
c, N 

)
. 

The condition ‘ 
(
nb 3 / 2 

)−1 → 0 ’ in Assumption 3 establishes Proposition 2 and Theorem 1 . When approximating the bias

terms of bias-corrected estimators in these statements, we require the condition to control the order of magnitude in the

remainder terms. A similar rate requirement for b can be found, for example, in Hirukawa and Sakudo (2014 , Assumption 2 ).

It is worth remarking that weaker conditions ‘ 
(
nb 1 / 2 

)−1 → 0 ’ and ‘ ( nb ) 
−1 → 0 ’ suffice for Proposition 1 and Theorem 2 , re-

spectively. 

The proposition below refers to bias and variance approximations of ˆ f ±( c ) . It is worth emphasizing that all convergences

results in this paper are built upon a few different approximation techniques on incomplete gamma functions; such proof

strategies are taken for the first time in the econometric literature, to the best of our knowledge. Moreover, for the purpose

of our subsequent analysis, the bias expansion is derived up to the second-order term. 

Proposition 1. Under Assumptions 1 –3 , as n → ∞ , 

Bias 

{ 

ˆ f ±( c ) 

} 

= ±
√ 

2 

π
c 1 / 2 f ( 

1 ) 
± ( c ) b 1 / 2 + 

{ (
1 − 4 

3 π

)
f ( 

1 ) 
± ( c ) + 

c 

2 

f ( 
2 ) 

± ( c ) 

} 

b + o ( b ) , and 

V ar 

{ 

ˆ f ±( c ) 

} 

= 

1 

nb 1 / 2 
f ±( c ) √ 

πc 1 / 2 
+ o 

(
n 

−1 b −1 / 2 
)
. 

Proposition 1 implies that ˆ f ±( c ) are consistent for f ± ( c ), and that their variance convergence has a usual rate of

O 

(
n −1 b −1 / 2 

)
. Nevertheless, the bias convergence is O ( b 1/2 ), which is slower than the usual O ( b ) rate. This is an outcome

of one-sided smoothing. If f were continuous at c and smoothing were made on both sides of the design point c using the

gamma kernel, the nearly symmetric shape of the kernel would cancel out the O ( b 1/2 ) bias. 1 In reality, because data points

used for estimating f ± ( c ) lie only on either the left or right side of c , the O ( b 1/2 ) bias never vanishes. 

A further inspection also reveals that coefficients of the leading O ( b 1/2 ) bias terms of ˆ f ±( c ) are proportional to c 1/2 ,

whereas those of the leading O 

(
n −1 b −1 / 2 

)
variance terms are inversely proportional to c 1/2 . As the design point c moves away

from the origin, the biases of ˆ f ±( c ) may become large (in absolute value). However, the large biases are compensated by

their shrinking variances. Similar results can be found in the bias and variance approximations to the density estimator using

the second gamma kernel by Chen (20 0 0) and those using the inverse Gaussian and reciprocal inverse Gaussian kernels by

Scaillet (2004) . 

It follows that when J ( c ) is estimated by ˆ J ( c ) := 

ˆ f + ( c ) − ˆ f −( c ) , it also has an inferior O ( b 1/2 ) bias. Therefore, our goal is

to propose an estimator of J ( c ) with a O ( b ) bias and a O 

(
n −1 b −1 / 2 

)
variance. 

2.3. Bias-corrected estimation and inference 

To improve the bias convergence in estimators of f ± ( c ) from O ( b 1/2 ) to O ( b ) while the order of magnitude in variance re-

mains unchanged, we propose to employ a multiplicative bias correction (‘MBC’) technique. As in Hirukawa (2010) , Hirukawa

and Sakudo (2014) , Hirukawa and Sakudo (2015) , and Funke and Kawka (2015) , the MBC method proposed by Terrell and

Scott (1980) is adopted. 2 The method eliminates the leading bias term by constructing a multiplicative combination of two
1 This can be also seen by combining two estimators ˆ f ±( c ) as a weighted sum. 
2 Aforementioned articles also apply another MBC method proposed by Jones et al. (1995) . However, it appears that the method fails to eliminate the 

O ( b 1/2 ) bias. Their MBC estimator of f −( c ) , for example, can be written as 

f̆ −( c ) := 

ˆ f −( c ) ̆α−( c ) := 

ˆ f −( c ) 

{ 

1 

n 

n ∑ 

i =1 

K −
G ( c,b;c ) ( X i ) 

ˆ f −( X i ) 

} 

, 

where ᾰ−( c ) serves as the ‘bias correction’ term. However, ˆ f −( x ) ( x < c ) has a O ( b ) bias, as stated in Theorem 2 , so does ᾰ−( c ) . Therefore, the O ( b 1/2 ) bias 

in ˆ f −( c ) never vanishes, and thus we do not pursue this type of MBC. 
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density estimators with different smoothing parameters. In our context, for some constant δ ∈ (0, 1), the MBC estimators of

f ± ( c ) can be defined as 

˜ f ±( c ) = 

{ 

ˆ f ±,b ( c ) 

} 1 / ( 1 −δ1 / 2 ) { 

ˆ f ±,b/δ( c ) 

} −δ1 / 2 / ( 1 −δ1 / 2 ) 
, 

where ˆ f •,b ( x ) and 

ˆ f •,b/δ ( x ) signify the density estimators using smoothing parameters b and b / δ, respectively. Not only are

˜ f ±( c ) nonnegative by construction, but also their bias and variance convergences are usual O ( b ) and O 

(
n −1 b −1 / 2 

)
rates,

respectively, as documented in the next proposition. The proof is similar to the one for Theorem 1 of Hirukawa and Sakudo

(2014) , and thus it is omitted. 

Proposition 2. Under Assumptions 1 –3 , as n → ∞ , 

Bias 
{

˜ f ±( c ) 
}

= 

(
1 

δ1 / 2 

)[ 

c 

π

{ (
f ( 

1 ) 
± ( c ) 

)2 

f ±( c ) 

} 

−
{ (

1 − 4 

3 π

)
f ( 

1 ) 
± ( c ) + 

c 

2 

f ( 
2 ) 

± ( c ) 

} 

] 

b + o ( b ) , and 

V ar 
{

˜ f ±( c ) 
}

= 

1 

nb 1 / 2 
λ( δ) 

f ±( c ) √ 

πc 1 / 2 
+ o 

(
n 

−1 b −1 / 2 
)
, 

where 

λ( δ) := 

(
1 + δ3 / 2 

)
( 1 + δ) 

1 / 2 − 2 

√ 

2 δ

( 1 + δ) 
1 / 2 

(
1 − δ1 / 2 

)2 

is monotonously increasing in δ ∈ (0, 1) with 

lim 

δ↓ 0 
λ( δ) = 1 and lim 

δ↑ 1 
λ( δ) = 

11 

4 

. 

Proposition 2 suggests that as δ↓ 0 ( δ↑ 1) or in case of oversmoothing (undersmoothing), the bias increases (decreases)

and the variance decreases (increases). It is a common practice in nonparametric kernel testing that the bias is made asymp-

totically negligible via undersmoothing, and thus what matters for inference is the size of λ( δ). Because of no minimum in

λ( δ), the issue of choosing δ will be addressed in Monte Carlo simulations. 

It also follows that J ( c ) can be consistently estimated as ˜ J ( c ) := 

˜ f + ( c ) − ˜ f −( c ) . The next theorem refers to the limiting

distribution of ˜ J ( c ) . 3 

Theorem 1. Under Assumptions 1 –3 , as n → ∞ , √ 

nb 1 / 2 
{

˜ J ( c ) − J ( c ) − B ( c ) b 
} d → N ( 0 , V ( c ) ) , (1) 

where 

B ( c ) = 

(
1 

δ1 / 2 

)[ 

c 

π

{ (
f ( 

1 ) 
+ ( c ) 

)2 

f + ( c ) 
−

(
f ( 

1 ) 
− ( c ) 

)2 

f −( c ) 

} 

−
{ (

1 − 4 

3 π

)(
f ( 

1 ) 
+ ( c ) − f ( 

1 ) 
− ( c ) 

)
+ 

c 

2 

(
f ( 

2 ) 
+ ( c ) − f ( 

2 ) 
− ( c ) 

)} 

] 

, 

V ( c ) = λ( δ) 

{
f + ( c ) + f −( c ) √ 

πc 1 / 2 

}
, 

and λ( δ) is defined in Proposition 2 . In addition, if nb 5/2 → 0 as n → ∞ , then (1) reduces to √ 

nb 1 / 2 
{

˜ J ( c ) − J ( c ) 
} d → N ( 0 , V ( c ) ) . 

As indicated in Proposition 2 , ˜ J ( c ) has a O ( b ) bias and a O 

(
n −1 b −1 / 2 

)
variance. Observe that for a given δ, the variance

coefficient decreases as c increases, i.e., as the discontinuity point moves away from the origin. We can also find that the

leading bias term B ( c ) b cancels out if f has a continuous second-order derivative at c . 

Theorem 1 also implies that given a smoothing parameter b = Bn −q for some constants B ∈ (0, ∞ ) and q ∈ (2/5, 2/3) (which

fulfills three rate requirements for b , namely, b → 0, nb 3/2 → ∞ and nb 5/2 → 0 as n → ∞ ) and 

˜ V ( c ) , a consistent estimate of

V ( c ), the test statistic is 

T ( c ) := 

√ 

nb 1 / 2 ˜ J ( c ) √ 

˜ V ( c ) 

d → N ( 0 , 1 ) under H 0 : J ( c ) = 0 . 

As with other kernel-smoothed tests, the proposed test is shown to be consistent. The next proposition documents this

aspect. 
3 It is possible to use different constants δ− and δ+ and/or different smoothing parameters b − and b + for ˜ f −( c ) and ˜ f + ( c ) , as long as b − and b + shrink 

to zero at the same rate. For convenience, however, we choose to employ the same δ and b . 
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Proposition 3. Under Assumptions 1 –3 , as n → ∞ , Pr { | T ( c ) | > B n } → 1 under H 1 : J ( c ) � = 0 for any non-stochastic sequence B n
satisfying B n = o 

(
n 1 / 2 b 1 / 4 

)
. 

It is straightforward to see that the power approaches one for fixed alternatives H 1 : J ( c ) = C 1 for some constant

| C 1 | ∈ (0, ∞ ). Consistency of the test for fixed alternatives will be confirmed numerically in Monte Carlo simulations.

Proposition 3 even refers to consistency of the test for local alternatives of the form H 1 : J n ( c ) = 0 + C 2 r n for some constant

| C 2 | ∈ (0, ∞ ) and a non-stochastic sequence r n satisfying r n + 1 / 
(√ 

nb 1 / 2 r n 
)

→ 0 as n → ∞ . 

Our remaining tasks are to present examples of ˜ V ( c ) and to propose a choice method of b . The latter is discussed in

the next section, whereas there are a few candidates of ˜ V ( c ) . Replacing f ± ( c ) in V ( c ) with their consistent estimates ˜ f ±( c )
immediately yields 

˜ V 1 ( c ) := λ( δ) 

{
˜ f + ( c ) + 

˜ f −( c ) √ 

πc 1 / 2 

}
. 

Alternatively, it is possible to compute the gamma kernel density estimator at c 

ˆ f ( c ) := 

1 

n 

n ∑ 

i =1 

K G ( x,b ) ( X i ) 
∣∣

x = c = 

1 

n 

n ∑ 

i =1 

K G ( c,b ) ( X i ) . 

It follows from the proof of Proposition 1 that 

γ ( c/b + 1 , c/b ) 

�( c/b + 1 ) 
= 

1 

2 

+ O 

(
b 1 / 2 

)
and 

�( c/b + 1 , c/b ) 

�( c/b + 1 ) 
= 

1 

2 

+ O 

(
b 1 / 2 

)
. 

Then, 

ˆ f ( c ) = 

γ ( c/b + 1 , c/b ) 

�( c/b + 1 ) 
ˆ f −( c ) + 

�( c/b + 1 , c/b ) 

�( c/b + 1 ) 
ˆ f + ( c ) 

p → 

f + ( c ) + f −( c ) 

2 

. 

As a consequence, we can obtain another estimator of V ( c ) as 

˜ V 2 ( c ) := λ( δ) 

{
2 ̂

 f ( c ) √ 

πc 1 / 2 

}
. 

2.4. Smoothing parameter selection 

How to choose the value of the smoothing parameter b is an important practical problem. McCrary (2008) proposes

the choice method which closely follows the literature on the BLL smoothing. Moreover, in the literature on RDD, Imbens

and Kalyanaraman (2012) and Porter and Yu (2015 , Section 5.4)) discuss methods of choosing the smoothing parameter.

All these proposals rely on either a cross-validation criterion or a plug-in approach, and thus they stand on the idea of

estimation-optimality. However, once our priority is given to testing for continuity of the pdf f at a given cutoff c , such

approaches cannot be justified in theory or practice, because estimation-optimal values may not be equally optimal for

testing purposes. Here, we have a preference for test-optimality and thus adopt the power-optimality criterion by Kulasekera

and Wang (1998) , whose idea is also applied in Hirukawa and Sakudo (2016) . 

Below Procedure 1 of Kulasekera and Wang (1998) is tailored to our context. The procedure is a version of sub-sampling.

Let n − and n + be the numbers of observations in sub-samples { X −
i 
} and { X + 

i 
} , respectively, where n ≡ n − + n + . Also assume

that 
{

X −
i 

}n −
i =1 

and 

{
X + 

i 

}n + 
i =1 

are ordered samples. Then, the entire sample { X i } n i =1 = 

{{
X −

i 

}n −
i =1 

, 
{

X + 
i 

}n + 
i =1 

}
can be split into M

sub-samples, where M = M n is a non-stochastic sequence that satisfies 1 /M + M/n → 0 as n → ∞ . Given such M , ( k −, k + ) :=
( � n −/M � , � n + /M � ) and k := k − + k + , the m th sub-sample is defined as 

{ X m,i } k i =1 := 

{ {
X 

−
m + ( i −1 ) M 

}k −

i =1 
, 
{

X 

+ 
m + ( i −1 ) M 

}k + 

i =1 

} 

, m = 1 , . . . , M. 

The test statistic using the m th sub-sample 
{

X m,i 

}k 

i =1 
becomes 

T m 

( c ) := 

√ 

kb 1 / 2 ˜ J m 

( c ) √ 

˜ V m 

( c ) 
, m = 1 , . . . , M, 

where ˜ J m 

( c ) and 

˜ V m 

( c ) (which is either ˜ V 1 ,m 

( c ) or ˜ V 2 ,m 

( c ) ) are the sub-sample analogues of ˜ J ( c ) and 

˜ V ( c ) , respectively. Also

denote the set of admissible values for b = b n as H n := 

[
B n −q , B n −q 

]
for some prespecified exponent q ∈ (2/5, 2/3) and two

constants 0 < B < B < ∞ . Moreover, let 

ˆ πM 

( b k ) := 

1 

M 

M ∑ 

m =1 

1 { T m 

( c ) > c m 

( α) } , 

where c m 

( α) is the critical value for the size α test using the m th sub-sample. We pick the power-maximized 

ˆ b k = 

ˆ B k −q =
arg max b ∈ H ˆ πM 

( b k ) , and the smoothing parameter value ˆ b n := 

ˆ B n −q follows. 

k k 
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We conclude this section by stating how to obtain 

ˆ b n in practice. Step 1 reflects that M should be divergent but smaller

than both n − and n + in finite samples. Step 3 follows from the implementation methods in Kulasekera and Wang (1998) .

Finally, Step 4 corresponds to the case for more than one maximizer of ˆ πM 

( b k ) . 

Step 1 : Choose some p ∈ (0, 1) and specify M = 

⌊
min 

{
n 

p 
−, n 

p 
+ 
}⌋

. 

Step 2 : Make M sub-samples of sizes ( k −, k + ) = ( � n −/M � , � n + /M � ) and put k = k − + k + . 
Step 3 : Pick two constants 0 < H < H < 1 and define H k = 

[
H , H 

]
. 

Step 4 : Set c m 

( α) ≡ z α/2 (i.e., Pr 
{

N ( 0 , 1 ) > z α/ 2 

}
= α/ 2 ) and find 

ˆ b k = inf 
{

arg max b k ∈ H k ˆ πM 

( b k ) 
}

by a grid search. 

Step 5 : Recover ˆ B by ˆ B = ̂

 b k k 
q for some q ∈ (2/5, 2/3) and obtain 

ˆ b n = 

ˆ B n −q . 

3. Estimation of the entire density in the presence of a discontinuity point 

3.1. Density estimation by truncated kernels 

We are typically interested in how the shape of the pdf looks like, as well as whether it has a discontinuity point. Imbens

and Lemieux (2008) strongly recommend graphical analyses in empirical studies on RDD, including inspections of densities

of running variables. If the test in the previous section fails to reject the null of continuity of the pdf f at the cutoff c , the

entire density may be re-estimated by the gamma kernel, for example. How should we estimate the entire density if the

test rejects the null? 

The answer to this question is simple. It suffices to compute ˆ f −( x ) or ˆ f + ( x ) as an estimate of f ( x ), depending on the

position of the design point x . To put it in another way, ˆ f −( x ) ( ̂  f + ( x ) ) can be employed whenever x < c ( x > c ), provided

that c is the only point of discontinuity in f , as documented in Theorem 2 below. Because the theorem refers to the density

estimation at design points other than c , we impose a global smoothness condition on f as a new assumption and then state

the theorem. 

Assumption 4. The second-order derivative of the pdf f is Hölder-continuous of order ς ∈ (0, 1] on R + \ { c } . 
Theorem 2. Suppose that Assumptions 1 , 3 and 4 hold. Then, for x > c , as n → ∞ , 

Bias 

{ 

ˆ f + ( x ) 
} 

= 

{ 

f ( 1 ) ( x ) + 

x 

2 

f ( 2 ) ( x ) 

} 

b + o ( b ) , and V ar 

{ 

ˆ f + ( x ) 
} 

= 

1 

nb 1 / 2 
f ( x ) 

2 

√ 

πx 1 / 2 
+ o 

(
n 

−1 b −1 / 2 
)
. 

On the other hand, for x < c , as n → ∞ , 

Bias 

{ 

ˆ f −( x ) 

} 

= 

{ 

f ( 1 ) ( x ) + 

x 

2 

f ( 2 ) 
} 

b + o ( b ) , and V ar 

{ 

ˆ f −( x ) 

} 

= 

{ 

1 
nb 1 / 2 

f ( x ) 
2 
√ 

πx 1 / 2 
+ o 

(
n 

−1 b −1 / 2 
)

i f x/b → ∞ 

1 
nb 

�( 2 κ+1 ) 
2 2 κ+1 �2 ( κ+1 ) 

f ( x ) + o 
(
n 

−1 b −1 
)

i f x/b → κ ∈ ( 0 , ∞ ) 
.

Theorem 2 indicates no adversity when f ( x ) for x � = c is estimated by ˆ f ±( x ) ; although only the bias-variance trade-off is

provided, asymptotic normality of the estimators can be established similarly to this theorem. Observe that ˆ f ±( x ) admit the

same bias and variance expansions as the gamma kernel density estimator ˆ f ( x ) does. A rationale is that as the design point

x moves away from the truncation point c , data points tend to lie on both sides of x and each truncated kernel is likely to

behave like the gamma kernel. We can also see that the variance coefficient decreases as x increases. The shrinking variance

coefficient as the design point x moves away from the origin reflects that more data points can be pooled to smooth in

areas with fewer observations. This property is particularly advantageous to estimating the distributions that have a long

tail with sparse data, such as those of the economic variables mentioned in Section 1 . 

3.2. Convergence properties of ˆ f −( x ) when the density is unbounded at the origin 

Clusterings of observations near the boundary are frequently observed in the distributions with positive supports. In the

study of RDD, Figure 1 of Bertrand et al. (2015) suggests that the distribution of wives’ relative income within households

has a clustering of observations near the origin, as well as a sharp drop at the point of 1/2 (i.e., the point at which wives’

income shares exceed their husbands’). Similarly, in Figure 5 of McCrary (2008) , the distribution of proportion of votes for

proposed bills in the US House of Representatives appears to be unbounded at the boundary of 100%, as well as a sharp

discontinuity at the point of 50%. 4 The following two theorems document weak consistency and the relative convergence of
ˆ f −( x ) when f ( x ) is unbounded at x = 0 . 

Theorem 3. If f ( x ) is unbounded at x = 0 , Assumptions 1 holds and b + 

(
nb 2 

)−1 → 0 as n → ∞ , then ˆ f −( 0 ) 
p → ∞ . 
4 The arguments in this section are still valid for this case, if we transform the original data X to X ′ := 1 − X and apply them to the transformed data X ′ . 
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Theorem 4. Suppose that f ( x ) is unbounded at x = 0 and continuously differentiable in the neighborhood of the origin. In addi-

tion, if Assumption 1 holds and b + 

{
nb 2 f ( x ) 

}−1 → 0 as n → ∞ and x → 0, then ∣∣∣∣ ˆ f −( x ) − f ( x ) 

f ( x ) 

∣∣∣∣ p → 0 

as x → 0 . 

It has been demonstrated by Bouezmarni and Scaillet (2005) and Hirukawa and Sakudo (2015) that the weak consistency

and relative convergence for densities unbounded at the origin are peculiar to the density estimators smoothed by the

gamma and generalized gamma kernels. The theorems ensure that ˆ f −( x ) is also a proper estimate for unbounded densities.

We can deduce from Theorems 2–4 that all in all, appealing properties of the gamma kernel density estimator are inherited

to ˆ f ±( x ) . 

4. Finite-sample performance 

It is widely recognized that asymptotic results on kernel-smoothed tests are not well transmitted to their finite-sample

distributions, which reflects that omitted terms in the first-order asymptotics on the test statistics are highly sensitive

to their smoothing parameter values in finite samples. On the other hand, there is growing literature that reports nice

finite-sample properties of the estimators and test statistics smoothed by asymmetric kernels. Examples include Kristensen

(2010) and Gospodinov and Hirukawa (2012) for estimation and Fernandes and Grammig (2005) , Fernandes et al. (2015) , and

Hirukawa and Sakudo (2016) for testing. To see which perspective dominates, this section investigates finite-sample perfor-

mance of the estimator of the jump-size magnitude and the test statistic for discontinuity of the density via Monte Carlo

simulations. 

4.1. Jump-size estimation 

First, we focus on the estimator of the jump-size magnitude J ( c ). As true densities, those of the following two asymmetric

distributions are considered: 

1. Gamma: f ( x ) = x α−1 exp ( −x/β) 1 ( x ≥ 0 ) / { βα�( α) } , ( α, β) = ( 2 . 75 , 1 ) . 

2. Weibull: f ( x ) = ( α/β) ( x/β) 
α−1 

exp 

{
−( x/β) 

α
}

1 ( x ≥ 0 ) , ( α, β) = ( 1 . 75 , 3 . 5 ) . 

Shapes of these densities can be found in Fig. 1 . For each distribution we choose two suspected discontinuity points c ,

namely, 30% quantile (‘30%’) and median (‘ Med’); see Table 1 for exact values of the points. Because the gamma and Weibull

densities have modes at 1.7500 and 2.1567, respectively, the two points for each density are located on the left- and right-
Fig. 1. Shapes of true densities for Monte Carlo simulations. 
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Table 1 

Biases, standard deviations and RMSEs of estimators of J ( c ). 

Distribution c n Estimator 

˜ J ( c ) with δ

ˆ J M ( c ) 0 .49 0 .64 0 .81 

Gamma 1.7057 500 Bias −0 .0381 0 .0019 0 .0011 0 .0 0 06 

(30%) StdDev 0 .0461 0 .0786 0 .0812 0 .0837 

RMSE 0 .0598 0 .0786 0 .0812 0 .0837 

10 0 0 Bias −0 .0335 0 .0019 0 .0010 0 .0 0 06 

StdDev 0 .0331 0 .0588 0 .0607 0 .0626 

RMSE 0 .0471 0 .0588 0 .0607 0 .0626 

20 0 0 Bias −0 .0283 0 .0 0 06 0 .0 0 02 −0 .0 0 0 0 

StdDev 0 .0250 0 .0430 0 .0445 0 .0458 

RMSE 0 .0377 0 .0430 0 .0445 0 .0458 

2.4248 500 Bias −0 .0407 −0 .0011 −0 .0011 −0 .0011 

(Med) StdDev 0 .0480 0 .0626 0 .0648 0 .0668 

RMSE 0 .0629 0 .0626 0 .0648 0 .0668 

10 0 0 Bias −0 .0323 −0 .0012 −0 .0012 −0 .0013 

StdDev 0 .0353 0 .0463 0 .0479 0 .0494 

RMSE 0 .0479 0 .0463 0 .0479 0 .0494 

20 0 0 Bias −0 .0240 −0 .0 0 04 −0 .0 0 04 −0 .0 0 04 

StdDev 0 .0271 0 .0351 0 .0363 0 .0374 

RMSE 0 .0362 0 .0351 0 .0363 0 .0374 

Weibull 1.9419 500 Bias −0 .0235 0 .0024 0 .0012 0 .0 0 05 

(30%) StdDev 0 .0416 0 .0665 0 .0684 0 .0704 

RMSE 0 .0478 0 .0665 0 .0684 0 .0704 

10 0 0 Bias −0 .0187 0 .0035 0 .0013 0 .0 0 05 

StdDev 0 .0302 0 .0500 0 .0509 0 .0523 

RMSE 0 .0355 0 .0502 0 .0509 0 .0523 

20 0 0 Bias −0 .0144 0 .0017 0 .0 0 03 0 .0 0 01 

StdDev 0 .0225 0 .0367 0 .0372 0 .0383 

RMSE 0 .0267 0 .0367 0 .0372 0 .0383 

2.8386 500 Bias −0 .0246 0 .0 0 06 0 .0 0 04 0 .0 0 02 

(Med) StdDev 0 .0405 0 .0534 0 .0552 0 .0569 

RMSE 0 .0474 0 .0534 0 .0552 0 .0569 

10 0 0 Bias −0 .0195 0 .0 0 02 −0 .0 0 01 −0 .0 0 03 

StdDev 0 .0290 0 .0394 0 .0408 0 .0421 

RMSE 0 .0350 0 .0394 0 .0408 0 .0421 

20 0 0 Bias −0 .0149 0 .0 0 07 0 .0 0 05 0 .0 0 04 

StdDev 0 .0218 0 .0299 0 .0309 0 .0319 

RMSE 0 .0264 0 .0299 0 .0309 0 .0319 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hand sides of the mode. The sample size is n ∈ {50 0, 10 0 0, 20 0 0}, and 50 0 0 replications are drawn for each combination of

the sample size n and the distribution. 

The simulation study compares finite-sample performance of our jump-size estimator ˜ J ( c ) with McCrary’s (2008) BLL

estimator ˆ J M 

( c ) . The latter employs the triangular kernel K ( u ) = ( 1 − | u | ) 1 ( | u | ≤ 1 ) , and the bandwidth is chosen by the

method described on p.705 of McCrary (2008) . For the former, the smoothing parameter b is selected by the power-

optimality criterion for two test statistics T i ( c ) := 

√ 

nb 1 / 2 ˜ J ( c ) / 
√ 

˜ V i ( c ) for i = 1 , 2 , where the definition of ˜ V i ( c ) is given in

Section 2.3 . Implementation details are as follows: (i) all critical values in ˆ πM 

( b k ) are set equal to z 0 . 025 = 1 . 96 ; (ii) ( p , q )

are predetermined by ( p, q ) = ( 1 / 2 , 4 / 9 ) ; (iii) the interval for b k is H k = [ 0 . 05 , 0 . 50 ] ; and (iv) three different values of the

mixing exponent δ are considered, namely, δ ∈ {0.49, 0.64, 0.81}, so that the exponents on 

ˆ f ±,b ( c ) and 

ˆ f ±,b/δ ( c ) to generate

˜ f ±( c ) are ( 10 / 3 , −7 / 3 ) , ( 5 , −4 ) and ( 10 , −9 ) , respectively. 

Table 1 presents as performance measures the bias (‘ Bias’), standard deviation (‘ StdDev’) and root-mean squared error 

(‘ RMSE’) of each estimator over 50 0 0 Monte Carlo samples. Since the densities are continuous at c actually, the performance

measures are calculated on the basis of J ( c ) = 0 . Moreover, only the performance measures with the smoothing parameter

b selected for T 2 ( c ) are reported, because there is no substantial difference between values of b chosen for T 1 ( c ) and T 2 ( c ). 

It can be immediately found that the RMSE shrinks with the sample size, which indicates consistency of each estimator.

Although the Bias of ˆ J M 

( c ) is larger than that of ˜ J ( c ) , the StdDev of the former is smaller, and as a consequence it tends

to yield a smaller RMSE. We can also see that ˜ J ( c ) has extremely small biases for all cases, which confirms that the MBC

technique leads to huge bias reduction. The bias-variance trade-off in terms of δ within 

˜ J ( c ) (as Proposition 2 suggests) can

be also observed. 
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Table 2 

Finite-sample size properties of test statistics for discontinuity. 

(%) 

Distribution c n Nominal T 1 ( c ) with δ T 2 ( c ) with δ

0 .49 0 .64 0 .81 0 .49 0 .64 0 .81 

Gamma 1.7057 500 5% 3 .2 3 .1 3 .1 4 .4 4 .0 3 .7 

(30%) 10% 7 .5 7 .5 7 .8 8 .8 8 .8 8 .6 

10 0 0 5% 3 .9 3 .9 3 .9 6 .1 4 .6 4 .4 

10% 8 .4 8 .2 8 .2 10 .7 9 .2 8 .9 

20 0 0 5% 3 .5 3 .6 3 .7 4 .2 3 .9 3 .9 

10% 8 .1 8 .2 8 .4 8 .8 8 .5 8 .7 

2.4248 500 5% 3 .3 3 .6 3 .6 3 .8 3 .9 4 .0 

(Med) 10% 7 .9 7 .8 7 .7 8 .7 8 .6 8 .5 

10 0 0 5% 3 .7 3 .8 3 .9 4 .1 4 .2 4 .3 

10% 8 .0 8 .2 8 .0 8 .6 8 .6 8 .6 

20 0 0 5% 4 .7 4 .7 4 .8 4 .9 5 .0 5 .1 

10% 8 .8 8 .9 9 .0 9 .4 9 .4 9 .5 

Weibull 1.9419 500 5% 3 .2 3 .2 3 .3 6 .2 4 .9 4 .1 

(30%) 10% 7 .7 7 .8 7 .9 10 .7 9 .4 9 .0 

10 0 0 5% 4 .0 4 .2 4 .2 10 .2 6 .4 5 .2 

10% 8 .2 8 .3 8 .4 14 .7 10 .7 9 .4 

20 0 0 5% 3 .8 3 .7 3 .8 7 .7 4 .4 4 .0 

10% 8 .3 8 .4 8 .3 12 .4 9 .0 8 .5 

2.8386 500 5% 3 .6 3 .6 3 .5 3 .9 4 .0 3 .9 

(Med) 10% 7 .8 7 .7 7 .7 8 .5 8 .5 8 .3 

10 0 0 5% 3 .7 3 .8 3 .8 4 .0 4 .2 4 .2 

10% 8 .1 8 .1 8 .2 8 .7 8 .4 8 .6 

20 0 0 5% 4 .7 4 .7 4 .8 4 .9 5 .0 5 .0 

10% 8 .9 9 .0 9 .2 9 .4 9 .4 9 .6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Testing for discontinuity 

Second, size and power properties of the test statistic T ( c ) are investigated. In what follows, T 1 ( c ) and T 2 ( c ) are compared

with McCrary’s (2008) test statistic based on the difference between logarithms of two density estimates, denoted as T M 

( c ).

Implementation details of each test statistic are the same as described above. The Monte Carlo design in this section is

inspired by Otsu et al. (2013) . Let X be drawn with probability γ from the truncated gamma or Weibull distribution with

support on [0, c ) and with probability 1 − γ from the one with support on ( c , ∞ ). Unless γ = Pr ( X ≤ c ) , the gamma or

Weibull pdf is discontinuous at c . Also denote the measure of discontinuity as d := Pr ( X ≤ c ) − γ , where d ∈ {0.00, 0.02, 0.04,

0.06, 0.08, 0.10} and d > 0 ( ⇔ J ( c ) > 0) suggests a jump of the pdf at c . For each statistic, the empirical rejection frequencies

of the null H 0 : J ( c ) = 0 for d = 0 and d > 0 indicate its size and power properties, respectively. 

Table 2 presents size properties of T 1 ( c ) and T 2 ( c ). Each test statistic exhibits mild under-rejection of the null except a

few cases, and the rejection frequencies of T 2 ( c ) are closer to the nominal ones. The rejection frequencies tend to decrease

with δ, and substantial over-rejection of the null is not observed for δ = 0 . 81 . Considering that δ = 0 . 81 also yields nearly

unbiased estimates of J ( c ), we set δ equal to this value for power comparisons. 

Table 3 reports power properties of T 1 ( c ) and T 2 ( c ), in comparison with T M 

( c ). Panel (A) refers to the results from the

gamma distribution. It can be observed that the rejection frequency of each test statistic for a given d > 0 approaches to

one with the sample size n , which indicates consistency of each test. Both T 1 ( c ) and T 2 ( c ) exhibit good power properties

without inflating their sizes, and T 2 ( c ) appears to be more powerful than T 1 ( c ). In contrast, T M 

( c ) exhibits considerable size

distortions, and nonetheless its power properties look inferior to those of T 1 ( c ) and T 2 ( c ). It may be argued that the gamma

distribution is too advantageous to T 1 ( c ) and T 2 ( c ) in that both rely on the gamma kernel. Hence, the simulation study based

on the Weibull distribution could be fair, and the results are reported in Panel (B). Indeed, the size properties of T M 

( c ) are

dramatically improved. However, it is still outperformed in terms of power properties by T 1 ( c ) and T 2 ( c ). Again in this case,

it appears that T 2 ( c ) has better power properties than T 1 ( c ). A possible rationale is that because ˜ V 2 ( c ) tends to be smaller

than 

˜ V 1 ( c ) , as suggested in Proposition 2, T 2 ( c ) is likely to have a large value (i.e., tends to reject the null more often) than

T 1 ( c ) under the alternative. 

In sum, Monte Carlo results confirm the following two respects. First, the MBC technique achieves huge bias reduction,

and the jump-size estimator ˜ J ( c ) yields nearly unbiased estimates. Second, the test statistics T 1 ( c ) and T 2 ( c ) exhibit nice

power properties without sacrificing their size properties, whereas the latter appears to be more powerful than the former.

It is also worth emphasizing that the superior performance is based simply on first-order asymptotic results. Therefore,

assistance of size-adjusting devices such as bootstrapping appears to be unnecessary, unlike most of the smoothed tests

employing conventional symmetric kernels. 
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Table 3 

Finite-sample power properties of test statistics for discontinuity. 

(A) Gamma distribution (%) 

c n Test Nominal d 

0 .00 0 .02 0 .04 0 .06 0 .08 0.10 

1.7057 500 T M ( c ) 5% 4 .6 1 .4 2 .2 9 .2 28 .9 55 .1 

(30%) 10% 10 .1 4 .1 6 .1 17 .9 43 .5 68 .7 

T 1 ( c ) 5% 3 .1 4 .5 10 .7 17 .9 85 .9 98 .1 

10% 7 .8 9 .4 17 .0 26 .8 88 .5 99 .2 

T 2 ( c ) 5% 3 .7 14 .2 44 .7 60 .7 93 .8 98 .8 

10% 8 .6 19 .0 53 .6 63 .9 97 .2 99 .7 

10 0 0 T M ( c ) 5% 6 .9 1 .5 4 .4 22 .0 58 .7 87 .5 

10% 13 .6 4 .1 9 .5 35 .3 72 .9 93 .1 

T 1 ( c ) 5% 3 .9 6 .6 12 .8 37 .1 98 .7 100 .0 

10% 8 .2 12 .4 21 .4 46 .0 99 .0 100 .0 

T 2 ( c ) 5% 4 .4 13 .9 50 .3 90 .8 99 .5 100 .0 

10% 8 .9 19 .2 54 .9 92 .7 99 .9 100 .0 

20 0 0 T M ( c ) 5% 9 .9 1 .6 11 .7 52 .1 90 .1 99 .5 

10% 19 .2 4 .5 21 .1 66 .6 95 .6 99 .8 

T 1 ( c ) 5% 3 .7 8 .4 36 .8 98 .8 100 .0 100 .0 

10% 8 .4 15 .2 44 .1 99 .2 100 .0 100 .0 

T 2 ( c ) 5% 3 .9 25 .1 90 .2 99 .5 99 .9 100 .0 

10% 8 .7 30 .4 94 .7 99 .9 99 .9 100 .0 

2.4248 500 T M ( c ) 5% 9 .3 3 .5 2 .6 4 .4 9 .1 18 .7 

(Med) 10% 17 .4 8 .8 6 .0 8 .7 16 .5 29 .7 

T 1 ( c ) 5% 3 .6 4 .4 7 .1 12 .3 20 .6 30 .1 

10% 7 .7 9 .1 13 .4 21 .1 31 .0 42 .5 

T 2 ( c ) 5% 4 .0 4 .8 7 .7 13 .6 21 .9 32 .7 

10% 8 .5 9 .8 14 .5 22 .4 32 .3 44 .2 

10 0 0 T M ( c ) 5% 11 .5 4 .0 3 .5 9 .2 23 .1 46 .4 

10% 20 .1 8 .9 7 .5 16 .0 36 .1 61 .7 

T 1 ( c ) 5% 3 .9 5 .0 10 .4 20 .7 35 .5 53 .2 

10% 8 .0 10 .4 18 .3 32 .1 49 .0 65 .8 

T 2 ( c ) 5% 4 .3 5 .6 11 .3 22 .2 36 .8 55 .0 

10% 8 .6 11 .1 19 .2 33 .1 50 .3 67 .0 

20 0 0 T M ( c ) 5% 12 .0 3 .6 7 .1 23 .9 55 .6 83 .9 

10% 20 .7 8 .0 13 .8 36 .0 68 .3 91 .6 

T 1 ( c ) 5% 4 .8 7 .7 18 .1 37 .8 60 .7 80 .2 

10% 9 .0 13 .9 28 .3 50 .2 72 .6 87 .9 

T 2 ( c ) 5% 5 .1 8 .2 18 .9 38 .8 61 .7 85 .5 

10% 9 .5 14 .6 29 .2 51 .4 73 .5 90 .7 

( continued on next page ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Empirical illustration 

This section applies our estimation and testing procedures of discontinuity in densities to real data. We employ the data

sets on fourth and fifth graders of Israeli elementary schools used by Angrist and Lavy (1999) . The data sets are made

public on the Angrist Data Archive web page, and they are often utilized in empirical application parts of the closely related

literature (e.g., Otsu et al., 2013; Feir et al., 2016 ). 

Following Maimonides’ rule, Israeli public schools make each class size no greater than 40. As a result of strategic be-

havior on schools’ and/or parents’ sides, the density of school enrollment counts for each grade may be discontinuous at

multiples of 40. Then, setting the cutoff c = 40 , 80 , 120 , 160 for enrollment densities of fourth and fifth graders, we estimate

the jump size and conduct the test for the null of continuity at each cutoff. Specifically, the results from our truncated

gamma-kernel approach are compared with those from McCrary’s (2008) BLL method. T 2 ( c ) with δ = 0 . 81 is chosen as our

test statistic because of its better finite-sample properties. The smoothing parameter for our approach and the bandwidth

for the BLL method are chosen in the same manners as in Section 4 . 

Table 4 presents estimation and testing results on discontinuity in enrollment densities, where ˆ f M − ( c ) and 

ˆ f M + ( c ) are

BLL estimates of left and right limits of the density at the cutoff c , respectively. The table shows remarkable differences

between estimation results from McCrary’s (2008) and our procedures. The former finds upward jump estimates only at

c = 40 for each grade. On the other hand, the latter yields upward jump estimates at c = 40 , 80 and downward jump (or

drop) estimates at c = 120 , 160 for each grade. Testing results also differ. While McCrary’s (2008) test rejects the null of

continuity at the cutoff only for three cases (i.e., c = 40 , 120 for fourth graders and c = 40 for fifth graders), rejections of

the null by our test include additional two cases (i.e., c = 160 for fourth graders and c = 120 for fifth graders) as well as the

three cases. This appears to reflect better finite-sample power properties of T ( c ) reported in Section 4 . 
2 
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Table 3 ( continued ) 

(B) Weibull distribution (%) 

c n Test Nominal d 

0 .00 0 .02 0 .04 0 .06 0 .08 0.10 

1.9419 500 T M ( c ) 5% 3 .4 1 .9 4 .0 11 .8 28 .5 48 .8 

(30%) 10% 7 .6 5 .0 9 .0 21 .2 41 .2 61 .8 

T 1 ( c ) 5% 3 .3 4 .9 14 .4 19 .1 85 .0 97 .1 

10% 7 .9 9 .5 19 .8 26 .9 88 .8 98 .6 

T 2 ( c ) 5% 4 .1 16 .7 42 .4 57 .5 90 .6 97 .8 

10% 9 .0 21 .8 53 .0 61 .0 95 .5 99 .2 

10 0 0 T M ( c ) 5% 4 .2 2 .2 7 .5 26 .3 55 .0 79 .3 

10% 8 .8 5 .2 15 .4 39 .3 68 .2 87 .4 

T 1 ( c ) 5% 4 .2 6 .5 12 .9 42 .1 98 .4 99 .9 

10% 8 .4 12 .4 21 .2 49 .1 99 .1 100 .0 

T 2 ( c ) 5% 5 .2 17 .5 51 .0 88 .5 98 .9 99 .9 

10% 9 .4 23 .2 56 .5 91 .1 99 .7 100 .0 

20 0 0 T M ( c ) 5% 4 .5 3 .1 18 .2 53 .7 84 .9 97 .5 

10% 9 .5 7 .1 30 .1 66 .6 91 .5 99 .0 

T 1 ( c ) 5% 3 .8 8 .3 53 .7 98 .8 100 .0 100 .0 

10% 8 .3 14 .8 58 .0 99 .5 100 .0 100 .0 

T 2 ( c ) 5% 4 .0 33 .2 87 .4 98 .8 99 .9 100 .0 

10% 8 .5 39 .1 93 .0 99 .6 100 .0 100 .0 

2.8386 500 T M ( c ) 5% 4 .6 2 .5 3 .0 6 .0 12 .6 24 .4 

(Med) 10% 9 .4 6 .1 6 .6 11 .8 22 .2 36 .8 

T 1 ( c ) 5% 3 .5 4 .5 7 .2 12 .3 19 .9 29 .1 

10% 7 .7 9 .2 13 .7 21 .2 30 .3 41 .1 

T 2 ( c ) 5% 3 .9 4 .8 7 .6 14 .6 22 .1 43 .6 

10% 8 .3 9 .7 14 .4 22 .9 32 .2 51 .9 

10 0 0 T M ( c ) 5% 5 .7 2 .5 4 .8 12 .7 31 .0 55 .2 

10% 11 .2 6 .2 9 .1 22 .5 45 .0 68 .7 

T 1 ( c ) 5% 3 .8 5 .1 10 .2 20 .2 34 .3 50 .9 

10% 8 .2 10 .7 18 .1 31 .5 47 .3 63 .8 

T 2 ( c ) 5% 4 .2 5 .7 11 .3 21 .3 36 .7 61 .7 

10% 8 .6 11 .3 19 .0 32 .5 48 .9 70 .6 

20 0 0 T M ( c ) 5% 6 .6 3 .1 10 .0 31 .8 63 .9 87 .6 

10% 12 .7 6 .7 17 .7 46 .0 76 .1 93 .3 

T 1 ( c ) 5% 4 .8 7 .8 18 .0 36 .2 58 .6 79 .8 

10% 9 .2 14 .1 28 .1 49 .0 70 .8 87 .1 

T 2 ( c ) 5% 5 .0 8 .1 18 .6 37 .8 64 .7 99 .2 

10% 9 .6 14 .6 28 .7 49 .9 74 .6 99 .5 

Note. The value of δ for each of T 1 ( c ) and T 2 ( c ) is set equal to 0.81. 

Table 4 

Estimation and testing for the discontinuity of densities of school enrollments 

n c Binned local linear method Truncated kernel method 

ˆ f M − ( c ) ˆ f M + ( c ) ˆ J M ( c ) T M ( c ) ˜ f −( c ) ˜ f + ( c ) ˜ J ( c ) T 2 ( c ) 

(a) Fourth graders: 

2059 40 0 .0046 0 .0096 0 .0050 5 .61 0 .0034 0 .0098 0 .0064 5 .76 

80 0 .0103 0 .0097 −0 .0 0 06 −0 .62 0 .0086 0 .0090 0 .0 0 03 0 .24 

120 0 .0061 0 .0039 −0 .0022 −3 .35 0 .0063 0 .0044 −0 .0020 −3 .55 

160 0 .0011 0 .0 0 09 -0 .0 0 03 −0 .84 0 .0013 0 .0 0 05 −0 .0 0 08 −2 .88 

(b) Fifth graders: 

2029 40 0 .0055 0 .0114 0 .0059 6 .29 0 .0042 0 .0116 0 .0074 6 .28 

80 0 .0107 0 .0098 −0 .0 0 09 −0 .98 0 .0087 0 .0103 0 .0017 1 .25 

120 0 .0054 0 .0045 −0 .0 0 09 −1 .20 0 .0057 0 .0043 −0 .0014 −2 .84 

160 0 .0014 0 .0011 −0 .0 0 03 −0 .80 0 .0014 0 .0010 −0 .0 0 04 −1 .28 

Note: The value of δ for T 2 ( c ) is set equal to 0.81. Values of test statistics in bold faces indicate significance at the 5% level. 

 

 

 

 

 

For convenience, density estimates with (possible) discontinuity points at c = 40 , 120 are plotted in Fig. 2 , where smooth-

ing parameter values chosen for the corresponding discontinuity tests are applied for the entire density estimates. The figure

illustrates that the truncated gamma density estimators tend to capture peaks and troughs more clearly. 

Furthermore, it follows from Table 4 that enrollment densities for fourth and fifth graders are suspected to be discontinu-

ous at c = 40 , 120 , 160 and c = 40 , 120 , respectively. Then, assuming that the densities are in fact discontinuous at all these

cutoffs, we draw Fig. 3 by extending the truncated kernel method to the cases of multiple cutoffs. Smoothing parameter
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Fig. 2. Density estimates of school enrollments. 

Note: In each panel, solid and dashed lines are density estimates via the truncated gamma kernels and the binned local linear method, respectively. The 

‘ × ’ symbols indicate binned data points. 

Fig. 3. Density estimates of school enrollments via the truncated kernel method in the presence of multiple cutoffs. 

Note: Solid and dashed lines are density estimates for fourth and fifth graders, respectively. 
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values are averages of those chosen for the corresponding discontinuity tests at the cutoffs. The figure should be interpreted

with caution; it is prepared only for illustrative purposes and thus with no theoretical justifications. 

6. Conclusion 

This paper has developed estimation and testing procedures on discontinuity in densities with positive support. Our pro-

posal is built on smoothing by the gamma kernel. To preserve its appealing properties, we split the gamma kernel into two

parts at a prespecified cutoff and construct two truncated kernels after re-normalization. The jump-size magnitude of the

density at the cutoff can be estimated nonparametrically by two truncated kernels and the MBC technique by Terrell and

Scott (1980) . The estimator is easy to implement, and its convergence properties are explored by means of various approx-

imation techniques on incomplete gamma functions. Given the jump-size estimator, two versions of test statistics for the

null of continuity at the cutoff are also proposed, and a smoothing parameter selection method under the power-optimality

criterion is tailored to our testing procedure. Furthermore, estimation theory of the entire density in the presence of a dis-

continuity point is provided. It is demonstrated that density estimators smoothed by the truncated gamma kernels admit

the same bias and variance approximations as the gamma kernel density estimator does. Monte Carlo simulations indi-

cate that the jump-size estimator is nearly unbiased when there is no jump in the true density, and that the test statistics

with power-optimal smoothing parameter values plugged in enjoy more power than McCrary’s (2008) BLL-based test does,

without sacrificing their size properties. 

We conclude this paper by noting a few research extensions. First, the assumption of a single (given) point of disconti-

nuity may be relaxed. It is worth investigating the cases for more than one (prespecified) point of discontinuity or those for

even unknown (finite) number of discontinuity points. For the latter, locations of discontinuity points are estimated first and

then the corresponding upper and lower limits of the density can be evaluated at each estimated location. Second, while

our focus has been exclusively on univariate densities, the discontinuity analysis may be extended to multivariate densities.
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