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A Technical proofs

A.1 List of useful formulae

The formulae below are frequently used in the technical proofs.

Stirling’s formula.

1
T'(a+1) = V2ra*?exp (—a) {1 + o T @) (a2)} as a — 0o.
a

Recursive formulae on incomplete gamma functions.

v(a+1,2) = ay(a,z)—z%exp(—z) for a,z > 0.

I'(a+1,z) = al'(a,z)+ 2%exp(—2) for a,z > 0.

Identity among gamma and incomplete gamma functions.

v(a,z)+T(a,z) =T (a) for a,z > 0.

(A1)

(A4)



A.2 Proof of Proposition 1

To save space, we only provide approximations to the bias and variance of f, (c).
Using (A3), (A4) and (A5) gives the results for f, (c) in the same manner. The

proof utilizes the following asymptotic expansion:

gl (CL,CL) 1 1 1 1 s
Dt R . \
I'(a) 2 + x| 3412 + 510052 +0 (a ) as a — o0 (A5)

This can be obtained by either letting = | 0 in equation (1) of Pagurova (1965) or
putting n = 0 in equation (1.4) of Temme (1979). Then, putting z = a in (A2) and

then substituting (A1) and (A5), we have

v(a+1,a) _ 0 (a,a) a®exp(—a)
I'(a+1) I' (a) I'(a+1)
L (e B o).

Bias. By the change of variable v := u/b,

B{f-©} - /0 bc/bib eé%fl/i/b u) du _/ S {U ing a)) } o,

where a := ¢/b and the object inside brackets of the right-hand side is a pdf on the

interval [0,a]. Then, a second-order Taylor expansion of f (bv) around bv = ¢ (from

below) yields

B{j @) - f_<c>+bf£“<c>{M—a}

v(a+1,a)

v L2 v (a+3,a) v(a+2,a)
+§f_ <c){7(a+1,a) _2a7(a+1,a)+ }+Rf () (A7)
where
Ry [ {20120 e-o { S e

is the remainder term with £ = 6 (bv) + (1 — ) ¢ for some 6 € (0, 1).



We approximate the leading bias terms first. Using (A2) recursively, we have

y(@a+2,a) = (a+1)y(a+1,a) —a*exp(—a), and

y(@+3,a) = (a+2)(a+1)y(a+1,a)—2(a+1)a" " exp(—a).

It follows from (A1) and (A6) that

’Y(a—|—2,a)_a _ 1_a““exp( ){7(@4—1 a)}1
v(a+1,a) I'(a+1) I'(a+1)
2 /2 4 4 ~1/2)
= —\/; / (—3) / ), and
@t yat2e) o e en(-a) fy(at1a)
v(a+1,a) 27(a+1,a)+ . ['(a+1) { (a+1)}
= a+0(a1/2).

Substituting these into the second and third terms on the right-hand side of (A7) and

recognizing that a = ¢/b, we obtain

1) v (a+2,a) b2 ) ~v(a+3,a) v (a+2,a) 9
oI (C){v(a—i-l,a)_a}—i_?f_ (C){v(a—f-l,a)_2a7(a+1,a)+a}

_ _\/gcw FY ()2 + {(1 - %) () + gf?) (c)} b+o(b).

The remaining task is to demonstrate that B; ., =o (b). It follows from Holder-

continuity of f® (-) and v < ¢/b = a that

FPE) — fP ()| < LI~ = Lo (a—v)°.

Using Holder’s inequality and the fact that v®exp (—v) /v (a + 1,a) is a density on

0, a], we have

L .. [ “exp (—
‘Rff(c) < —b2+</ (a —v)*** vt exp (~v) dv
2 0 v(a+1,a)
a a (2+5)/3
o L / (0 op { Ve 1P
2 0 v(a+1,a)



where

/(a—v)3{v eXp(_U)}dv = (13—3a27(a+2’a)+3a7(a+3’a) y(a+4,a)
0

v(a+1,a) v(a+1,a) fy(a—l—l,a)_fy(a—l—l,a)

— 0@
by using (A1) and (A6) repeatedly. Finally, substituting a = ¢/b yields

< O (bZ-l-C) O {b—(1+§/2)} -0 (b1+§/2) _ O(b) :

‘ Rp_

which establishes the bias approximation.

Variance. In
Var {f ()} = %E{ Glebie) <Xz->}2 +0(n),

2
Glebic) (Xl)} . By the change of variable w :=

we make an approximation to F {K -

2u/b and a = ¢/b,

N 2 ¢ u?/bexp (—2u/b)
E {KG(c,b;c) (X’)} - /0 b2/ A2 (/b + 17c/b)f(“) du

. v(2a+1,2a) 2 (bw\ [w*exp (—w)
= b et 5 dw,
2%2atlN2 (a4 1,a) J, 2 v (2a + 1, 2a)

where the object inside brackets of the right-hand side is again a pdf. As before, the

integral part can be approximated by f_ (¢) + O (bl/ 2). Moreover, it follows from

(A6), the argument on p.474 of Chen (2000) and a = ¢/b that the multiplier part is

{1lesldol s Ll e ) o).

Therefore,

Var{ a (C)} = nbll/Q \J/[_;if/)Q +o (n—lb—1/2) .



A.3 Proof of Theorem 1

The proof requires the following lemma.

Lemma Al.
3
E{ K (X0} =007).
A.3.1 Proof of Lemma Al

3
To save space, we concentrate only on F {K Glebio) (Xl)} . By the change of variable

t:=3u/band a = ¢/b,

_ 3 ¢ ud/bexp (—3u/b)
E { G(c,b;e) (XZ)} = A bg(c/b+1)73 (C/b + 1’ C/b) f (U,) du

_ 2 v (3a+ 1, 3a) /3“f bt 3% exp (—t) it
B 3Batlnd (a + 1,a) J 3)vBa+1,3a)) 7

where the integral part is f_ (c) + O (b'/?) as before. On the other hand, by (A1)

and (A6), the multiplier part can be approximated by

R e ]

which establishes the stated result. W

A.3.2 Proof of Theorem 1

Let

fen(e) = E{fes(@}+ [frs(@ = E{fes(@}] = B () + 2%, and
frpelc) = E {fi,b/& (C)} + []Ej:,b/é (c)—E {]Eﬁ:,b/é (0)}] =Ly (c) + W,
Then, by a similar argument to the proof for Theorem 1 of Hirukawa and Sakudo

(2014) and Proposition 2,

51/2

70 = @y {0} T - @) {1, e)
! (%W) {(zr-arwr) = (27 = 87w) f+ Ry,
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where the remainder term R ;. is bounded by ‘RJ(C)‘ <C(ZH + |WH+|Z27|+ W] =
O, (n~*b~*/2) for some constant C' € (0,00). It follows from E (Z*) = E(W*) =0

and Assumption 3 that

51/2 51/2

E{j(c)} = I (o))} {ﬁ (c )}_W — {1} (o)} {1,;5 (c)}“T” +0 (n1b1/?)

= J(c)+B(c)b+o0(b),

where
[ [ (00) (100)
B(c) = (m) 1 (o) f- (o)

A(-5) (P O-12@)+ £ (1P @ -1 o) }].

3o

Therefore,
Va2 {J ()= J (0} = Va7 [J(e) - BE{J(e)}] + Vb2 [B{] (e

- T (g (7o) (o))
+Vnb' 2 {B(c)b+o0(b)} + o, (1),

S
A
\_/

——
|

N
—

@)
N—

—_

where the second term on the right hand side becomes asymptotically negligible if
nb®? — 0.

The remaining task is to establish the asymptotic normality of the first term.
Due to the disjunction of two truncated kernels K é’t(c,b;c) (+), the asymptotic variance
of the term, denoted as V (¢), is just the sum of asymptotic variances of fi (¢) given

in Proposition 2. Hence, we need only to establish Liapunov’s condition. Denoting

7t i (%) (K& (X0 — B{KE . (X0}] = i (%) Z*, and

i=1 =
Wi = i (%) [Kévc(c,b/g;c) (Xz> E {K:Gt(cb/ﬁc ( }] = Z ( )
i=1 i=1



we can rewrite the term as

m( ! ) {7t —sw*) = (27 —s2w-))

1— 642
= 3V () (- ) - ()} Yo
i=1 - '

It follows from 0 < § < 1 that

5 _ b 1 ’ + + - -3
BNl < o5 (1—mm ) B (25| + W[+ 20|+ W)
Because the expected value part is O (b~!) by Lemma Al, E|Yj|> = O (n=%/2p~1/4).

It is also straightforward to see that Var (Y;) = O (n~!). Therefore,

S LB
(S, Var (Y)}*?

or Liapunov’s condition holds. This completes the proof. W

-0 (n_1/2b_1/4) N 0’

A.4 Proof of Proposition 3

The proof closely follows the one for Proposition 1 of Hirukawa and Sakudo (2016). It
follows from Theorem 1 that F {j(c)} =J(c)+0O(b), Var {j(c)} =0 (n"'b"1/?%)
and V (¢) 2 V (¢), regardless of whether Hy or H; may be true. Therefore, J (¢) =
J(c) + O (b) + O, (n"Y2671/4) 5 J (c) # 0 under Hi, and thus |T ()] is a divergent
stochastic sequence with an expansion rate of n'/2bY/%.  The result immediately

follows. W

A.5 Proof of Theorem 2

To demonstrate this theorem, we must rely on different asymptotic expansions, de-
pending on the positions of the design point z and the truncation point c¢. For
notational convenience, put (a,z) = (x/b,c¢/b). The proof requires the following

lemma.



Lemma A2. For a >0 and z > max{l,a},

2%exp (—z) + exp (—z) for0<a<1

I'(a+1,2) S{ (a+1)2%exp(—2)+I'(a+1)exp(—z) fora>1

A.5.1 Proof of Lemma A2

For 0 < a < 1, it follows from an elementary inequality on the upper incomplete

gamma function (e.g., equation (1.05) on p.67 of Olver, 1974) and z > 1 that
['(a,z) <2 lexp(—2) <exp(—2). (A8)
Then, by (A3),
I'(a+1,z) =2%xp(—2)+al'(a,2) < z%exp(—2z) +1-exp(—2).
Next, for a > 1 and a € N, using (A3) recursively yields
I'a+1l,z2) = zaexp(—z){1+g+%+‘~+w}
+a(a—1)---2-1-T'(1,2),
where the sum inside the brackets is bounded by a (< a + 1). Then, by (A8),
F'a+1,2)<(a+1)z%exp(—2)+T(a+1)exp(—=2).

Finally, for a > 1 and a ¢ N, we have

22 zlal

Fla+1,2) = Zaexp(—z){14_%_’_@_{_”._’_@(@—1)...(@_LaJ_Fl)}
+a(a—1)---(a—|a])T(a—lal,z).

where the sum inside the brackets is bounded by |a] + 1 (< a+1). Because 0 <

a—|al <1,T'(a—|a]) > 1 and thus
r
aa—1)-(a—la) = = EF D o p(a i),
Therefore, again by (AS8),

F'la+1l,z) <(a+1)2%exp(—2)+T(a+1)exp(—2). N



A.5.2 Proof of Theorem 2
(i) On f_ (z):
We consider different approximations to incomplete gamma functions depending on

the position of x. When x/b — o0, z > a and a,z — oo hold. Hence, the case for

a > 1 of Lemma A2 applies, and thus

F'(a+1,2)
I'(a+1)

2%exp (—2)

S(a—irl){m

]

It follows from (Al) and p :=a/z € (0,1) that

= ol fan ()] "

where e/ (pe'/?) € (0,1) holds. Then,

% —0 [al/z exp {aln (ﬁ) H :

On the other hand, when z/b — k € (0,00), putting @ — ~ and z — oo in Lemma

A2 yields
[(a+1,2) .
Tt O{z"exp(—2)}.
By (A4), we finally have
y(a+1,2) O [a'?exp {aln (e/ (pe'/*))}] if z/b— o0
['(a+1) =1 { O {z"exp(—2)} if x/b— K (A10)



Bias. By (A9), (A10), and (a, z) = (x/b,¢/b),

v(a+2,2) B
v(a+1,2)
B 2 Hlexp(—2) [(y(a+1,2)) "
= 1= T'(a+1) {F(a—l—l)}
B O [a'?exp{aln (e/ (pe'/?))}] if /b — oo
N 1+{ O{z"exp(—2)} if z/b— K
B O [b=2exp {(z/b)In (e/ (pe'/*))}] if z/b— oo n
= ”{ O {b—" exp (—c/b)} ifa/b— 0 004
v(a+3,2) a*y(a+2,z) )
TatLe) @il
2 exp(—2) (v(a+1,2)) "
= at+2-(z-at ) e {F(a+1)}
_ . O [a*?exp {aln (e/ (pe'/*))}] if z/b— oo
N +2+{ O {z"exp(—2)} if z/b— kK
=z O [b=32exp {(z/b)In (e/ (pe'/*))}] if /b — oo
B b+2+{ O{b~"texp(—c/b)} ifx/b—k

Then, by the argument in the proof of Proposition 1, in either case,
B{f-@}=f@)+{fV @+ 5P @ }b+o).
Variance. In

- 2 (2a +1,22) 2 bw\ [w*exp (—w)
B{K X} =b o : / ) st dw,
G(z,bic) (Xi) b 22a+102 (g + 1, 2) J, / 2 v (2a + 1,22) dw

the integral part is f (z) + O (b) in either case. It also follows from (A10) and the

argument on p.474 of Chen (2000) that the multiplier part is

v (2a + 1,22) v(a+1,2)) 2 b T (2a+1)
I'(2a+1) I'(a+1) 220H1T2 (q + 1)
_ —2\1’/;1;/12/2 +o(b7?)  ifz/b— oo
b T@etl) (b ifz/b—k

22&4’11"2(5_’_1)
Therefore,
14 3 _ nb}/‘z % +o (n_lb_l/z) if x/b — oo =
-0} = L TCGeth o) o) ifa/b— k|
nb 22”+1F2(m+1)

10



(i) On f; (2):

We may focus only on the case for interior x. However, it seems difficult to derive
a sharp bound on v (a+ 1,2) or I'(a+ 1, z) for the case of a > 2z and a,z — o0
based directly on (A2) or (A3). Instead, we turn to the series expansion described
in Section 3 of Ferreira, Lopez and Pérez-Sinusia (2005), which is valid for the case

ofa>z a,z— ccand a —z =0 (a). The expansion is

v(a+1,2) =2z exp ( ch )Pk (2 —a),
where the definitions of {c; (a)} and {®y (2 — a)} can be found therein. Because
the sum is shown to be convergent, the order of magnitude in v (a+1,2) /T (a + 1)
is determined by the one in 2™ exp (—z) /T (a + 1). Tt follows from (A1) and p’ :=

z/a € (0,1) that

St A o ()

= 0 {alﬂ exp {aln (p_?) H ,
er

where p'e/e” € (0,1) is again the case. Then, by (A4),

%—Ho[ Xp{ln(”_)”

The bias and variance of f+ (x) can be approximated as stated. W

A.6 Proof of Theorem 3

Both this proof and the proof of Theorem 4 require three lemmata below.

Lemma A3. For a > 0 and a sufficiently small b > 0, pick some design point

€ [0,ab]. Then, for n € (0,c),

T u®/Yexp (—u/b)
= d 1
/ e () 1 /obw/wa/bﬂ,c/b) T

as b— 0.

11



Lemma Aj. For the design point x defined in Lemma A3, let

n

KLy = (DR (X0}

=1

Then,

0< K, <C:— max{l,aa}{’yF(a—i_l) }{r(la*)}’

(a+1,a)
where T (a*) := ming~o I (a) =~ 0.8856 for a* =~ 1.4616.

Lemma AS5.(Hoeffding, 1963, Theorem 2) Let {X;}, , be independent and
a; < X; < b fori=1,2,....,n. Also write X := (1/n)>" | X; and p:= E ()_()

Then, for € > 0,

_ 2n2e?
Pr(|X —pu|>¢€) <2exp{ ——=; .
(| ‘ ) { Zi::L (bl . ai)2 }

A.6.1 Proof of Lemma A3

By the change of variable v := u/b, the integral can be rewritten as

@b+ 1,¢/0)" " y(@/b+1,¢/b)

Because 1/b 1T 0o and 0 < x/b < a, (A10) establishes that

/"/b lep (=) Ly (efo+ 1/
0

v (x/b+1,1n/b) _ C(z/b+1)+0{b *exp(—n/b)} 1 m
y(x/b+1,¢/b) T (x/b+1)+0O{b~>exp(—c/b)} '

A.6.2 Proof of Lemma A4

By construction, K; > 0 holds. In addition, since the gamma kernel has its mode at

the design point = (Chen, 2000, p.473), K; is bounded by

K @)= (7) " ep (=) {7 (Fx(/gzi/j T 25) } { T Wﬁ 1) } - A1

For0 < z/b < a, (/)" < max {1,a*} and exp (—z/b) < 1. Moreover, 7 (a, z) /T (a)

for a,z > 0 is monotonously increasing in z and decreasing in a; see, for example,

12



Tricomi (1950, p.276) for details. Because c is an interior point, ab < c or a < ¢/b

holds. Hence,
I'(z/b+1) < I'(a+1)
y(x/b+1,¢/b) — v(a+1,a)
Finally, it is known that I" (¢*) := min,~o I (a) ~ 0.8856 for a* ~ 1.4616. Therefore,

the right-hand side of (A11) has the upper bound
r 1 1
max{l,aa}-l-{ la+1) }{F }::C’.l

v(a+1,a) (a*)

A.6.3 Proof of Theorem 3

This proof largely follows the one for Theorem 5 of Hirukawa and Sakudo (2015).
Without loss of generality, for & > 0 and a sufficiently small b > 0, pick some design

point = € [0, ab]. Then, the proof completes if the following statements hold:

f@ = B{f@}+o0). (A12)
{f- @} = E{f ©}+o0). (A13)

2)
{ } . (A14)

Below we demonstrate (A12)-(A14) one by one. First, (A13) immediately follows
from the continuity of K, , . (v) in . Second, when f (z) — oo as z — 0, it holds
that for any A > 0, there is some n € (0, c¢) such that f(x) > A for all z < 7. For

the given 1, Lemma A3 implies that

/ K0 (U du>A/ Glope) (W) du — A,
which establishes (A14). Third, for {K;}; , defined in Lemma A4, denote their
sample average as K := (1/n) Y7 | K;. Then, it follows from Lemmata A4 and A5

that for € > 0,

13



Therefore, (A12) is also demonstrated, and thus the proof is completed. W
A.7 Proof of Theorem 4

This proof largely follows the one for Theorem 5.3 of Bouezmarni and Scaillet (2005).
As in the proof of Theorem 3, pick some z € [0, ab]. Then, the proof is boiled down

to establishing the following statements:

B{f-(2)} - (@)

) — 0, and (A15)
f@-e{i @},

@) =0, (A16)

asn — oo and b,z — 0.

We demonstrate (A15) first.  An inspection of the proof for Theorem 5.3 of
Bouezmarni and Scaillet (2005) reveals that (A15) is shown if their conditions A.2,
A.3 and A.5 are fulfilled. Now we check the validity of three conditions. First,
because fooo f(z)dz =1 and f(x) — oo as & — 0, there are constants 0 < C < C <
oo such that Cx=¢ < f(z) < C2~¢ for some d € (0,1) as # — 0. Accordingly,
fO () = O (z74") for a small value of . These imply that = |1 (z)| /f (z) <
O (1), and thus A.2 follows. Second, A.3 has been already established as Lemma
Al. Third, let the random variable U be drawn from the distribution with the pdf
K Glabio) (u). Then, by 0 < z/b < a and the expansion techniques used in the proof
of Theorem 2, Var (U) < O (b) — 0, and thus A.5 also holds.

Furthermore, it follows from Lemmata A4 and A5 that for K defined in the proof

of Theorem 3 and for ¢ > 0,

f-@-e{j @)} o) = Pr(E-BK)|>bf @)

o F @) -

< 2exp {—2 (g)2nb2f2 (x)} 0.

14



Therefore, (A16) is also demonstrated, and thus the proof is completed. W

B Additional simulation results

This section presents results from an additional Monte Carlo study. Some readers
may wonder how sensitive finite-sample properties of our proposed test statistics
T (¢) and T5 (c) are to the choices of two exponents (p,q) in the power-optimality
smoothing parameter selection method. Then, we replicate the simulation study in
Section 4.2 by changing only one of the values of (p,q). The benchmark case is
(p,q) = (1/2,4/9), and 1/6 is either added to or subtracted from each benchmark
value to conduct sensitivity analyses. For p, 1/2+1/6 = 1/3,2/3 are considered. For
q, because 4/9 is close to the lower bound of (2/5,2/3) (= the admissible range for q),
only 4/9+1/6 = 11/18 is examined. The mixing exponent 6 = 0.81 is maintained,
and 5000 replications of Monte Carlo samples with the sample size n = 1000 are
drawn. All other details in the Monte Carlo design follow those given in Section 4.2.

Tables B1 and B2 report the results with various p and ¢, respectively. For each
table, the results for the benchmark case are the same as in Table 3. Table B1 indic-
ates that cutting down p (or adopting a small number of sub-samples) considerably
ameliorates power properties of the tests. However, such power improvement is often
accompanied with severe size distortions; see the results for (p,d) = (1/3,0.00) in the
cases of choosing the 30% quantile as the cutoff. From the viewpoint of the balance
between size and power properties, p = 1/2 looks reasonable. In addition, a larger ¢
(i.e., employing a smaller smoothing parameter value or undersmoothing) is expected
to yield a wider confidence interval, which in turn leads to power loss. Table B2
ensures this aspect numerically, indicating that ¢ = 4/9 is better. In sum, two tables

jointly suggest that (p,q) = (1/2,4/9) are indeed safe choices.

15



Table B1: Finite-sample power properties of test statistics for discontinuity with
various p [n = 1000;6 = 0.81;9 = 4/9]

(%)
d

Distribution c Test p  Nominal 0.00 0.02 0.04 0.06 0.08 0.10
Gamma 1.7057 Ty (c) 1/3 5% 44 378 8.1 99.2 999 99.9
(30%) 10% 9.0 40.8 879 99.5 100.0 100.0
1/2 5% 39 6.6 128 371 98.7 100.0
10% 8.2 124 214 46.0 99.0 100.0
2/3 5% 39 6.7 128 26.0 454 986
10% 83 124 21.7 382 584 99.0
T (c) 173 5% 20.6 67.9 91.5 984 994  99.8
10% 25.8 79.2 96.8 99.8 99.9 100.0
1/2 5% 4.4 139 50.3 90.8 99.5 100.0
10% 8.9 19.2 549 927 99.9 100.0
2/3 5% 42 71 16.0 376 785 99.6
10% 8.8 13.0 244 46.7 823 999
24248 Ti(c) 173 5% 37 54 123 267 440 69.3
(Med) 10% 7.7 108 21.3 385 581 78.6
1/2 5% 39 5.0 104 207 355 532
10% 8.0 104 183 321 49.0 65.8
2/3 5% 4.0 51 95 182 31.0 477
10% 8.2 101 172 29.0 443 61.2
Ty (c) 1/3 5% 43 6.2 137 324 587 914
10% 8.6 11.8 22.7 425 67.7 93.0
1/2 5% 43 5.6 11.3 222 368 550
10% 8.6 11.1 19.2 331 50.3 67.0
2/3 5% 43 54 103 192 322 489
10% 8.7 10.8 178 299 45.0 62.0
Weibull 1.9419 Ti(c) 1/3 5% 88 53.3 889 989 99.6 99.8
(30%) 10% 12.7 57.6 92.1 99.6 100.0 100.0
172 5% 42 6.5 129 421 984 99.9
10% 84 124 21.2 49.1 99.1 100.0
2/3 5% 42 63 11.1 23.0 407 976
10% 83 123 200 348 53.1 983
T (c) 173 5% 29.8 65.5 87.7 96.7 98.7 99.6
10% 38.0 80.1 95.1 993 99.8 100.0
172 5% 5.2 17,5 5I.0 885 98.9 99.9
100% 94 232 56.5 91.1 99.7 100.0
2/3 5% 45 6.6 144 30.7 659 989
10% 8.8 129 224 405 715 99.6
28386 Ti(c) 1/3 5% 39 57 129 331 606 921
(Med) 10% 7.9 114 220 427 686 93.5
172 5% 38 5.1 102 202 343 509
10% 8.2 10.7 181 31.5 473 638
2/3 5% 39 53 95 178 296 457

10% 83 10.1 17.0 28.0 429 59.0

Ts(e) 1/3 5% 43 7.3 22 708 915 99.7
10% 87 127 318 734 927  99.8

/2 5% 4.2 57 113 21.3 367 GL7

10% 86 113 190 325 489  70.6

2/3 5% 43 56 99 185 305 46.6

10% 88 107 17.6 288 436 59.7
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Table B2: Finite-sample power properties of test statistics for discontinuity with
various ¢ [n = 1000;6 = 0.81;p = 1/2]

(%)
d
Distribution c Test q Nominal ~0.00 0.02 0.04 0.06 0.08 0.10
Gamma 1.7057 Ti(c) 4/9 5% 3.9 6.6 128 37.1 987 100.0
(30%) 10% 82 124 214 46.0 99.0 100.0
11/18 5% 43 6.3 11.2 352 936 99.2
10% 83 121 20.0 43.6 96.7 99.8
T5(c) 4/9 5% 4.4 139 50.3 90.8 99.5 100.0
10% 89 19.2 549 92.7 99.9 100.0
11/18 5% 4.7 113 376 76.8 925 O87
10% 9.0 181 474 851 96.7 99.6
24248 Ti(c) 4)9 5% 39 5.0 104 20.7 355 532
(Med) 10% 80 104 183 321 49.0 6538
11/18 5% 41 51 9.4 183 30.7 46.7
10% 82 10.0 171 29.0 44.1 60.3
T, (c) 4/9 5% 43 5.6 11.3 222 36.8 55.0
10% 86 11.1 19.2 33.1 50.3 67.0
11/18 5% 4.3 54 10.1 19.3 31.9 48.2
10% 88 10.6 17.8 30.1 446 615
Weibull 1.9419 Ti(c) 4/9 5% 42 6.5 129 421 984 99.9
(30%) 10% 84 124 212 491 99.1 100.0
11/18 5% 44 6.2 124 397 909 985
10% 84 119 19.7 471 951 994
T5(c) 4/9 5% 5.2 175 5I1.0 885 989 99.9
10% 94 232 565 91.1 99.7 100.0
11/18 5% 5.1 129 358 70.8 882 97.1
10% 9.2 19.3 46.1 80.7 94.2 99.1
28386 Ti(c) 4/9 5% 3.8 51 10.2 20.2 343 50.9
(Med) 10% 82 10.7 181 31.5 473 638
11/18 5% 38 53 9.3 177 293 447
10% 85 10.1 16.8 281 425 579
T, (c) 4/9 5% 4.2 57 11.3 21.3 36.7 61.7
10% 86 11.3 19.0 325 48.9 70.6
11/18 5% 44 56 99 184 31.6 57.8

10% 88 107 17.5 28.8 439  66.8
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