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a b s t r a c t 

The skewing method, which has been originally proposed as a bias correction device for 

local linear regression estimation using standard symmetric kernels, is extended to the 

cases of asymmetric kernels. The method is defined as a convex combination of three local 

linear estimators. It is demonstrated that the skewed estimator using asymmetric kernels 

with properly chosen weights can accelerate the bias convergence from O ( b ) to O ( b 2 ) as 

b → 0 under sufficient smoothness of the unknown regression curve while not inflating the 

variance in an order of magnitude, where b is the smoothing parameter and the regressor 

is assumed to have at least one boundary. As a consequence, the estimator has optimal 

pointwise convergence of n −4 / 9 when best implemented, where n is the sample size. It is 

noteworthy that these properties are the same as those for a local cubic regression esti- 

mator. Finite-sample properties of the skewed estimator are assessed in comparison with 

local linear and local cubic estimators. An application of the skewed estimation to real data 

is also considered. 

© 2020 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The aim of this paper is to reduce the order of magnitude in bias of local linear (“LL”) regression estimators ( Fan and Gij-

bels, 1992; Fan, 1993 ) smoothed by asymmetric kernels while not inflating the one in variance. The key trick for accelerating

the bias convergence is the skewing method, which has been proposed originally for standard nonnegative symmetric ker-

nels by Choi and Hall (1998) . The method is defined as a convex combination of three LL estimators, namely, one standard

(i.e., centered) and two shifted (i.e., left- and right-shifted) LL estimators. 

Before proceeding, we should explain why we concentrate on a nonstandard smoothing technique using asymmetric

kernels. Throughout it is assumed that the support of the regressor has at least one boundary (e.g., [0, 1] or R + ). Indeed,

there are many economic and financial variables that have a natural boundary at the origin; examples include wages, in-

comes, short-term interest rates, and insurance claims (or financial losses), to name a few. Often the variables also have

right-skewed distributions. Asymmetric kernels are expected to work well for such distributions because of their freedom of

boundary bias and adaptive smoothing property via changing shapes automatically across design points. Among all asym-

metric kernels proposed so far, our main focuses are on the beta and gamma kernels proposed by Chen (1999, 20 0 0b) ,
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respectively. 1 Our preference is based on empirical relevance of the kernels in economics and finance; see Table 1.1 of

Hirukawa (2018) for a variety of applications of the beta and gamma kernels to estimation and testing problems. 

Up until recently, the bias reduction in asymmetric kernel smoothing has been actively studied within the framework of

density estimation. In fact, many authors have examined different kinds of bias correction methods that can reduce the or-

der of magnitude in bias from O ( b ) to O ( b 2 ) as b → 0 while the one in variance is left unchanged, where b is the smoothing

parameter. Interested readers may consult, for instance, Hirukawa (2010) , Hirukawa and Sakudo (2014, 2015) , and Funke and

Kawka (2015) . Hirukawa (2018 , Chapter 3) also provides a survey. On the other hand, little is investigated on nonparametric

regression estimation smoothed by asymmetric kernels. A few exceptions are Chen (20 0 0a, 20 02) as theoretical contribu-

tions and Gospodinov and Hirukawa (2012) as an application. 2 Specifically, Chen (20 0 0a) examines the Gasser-Müller type

regression estimator ( Gasser and Müller, 1979 ) smoothed by the beta kernel. Subsequently, Chen (2002) explores statistical

properties of LL estimators smoothed by the beta and gamma kernels. Moreover, Gospodinov and Hirukawa (2012) apply the

local constant (“LC”) regression estimation using the gamma kernel to nonparametric estimation of time-homogeneous drift

and diffusion functions in continuous-time models that can be used to describe the underlying dynamics of spot interest

rates. 

However, no attempts have been made to improve the bias convergence in asymmetric kernel regression estimation, to

the best of our knowledge. In this respect, our work may be viewed as a natural extension of Chen (2002) in the spirit of the

aforementioned articles on bias reduction in density estimation. Following Choi and Hall (1998) , we investigate two versions

of the skewed estimator smoothed by asymmetric kernels. The first version is a convex combination of one standard and

two shifted LL estimators. The second version, constructed as a convex combination of two shifted LL estimators only, can

be viewed as a limiting form of the first version. It is demonstrated that under sufficient differentiability of the underlying

regression curve, each version can accelerate the bias convergence from O ( b ) to O ( b 2 ) while the order of magnitude in

variance is preserved. As a consequence, when best implemented, the estimators have optimal pointwise convergence rate

of n −4 / 9 where n is the sample size. It is an improvement from the n −2 / 5 rate in the usual case with no additional smoothing

as in Chen (2002) . 

There are some advantages in incorporating asymmetric kernels into the skewing method. First, unlike Choi and Hall’s

(1998) original skewed estimator using symmetric kernels, it is possible to make the skewed estimator using asymmetric 

kernels free of edge effects. Details of the method are available in Remark 2 . Second, asymmetric kernels possess the ro-

bustness property to sparse design problems. The kernels spread out as the design point moves away from a boundary, and

as a result, they tend to collect more data points to smooth in the areas with fewer observations. The property continues to

hold when asymmetric kernels are combined with the skewed estimation. This is documented in Theorem 2 and confirmed

numerically in Section 3 . 

There are a few other approaches that can reduce the bias from O ( b ) to O ( b 2 ) in nonparametric regression estimation.

Examples include (i) local polynomial (e.g., local cubic) regression smoothing by Ruppert and Wand (1994) and (ii) the

multiplicative bias correction method for nonparametric regression estimation by Linton and Nielsen (1994) and Jones et al.

(1995 , Section 4.2) . Some readers may wonder why we do not instead investigate these. For (i), the reason why we do

not turn to the local cubic estimation is that because higher-order polynomial estimators are subject to potential problems

caused by sparse design, we must prepare for a guard against near-singularity in large matrices in practice, as argued in

Choi and Hall (1998 , Remark 2.3). For (ii), while the skewing method is a version of additive bias correction techniques,

the multiplicative bias correction method is based on the identity h ( · ) ≡ g ( · ){ h ( · )/ g ( · )} := g ( · ) r ( · ), where h ( · ) is either the

density or the conditional mean (i.e., the regression function), g ( · ) is its initial estimate, and r ( · ) serves as a correction

factor. The method works well in density estimation as long as the underlying density is strictly positive at a given design

point or on a certain interval, because in this case the initial density estimate g ( · ) is also likely to be strictly positive. On

the other hand, the underlying regressand can take any real value. Therefore, its bias-corrected estimator is not well defined

when the regression curve touches or passes through the horizontal axis. 3 

The remainder of this paper is organized as follows. Section 2 delivers convergence properties of the skewed estimators

using asymmetric kernels, including the bias acceleration of the estimators. Section 3 conducts Monte Carlo simulations to

examine finite-sample properties of the skewed estimators. Section 4 applies the skewed estimation to a US industry-level

data and estimates a linear-homogenous production function nonparametrically. Section 5 summarizes the main results of

the paper. All proofs are provided in the Appendix. 

This paper adopts the following notational conventions: for a > 0, �( a ) = 

∫ ∞ 

0 t a −1 exp ( −t ) dt is the gamma function; for

p , q > 0, B ( p, q ) = 

∫ 1 
0 y p−1 ( 1 − y ) q −1 dy denotes the beta function; and 1 { · } signifies an indicator function. The expression

‘ X 
d = Y ’ reads “A random variable X obeys the distribution Y ”. The expression ‘ X n ∼ Y n ’ is used whenever X n / Y n → 1 as n → ∞ .

Lastly, in order to describe different asymptotic properties of an asymmetric kernel estimator across positions of the de-
1 Extensions to the cases of other asymmetric kernels are straightforward and thus not pursued any further in this paper; see Section 1.2.2 of Hirukawa 

(2018) for a non-exhaustive list of asymmetric kernels. 
2 It is known that asymmetric kernel density estimators are not integrated to unity in general. This comes from the fact that roles of the data and design 

points in asymmetric kernels are not exchangeable. The lack of normalization in asymmetric kernels may cause a problem in some applications of density 

estimation, whereas it is not an issue when they are employed for regression estimation. 
3 Two ad hoc solutions to this problem are available in Glad (1998) , actually. These are: (i) clipping the correction factor below 1/10 and above 10; and 

(ii) shifting all response data a distance a . Recently Scholz et al. (2015) have applied them to financial data. 
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sign point x ∈ R + ( x ∈ [0, 1]), we denote by “interior x ” and “boundary x ” a design point x that satisfies x / b → ∞ ( x / b and

( 1 − x ) /b → ∞ ) and x / b → κ ( x / b or ( 1 − x ) /b → κ) for some κ ∈ (0, ∞ ) as n → ∞ , respectively. 

2. Estimators and Their Large-Sample Properties 

2.1. The Estimator 

Suppose that we are interested in estimating an unknown conditional mean 

m ( x ) := E ( Y | X = x ) 

nonparametrically using i.i.d. bivariate random variables { ( Y i , X i ) } n i =1 . Throughout the corresponding nonparametric regres-

sion model 

Y = m ( X ) + ε

is examined, where ε is the regression error that satisfies E ( ε| X ) = 0 . Also denote the conditional variance of ε as σ 2 ( ·) :=
E 
(
ε2 
∣∣X = ·

)
. 

Often the economic and financial data have a boundary. Our particular focus is on the cases in which the support of

the regressor X has at least one boundary. More specifically, supp ( X ) is assumed to be either [0, 1] or R + . Accordingly, we

employ asymmetric kernels to estimate m ( x ) nonparametrically. 

Our aim is to improve the bias property of the LL regression estimator of m ( x ) smoothed by an asymmetric kernel while

the order of magnitude in its variance remains unchanged. For this purpose, we find ( α, β) that jointly minimize the local

least squares problem 

n ∑ 

i =1 

{ Y i − α − β( X i − x ) } 2 K j ( x,b ) ( X i ) , 

where K j ( x , b ) is some asymmetric kernel indexed by j that depends on the design point x and the smoothing parameter b .

Let 

(
ˆ α j ( x ) , ˆ β j ( x ) 

)
be the minimizer for a given x . It is well known that 

ˆ α j ( x ) = 

s j2 ( x ) t j0 ( x ) − s j1 ( x ) t j1 ( x ) 

s j0 ( x ) s j2 ( x ) − s 2 
j1 ( x ) 

and 

ˆ β j ( x ) = 

s j0 ( x ) t j1 ( x ) − s j1 ( x ) t j0 ( x ) 

s j0 ( x ) s j2 ( x ) − s 2 
j1 ( x ) 

, 

where 

s jp ( x ) = 

1 

n 

n ∑ 

i =1 

( X i − x ) 
p K j ( x,b ) ( X i ) and (1)

t jp ( x ) = 

1 

n 

n ∑ 

i =1 

Y i ( X i − x ) 
p K j ( x,b ) ( X i ) (2)

for p = 0 , 1 , 2 . . . 

The standard approach is to estimate m ( x ) by the (classical) LL estimator ˆ m j ( x ) = ˆ α j ( x ) . In what follows, a nonstandard

LL estimator 

ˆ m j ( u | x ) := ˆ α j ( x ) + 

ˆ β j ( x ) ( u − x ) (3)

is instead considered. The estimator ˆ m j ( u | x ) can be interpreted as a shifted LL estimator in which smoothing is made at

a slightly off-centered point, i.e., smoothing is made at x , which is located slightly to the left or right of the center u . Also

observe that putting u = x in (3) (i.e., the case in which the center coincides with x ) reduces to ˆ m j ( x | x ) = ˆ m j ( x ) = ˆ α j ( x ) ,

which is the classical LL estimator. 

The skewed estimator is defined as a convex combination of three such LL estimators. Given weight parameters (called

“weights” hereinafter) λ1 , λ2 > 0 and shift parameters (called “shifts” hereinafter) 	 1 , 	 2 > 0, the general form of the skewed

estimator of m ( x ) can be expressed as 

˜ m j,λ1 ,λ2 ,	 1 ,	 2 ( x ) := 

λ1 ˆ m j 

(
x | x − 	 1 b 

1 / 2 
)

+ 

ˆ m j ( x | x ) + λ2 ˆ m j 

(
x | x + 	 2 b 

1 / 2 
)

λ1 + 1 + λ2 

, (4)

where ˆ m j 

(
x | x − 	 1 b 

1 / 2 
)

and ˆ m j 

(
x | x + 	 2 b 

1 / 2 
)

are called the left- and right-shifted LL estimators, respectively, hereinafter. 
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Unlike standard symmetric kernels, exploring statistical properties of nonparametric estimators smoothed by asymmetric 

kernels relies on kernel-specific and thus diversified approaches. The skewed estimator is not an exception. Then, to save

space, we specialize in two asymmetric kernels, namely, the beta kernel ( j = B ) 

K B ( x,b ) ( u ) = 

u 

x/b ( 1 − u ) ( 
1 −x ) /b 

B { x/b + 1 , ( 1 − x ) /b + 1 } 1 { u ∈ [ 0 , 1 ] } 
for x ∈ [0, 1] by Chen (1999) and the gamma kernel ( j = G ) 

K G ( x,b ) ( u ) = 

u 

x/b exp ( −u/b ) 

b x/b+1 �( x/b + 1 ) 
1 { u ≥ 0 } 

for x ∈ R + by Chen (20 0 0b) , due to their popularity in empirical studies in economics and finance. 

Furthermore, when x is located in the vicinity of a boundary, a certain choice of shifts ( 	 1 , 	 2 ) may preclude us from

defining either the left- or right-shifted LL estimator. As a result, the skewed estimator is not well-defined, either. Therefore,

the subsequent asymptotic results for boundary x should be interpreted as those on condition that the skewed estimator is

well-defined; see Remark 2 for more details. 

2.2. Convergence Properties of the Gamma Skewed Estimator 

2.2.1. Regularity Conditions 

We start from exploring convergence properties of the gamma skewed estimator; those of the beta skewed estimator will

be delivered shortly as an extension. To develop their convergence properties, we impose the following common regularity

conditions across the two estimators: 

Assumption 1. The i.i.d. random sample { ( Y i , X i ) } n i =1 is drawn from a bivariate distribution having support on R × supp ( X ) ,

where supp ( X ) is either [0, 1] or R + . 

Assumption 2. Let f ( · ) be the marginal pdf of X . Then, there is a neighborhood N around the design point x ∈ supp ( X )
such that σ 2 ( · ), the second-order derivative of f ( · ) and the fourth-order derivative of m ( · ) are Hölder-continuous of order

ς ∈ (0, 1] on N . In addition, f ( x ) > 0 and σ 2 ( x ) < ∞ . 

Assumption 3. The smoothing parameter b ( = b n > 0 ) satisfies b + 

(
nb 3 
)−1 → 0 as n → ∞ . 

Assumption 1 refers to random sampling, which makes it easier to derive the dominant terms in bias and variance of

the skewed estimators. 4 Fourth-order smoothness of the regression curve in Assumption 2 is crucial for bias acceleration of

the skewed estimation. While only the continuity of f ( · ) is required for LC or LL estimation, the bias expansion developed

below involves f (2) ( · ) and thus its local Hölder-continuity in Assumption 2 is a key requirement. Local Hölder-continuity of

f (2) ( · ) in the neighborhood of x , for example, implies that there is a constant C ∈ (0, ∞ ) such that ∣∣ f ( 2 ) ( u ) − f ( 2 ) ( v ) 
∣∣ ≤ C | u − v | ς , ∀ u, v ∈ N . 

The condition “
(
nb 3 
)−1 → 0 ” in Assumption 3 is imposed typically in the literature on bias reduction in asymmetric ker-

nel density estimation (e.g., Hirukawa, 2010 ; Hirukawa and Sakudo, 2014, 2015 ). It is required to control the remainder term

in the bias approximation of the skewed estimators, whereas a milder one “
(
nb 2 
)−1 → 0 ” suffices for LC or LL estimation;

see equation (2.3) of Chen (2002) for more details. It will be shown shortly that the MSE-optimal smoothing parameter for

each skewed estimator becomes b ∗ = O 

(
n −2 / 9 

)
for interior x and b † = O 

(
n −1 / 5 

)
for boundary x (only if it is well-defined);

these convergence rates are indeed within the required range. 

2.2.2. Bias Approximation 

Below we document the bias approximation of the gamma skewed estimator, conditional on X = x . In addition, as a by-

product of the analysis, a second-order bias expansion (i.e., the bias approximation up to the O ( b 2 ) term) of the gamma LL

estimator ˆ m G ( x | x ) = ˆ m G ( x ) has been derived. The result is summarized in a separate corollary. 

Theorem 1. Suppose that for a given design point x > 0, weights ( λ1 , λ2 ) and shifts ( 	 1 , 	 2 ) in (4) are chosen as 

λ1 = λ2 = λ and 	 1 = 	 2 = 	 = 	 ( λ, x ) = 

√ (
2 λ + 1 

2 λ

)
x . (5) 

Denote the gamma skewed estimator with the above weights and shifts plugged into (4) by 

˜ m G,λ( x ) = 

λ ˆ m G 

(
x | x − 	b 1 / 2 

)
+ 

ˆ m G ( x | x ) + λ ˆ m G 

(
x | x + 	b 1 / 2 

)
2 λ + 1 

. 
4 We do not consider the case in which residuals are correlated. However, it is conjectured that asymptotic results in this paper will continue to hold 

for weakly dependent and strictly stationary data by imposing some mixing condition (e.g., α-mixing with a suitable size), although an extension in this 

direction is beyond the scope of this paper. 
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If Assumptions 1 - 3 hold, then, as n → ∞ , the bias of ˜ m G,λ( x ) can be approximated by Bias 
{

˜ m G,λ( x ) 
}

= B G,λ( x ; m, f ) b 2 + o 
(
b 2 
)
,

where 

B G,λ( x ; m, f ) = −
[{

1 + 2 x 
f ( 1 ) ( x ) 

f ( x ) 
+ 

x 2 

2 

f ( 2 ) ( x ) 

f ( x ) 

}
m 

( 2 ) ( x ) + x 

{
5 

3 

+ x 
f ( 1 ) ( x ) 

f ( x ) 

}
m 

( 3 ) ( x ) + 

x 2 

4 

(
1 + 

1 

4 λ

)
m 

( 4 ) ( x ) 

]
. 

Corollary 1. Under Assumptions 1 - 3 , as n → ∞ , the bias of ˆ m G ( x ) can be expanded up to the second order as 

Bias 
{

ˆ m G ( x ) 
}

= 

x 

2 

m 

( 2 ) ( x ) b + 

[ 

−
{ 

1 + x 
f ( 1 ) ( x ) 

f ( x ) 
− x 2 

2 

f ( 2 ) ( x ) 

f ( x ) 
+ x 2 

(
f ( 1 ) ( x ) 

f ( x ) 

)2 
} 

m 

( 2 ) ( x ) 

+ 

x 

3 

m 

( 3 ) ( x ) + 

x 2 

8 

m 

( 4 ) ( x ) 

]
b 2 + o 

(
b 2 
)
. 

The theorem states that under the symmetric weights and shifts given in (5) , the gamma skewed estimator can attain

the bias convergence of O ( b 2 ) regardless of the position of the design point x (as long as ˜ m G,λ( x ) is well-defined). Such

weights and shifts are determined by setting coefficients on O ( b ) and O ( b 3/2 ) bias terms of (4) equal to zero; see the Proof

of Theorem 1 in Appendix for more details. Observe that the bias acceleration in the skewed estimator can be attained by a

fixed λ. In Section 2.3 below, we let λ→ ∞ and explore convergence properties of the skewed estimator in limit. 

Chen (2002) shows that orders of magnitude in bias of the (standard) gamma LL estimator ˆ m G ( x ) are O ( b ) and O ( b 2 ) for

interior and boundary x , respectively. Therefore, the bias property of ˜ m G,λ( x ) indeed improves from that of the LL estimator.

While the same order of magnitude in bias can be attained by local cubic smoothing, the skewing method is expected to be

more robust against sparse design due to its LL-based structure. 

Remark 1. There are a few noteworthy differences in the choices of shifts and weights between skewed estimators using

symmetric and asymmetric kernels. The first difference is whether the shift 	 1 = 	 2 = 	 that can accelerate the bias conver-

gence of the skewed estimator depends on the design point x . As shown in Theorems 1 and 3 , shifts of the gamma and beta

skewed estimators vary with x . This is a sharp contrast to the result when a standard nonnegative symmetric kernel K ( u ) is

employed. Choi and Hall (1998) demonstrate that as in our case, symmetric weights and shifts can lead to bias acceleration

from O ( h 2 ) to O ( h 4 ) in their skewed estimation using symmetric kernels, where h is the bandwidth. However, for the weight

λ1 = λ2 = λ, they derive the shift as 	 1 = 	 2 = 	 = 	 ( λ) = 

√ 

( 2 λ + 1 ) κ2 / ( 2 λ) , where κ2 = 

∫ 
u 2 K ( u ) du ; to put it in another

way, the shift remains unchanged regardless of the position of x in Choi and Hall’s (1998) original skewed estimator. 

The second difference lies in sensitivity to the choice of λ. Our Monte Carlo study in Section 3 compares finite-

sample performances of asymmetric kernel-based skewed estimators with those of the skewed estimator using the sym-

metric, Epanechnikov kernel. The results indicate that skewed estimators smoothed by asymmetric kernels are insensitive

to the choice of λ as long as it is large enough. This is not true for the Epanechnikov skewed estimator. Performances of

the Epanechnikov estimator appear to be largely affected by the choice of λ. Choi and Hall (1998 , Remark 2.4) provide

λ∗ = 0 . 0352 as the minimizer of the scaling factor V ( λ) in the leading variance term of the Epanechnikov estimator, and

they use this value exclusively in their simulation study. Indeed, once the weight deviates from λ∗, performances of this

estimator tend to deteriorate. 5 From this viewpoint, we also employ the optimal λ∗ for the Epanechnikov skewed estimator

in our simulation study. 

Third, the points where smoothing is made in left- and right-shifted LL estimators appear to take different forms. These

are x ± 	 h in Choi and Hall’s (1998) original skewed estimator and x ± 	 b 1/2 in skewed estimators using asymmetric kernels.

Such ‘seemingly’ different expressions turn out to be equivalent if Chen’s (1999, 20 0 0b) original notation b is replaced by

h 2 . 6 The notational change also enables us to understand that the bias acceleration from O ( b ) to O ( b 2 ) via the asymmetric

kernel-based skewed estimation is equivalent to the one from O ( h 2 ) to O ( h 4 ) due to Choi and Hall’s (1998) original skewed

estimation. 

Remark 2. A referee asks us how to choose ( λ, 	 ) for the gamma skewed estimator so that Theorem 1 holds when x

lies in the vicinity of the origin. To consider this issue, we first focus on the case in which the left-shifted LL estimator

ˆ m G 

(
x | x − 	b 1 / 2 

)
can be still well-defined. Given that 	 = 

√ 

( 2 λ + 1 ) x/ ( 2 λ) , we must have x − 	b 1 / 2 ≥ 0 in this case. It follows

that a possible choice of the weight λ would be any number satisfying λ ≥ b/ { 2 ( x − b ) } , provided that x > b ; in other words,

for x ∈ ( b , ∞ ), the bias acceleration occurs unless a very small λ is chosen. Therefore, x ∈ [0, b ] is the truly problematic case.

All we can do in this case would be to define the (standard) gamma LL estimator as the gamma skewed estimator; in fact,

˜ m G,λ( 0 ) (i.e., the gamma skewed estimator at the origin) collapses to ˆ m G ( 0 ) (i.e., the gamma LL estimator at the origin).

Our Monte Carlo study in Section 3 adopts this practice. Clearly, this practice can make the gamma skewed estimator free

of edge effects. It is also noteworthy that the practice does not contradict the order of magnitude in bias of the skewed

estimator documented in Theorem 1 , because ˆ m G ( x ) for boundary x itself has a O ( b 2 ) bias. The Monte Carlo study deals
5 A referee finds this aspect in his/her own simulation study, and our preliminary simulation results confirm it. We thank him/her for running simulations 

and sharing results. 
6 Jones and Henderson (2007) adopt this type of notational change in developing asymmetric kernels with support on [0, 1]. 



114 B. Funke and M. Hirukawa / Econometrics and Statistics 20 (2021) 109–130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with yet another skewed estimator smoothed by the beta kernel with support on [0, 1], and the practice of switching to the

beta LL estimator in the vicinity of 0 or 1 is again applied to this estimator. 

2.2.3. Variance Approximation 

Next, the variance approximation of the gamma skewed estimator ˜ m G,λ( x ) , conditional on X = x, is presented. 

Theorem 2. Under Assumptions 1 - 3 , as n → ∞ , the variance of ˜ m G,λ( x ) can be approximated by 

V ar { ̃  m G,λ( x ) } = 

⎧ ⎨ ⎩ 

1 
nb 1 / 2 

5 σ 2 ( x ) 
4 
√ 

π
√ 

x f ( x ) 
+ o 
(
n 

−1 b −1 / 2 
)

f or interior x 

O 

(
n 

−1 b −1 
)

f or boundary x 

. 

The analytical expression of the leading variance term for boundary x is of less importance, and thus we only document

its order of magnitude. Orders of magnitude in V ar 
{

˜ m G,λ( x ) 
}

are O 

(
n −1 b −1 / 2 

)
and O 

(
n −1 b −1 

)
for interior and boundary x ,

respectively, and these are the same as those for V ar 
{

ˆ m G ( x ) 
}

. A unique feature of the variance property is that the variance

coefficient for interior x is inversely proportional to x 1/2 and thus decreases as x increases, as in other gamma density

and regression estimators. This reflects that the gamma kernel tends to spread out as x increases for a given value of the

smoothing parameter b ; in other words, the kernel can collect more data points (or increase its effective sam ple size) to

smooth in the areas with fewer observations. This property is particularly advantageous to estimating the regression curves

whose regressors have distributions that have a long tail with sparse data, such as those of the economic and financial

variables mentioned in Section 1 . 

Interestingly, the coefficient of the dominant term in V ar 
{

˜ m G,λ( x ) 
}

for interior x is independent of λ (although higher-

order terms may depend on it), and it follows from 

V ar 
{

ˆ m G ( x ) 
}

= 

1 

nb 1 / 2 
σ 2 ( x ) 

2 

√ 

π
√ 

x f ( x ) 
+ o 
(
n 

−1 b −1 / 2 
)

that V ar 
{

˜ m G,λ( x ) 
}
/V ar 

{
ˆ m G ( x ) 

}
→ 5 / 2 for interior x . At a first glance, this result may give us the impression that while the

gamma skewed estimator does not inflate the order of magnitude in variance from the gamma LL estimator, the former

inflates the variance coefficient; indeed, the increase can be attributed to the fact that variations of ∓	b 1 / 2 ˆ βG 

(
x ± 	b 1 / 2 

)
in

the left- and right-shifted LL estimators (3) introduce additional variability, as the proof in Appendix indicates. 

However, the above efficiency comparison is based on the implicit assumption that the same smoothing parame-

ter b is chosen across two estimators. Rather, observe that the mean squared error (“MSE”) of ˜ m G,λ( x ) for interior x

is MSE 
{

˜ m G,λ( x ) 
}

= O 

(
b 4 + n −1 b −1 / 2 

)
. It follows that the optimal smoothing parameter b ∗

G,λ
that minimizes the dominant

two terms in the MSE is b ∗
G,λ

= O 

(
n −2 / 9 

)
, which yields the variance convergence of O 

(
n −8 / 9 

)
. On the other hand, because

MSE 
{

ˆ m G ( x ) 
}

= O 

(
b 2 + n −1 b −1 / 2 

)
for interior x , the optimal smoothing parameter for the LL estimator is b ∗

G,LL 
= O 

(
n −2 / 5 

)
,

which leads to the variance convergence of O 

(
n −4 / 5 

)
. As a result, when best implemented, V ar 

{
˜ m G,λ( x ) 

}
/V ar 

{
ˆ m G ( x ) 

}
=

O 

(
n −4 / 45 

)
→ 0 , or ˜ m G,λ( x ) can be asymptotically more efficient than ˆ m G ( x ) for interior x . 

It also follows that the skewed estimator has optimal pointwise convergence of n −4 / 9 for interior x . This convergence rate

coincides with Stone’s (1980) optimal nonparametric one under fourth-order smoothness of the unknown regression curve. 

2.3. A Limit Case 

So far we have seen that under a suitably chosen weighting scheme with a fixed weight λ, the skewing method can

reduce the bias of the gamma LL estimator ˆ m G ( x ) in an order of magnitude. Some readers may then wonder whether the

value of λ can be optimized under some criterion. However, the answer is negative. The asymptotic variance for interior x

does not depend on λ, nor the integrated variance based on the trimming argument as in Chen (1999, 20 0 0b) . As a result,

when the mean integrated squared error (“MISE”) is considered as a global performance measure, the squared bias alone

varies with λ. Moreover, the leading bias term suggests the choice of a preferably large value of λ because of the reciprocal

occurrence of λ in B G,λ( x ; m, f ) . 

Instead, as in Choi and Hall (1998 , Remarks 2.1 and 2.4), we let λ diverge to infinity and denote the limit gamma left-

and right-shifted LL estimators by ˆ m G, −( x ) and ˆ m G, + ( x ) , respectively. These are formally expressed as 

ˆ m G, ±( x ) := 

ˆ m G 

(
x | x ±

√ 

xb 

)
, 

where lim λ→∞ 

	 ( λ, x ) = 

√ 

x is substituted in place of 	 in ˆ m G 

(
x | x ± 	b 1 / 2 

)
. The corresponding limit gamma skewed estimator

takes the form of an average of the two shifted LL estimators 

˜ m G, ∞ 

( x ) := 

1 

2 

{
ˆ m G, −( x ) + 

ˆ m G, + ( x ) 
}
. 

This estimator can be interpreted as a limit form of the convex combination of three LL estimators. 
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The next proposition provides approximations to the bias and variance of ˆ m G, ±( x ) and ˜ m G, ∞ 

( x ) , again conditional on

X = x . 

Proposition 1. (i) Under Assumptions 1 - 3 , as n → ∞ , the bias and variance of ˆ m G, ±( x ) can be approximated by 

Bias 
{

ˆ m G, ±( x ) 
}

= ∓√ 

x 

[{
3 

2 

+ x 
f ( 1 ) ( x ) 

f ( x ) 

}
m 

( 2 ) ( x ) + 

x 

3 

m 

( 3 ) ( x ) 

]
b 3 / 2 + B G, ∞ 

( x ; m, f ) b 2 + o 
(
b 2 
)
, 

where 

B G, ∞ 

( x ; m, f ) = lim 

λ→∞ 

B G,λ( x ; m, f ) 

= −
[{

1 + 2 x 
f ( 1 ) ( x ) 

f ( x ) 
+ 

x 2 

2 

f ( 2 ) ( x ) 

f ( x ) 

}
m 

( 2 ) ( x ) + x 

{
5 

3 

+ x 
f ( 1 ) ( x ) 

f ( x ) 

}
m 

( 3 ) ( x ) + 

x 2 

4 

m 

( 4 ) ( x ) 

]
, 

and 

V ar 
{

ˆ m G, ±( x ) 
}

= 

⎧ ⎨ ⎩ 

1 
nb 1 / 2 

3 σ 2 ( x ) 
4 
√ 

π
√ 

x f ( x ) 
+ o 
(
n 

−1 b −1 / 2 
)

f or interior x 

O 

(
n 

−1 b −1 
)

f or boundary x 

. 

(ii) Under Assumptions 1 - 3 , as n → ∞ , the bias and variance of ˜ m G, ∞ 

( x ) can be approximated by 

Bias { ̃  m G, ∞ 

( x ) } = B G, ∞ 

( x ; m, f ) b 2 + o 
(
b 2 
)
, and 

V ar { ̃  m G, ∞ 

( x ) } = 

⎧ ⎨ ⎩ 

1 
nb 1 / 2 

5 σ 2 ( x ) 
4 
√ 

π
√ 

x f ( x ) 
+ o 
(
n 

−1 b −1 / 2 
)

f or interior x 

O 

(
n 

−1 b −1 
)

f or boundary x 

. 

Observe that ˆ m G, ±( x ) alone can reduce the bias from O ( b ) for the standard LL estimator to O ( b 3/2 ) for interior x .

Coefficients on their leading O ( b 3/2 ) bias terms have opposite signs with the same magnitude, and thus they are offset

by taking an average of the two. It follows that ˜ m G, ∞ 

( x ) can accelerate the bias convergence up until O ( b 2 ). It can be also

deduced that V ar 
{

ˆ m G, ±( x ) 
}
/V ar 

{
ˆ m G ( x ) 

}
→ 3 / 2 for interior x and a given b . 

2.4. An Extension: The Beta Skewed Estimator 

Our analysis is now extended to the skewed estimators smoothed by the beta kernel. After convergence properties (i.e.,

the bias-variance trade-off) of the beta skewed estimator ˜ m B,λ( x ) and the second-order expansion of the bias of the beta LL

estimator ˆ m B ( x | x ) = ˆ m B ( x ) are presented, those of the limit beta left- and right-shifted LL estimators ˆ m B, ±( x ) and the limit

beta skewed estimator ˆ m B, ∞ 

( x ) are documented. These results are again conditional on X = x . It can be immediately found

that all the previous discussions on the asymptotic results for the gamma case continue to hold for the beta case. 

Theorem 3. Suppose that for a given design point x ∈ (0, 1) , weights ( λ1 , λ2 ) and shifts ( 	 1 , 	 2 ) in ( 4 ) are chosen as 

λ1 = λ2 = λ and 	 1 = 	 2 = 	 = 	 ( λ, x ) = 

√ (
2 λ + 1 

2 λ

)
x ( 1 − x ) . 

Denote the beta skewed estimator with the above weights and shifts plugged into (4) by 

˜ m B,λ( x ) = 

λ ˆ m B 

(
x | x − 	b 1 / 2 

)
+ 

ˆ m B ( x | x ) + λ ˆ m B 

(
x | x + 	b 1 / 2 

)
2 λ + 1 

. 

If Assumptions 1 - 3 hold, then, as n → ∞ , the bias of ˜ m B,λ( x ) can be approximated by Bias 
{

˜ m B,λ( x ) 
}

= B B,λ( x ; m, f ) b 2 + o 
(
b 2 
)
,

where 

B B,λ( x ; m, f ) = −
[{

1 − 6 x ( 1 − x ) + 2 x ( 1 − x ) ( 1 − 2 x ) 
f ( 1 ) ( x ) 

f ( x ) 
+ 

1 

2 

x 2 ( 1 − x ) 
2 f 

( 2 ) ( x ) 

f ( x ) 

}
m 

( 2 ) ( x ) 

+ x ( 1 − x ) 

{
5 

3 

( 1 − 2 x ) + x ( 1 − x ) 
f ( 1 ) ( x ) 

f ( x ) 

}
m 

( 3 ) ( x ) + 

1 

4 

(
1 + 

1 

4 λ

)
x 2 ( 1 − x ) 

2 m 

( 4 ) ( x ) 

]
. 

Moreover, the variance of ˜ m B,λ( x ) can be approximated by 

V ar { ̃  m B,λ( x ) } = 

⎧ ⎨ ⎩ 

1 
nb 1 / 2 

5 σ 2 ( x ) 

4 
√ 

π
√ 

x ( 1 −x ) f ( x ) 
+ o 
(
n 

−1 b −1 / 2 
)

f or interior x 

O 

(
n 

−1 b −1 
)

f or boundary x 

. 
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Corollary 2. Under Assumptions 1 - 3 , as n → ∞ , the bias of ˆ m B ( x ) can be expanded up to the second order as 

Bias 
{

ˆ m B ( x ) 
}

= 

1 

2 

x ( 1 − x ) m 

( 2 ) ( x ) b + 

[
−
{

1 − 5 

2 

x ( 1 − x ) + x ( 1 − x ) ( 1 − 2 x ) 
f ( 1 ) ( x ) 

f ( x ) 

− 1 

2 

x 2 ( 1 − x ) 
2 f 

( 2 ) ( x ) 

f ( x ) 
+ x 2 ( 1 − x ) 

2 

(
f ( 1 ) ( x ) 

f ( x ) 

)2 
} 

m 

( 2 ) ( x ) 

+ 

1 

3 

x ( 1 − x ) ( 1 − 2 x ) m 

( 3 ) ( x ) + 

1 

8 

x 2 ( 1 − x ) 
2 m 

( 4 ) ( x ) 

] 
b 2 + o 

(
b 2 
)
. 

Proposition 2. (i) Under Assumptions 1 - 3 , as n → ∞ , the bias and variance of ˆ m B, ±( x ) := ˆ m B 

(
x | x ±√ 

x ( 1 − x ) b 
)

can be ap-

proximated by 

Bias 
{

ˆ m B, ±( x ) 
}

= ∓
√ 

x ( 1 − x ) 

[{
3 

2 

( 1 − 2 x ) + x ( 1 − x ) 
f ( 1 ) ( x ) 

f ( x ) 

}
m 

( 2 ) ( x ) 

+ 

1 

3 

x ( 1 − x ) m 

( 3 ) ( x ) 

] 
b 3 / 2 + B B, ∞ 

( x ; m, f ) b 2 + o 
(
b 2 
)
, 

where 

B B, ∞ 

( x ; m, f ) = lim 

λ→∞ 

B B,λ( x ; m, f ) 

= −
[{

1 − 6 x ( 1 − x ) + 2 x ( 1 − x ) ( 1 − 2 x ) 
f ( 1 ) ( x ) 

f ( x ) 
+ 

1 

2 

x 2 ( 1 − x ) 
2 f 

( 2 ) ( x ) 

f ( x ) 

}
m 

( 2 ) ( x ) 

+ x ( 1 − x ) 

{
5 

3 

( 1 − 2 x ) + x ( 1 − x ) 
f ( 1 ) ( x ) 

f ( x ) 

}
m 

( 3 ) ( x ) + 

1 

4 

x 2 ( 1 − x ) 
2 m 

( 4 ) ( x ) 

]
and 

V ar 
{

ˆ m B, ±( x ) 
}

= 

⎧ ⎨ ⎩ 

1 
nb 1 / 2 

3 σ 2 ( x ) 

4 
√ 

π
√ 

x ( 1 −x ) f ( x ) 
+ o 
(
n 

−1 b −1 / 2 
)

f or interior x 

O 

(
n 

−1 b −1 
)

f or boundary x 

. 

(ii) Under Assumptions 1 - 3 , as n → ∞ , the bias and variance of ˜ m B, ∞ 

( x ) := 

{
ˆ m B, −( x ) + ˆ m B, + ( x ) 

}
/ 2 can be approximated by 

Bias { ̃  m B, ∞ 

( x ) } = B B, ∞ 

( x ; m, f ) b 2 + o 
(
b 2 
)
, and 

V ar { ̃  m B, ∞ 

( x ) } = 

{ 

1 
nb 1 / 2 

5 σ 2 ( x ) 

4 
√ 

π
√ 

x ( 1 −x ) f ( x ) 
+ o 
(
n 

−1 b −1 / 2 
)

f or interior x 

O 

(
n 

−1 b −1 
)

f or boundary x 
. 

Remark 3. Seifert and Gasser (1996 , Theorem 1) argue that finite-sample variances of local polynomial regression estimators

using kernels with compact support may be unbounded. This problem typically occurs when smoothing is made in sparse

regions. As a remedy, Seifert and Gasser (1996) propose to increase the bandwidth locally in such regions. However, Chen

(2002 , Lemma 1) demonstrates that the p th-order local polynomial regression estimator using the beta kernel is immune

to this problem, as long as at least p + 1 different data points are not on the boundary of [0, 1]. It follows that in finite

samples the beta LL estimator has finite variance with probability 1, and the same is true for the beta skewed estimation. 

3. Finite-Sample Performance 

In this section, finite-sample properties of the skewed estimators are assessed in comparison with other competing non-

parametric regression estimators. Our Monte Carlo study starts from assessing the gamma skewed estimation and then

proceeds to the beta skewed estimation. For each case, the data are generated from the regression model Y = m ( X ) + ε,

where the regressor X obeys some marginal distribution that will be specified shortly, X � ε , and ε
d = N 

(
0 , 0 . 05 2 

)
. 

3.1. On the Gamma Skewed Estimator 

3.1.1. Monte Carlo Design 

Our first Monte Carlo study focuses on a regressor with support on R + . Let X 
d = G ( 2 , 1 ) . Also let the regression curve

m ( x ) take one of the following functional forms: 

Model A : m ( x ) = exp ( −x ) + exp 

{
−4 ( x − 1 ) 

2 
}
. 

Model B : m ( x ) = −2 

√ 

x 

1 + x 
sin 

(
4 π√ 

1 + x 

)
. 
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The shape of each curve can be found in Fig. 2 below. The sample size is n ∈ {10 0, 20 0, 40 0}, and 10 0 0 replications are

drawn for each combination of the model and sample size. It is worth remarking that our Monte Carlo design with Model A

exactly mimics the one in Chen (2002) . Hence, our results for this model are directly comparable with the results therein. 

The simulation study compares finite-sample performance of the following seven regression estimators for m ( x ): (i) the LL

estimator smoothed by the symmetric, Epanechnikov kernel ˆ m E ( x ) ; (ii) the skewed estimator with λ∗ = 0 . 0352 smoothed by

the Epanechnikov kernel ˜ m E,λ∗ ( x ) ; (iii) the LL estimator smoothed by the gamma kernel ˆ m G ( x ) ; (iv) the local cubic estimator

smoothed by the gamma kernel ˆ m G,C ( x ) = e  S G ( x ) 
−1 T G ( x ) , where e  = 

[
1 0 0 0 

]
, 

S G ( x ) = 

⎡ ⎢ ⎣ 

s G 0 ( x ) s G 1 ( x ) s G 2 ( x ) s G 3 ( x ) 
s G 1 ( x ) s G 2 ( x ) s G 3 ( x ) s G 4 ( x ) 
s G 2 ( x ) s G 3 ( x ) s G 4 ( x ) s G 5 ( x ) 
s G 3 ( x ) s G 4 ( x ) s G 5 ( x ) s G 6 ( x ) 

⎤ ⎥ ⎦ 

, and T G ( x ) = 

⎡ ⎢ ⎣ 

t G 0 ( x ) 
t G 1 ( x ) 
t G 2 ( x ) 
t G 3 ( x ) 

⎤ ⎥ ⎦ 

;

(v) the skewed estimator with λ = 0 . 1 smoothed by the gamma kernel ˜ m G, 0 . 1 ( x ) ; (vi) the skewed estimator with λ = 1 ( =
equally-weighted skewed estimator) smoothed by the gamma kernel ˜ m G, 1 ( x ) ; and (vii) the limit skewed estimator smoothed

by the gamma kernel ˜ m G, ∞ 

( x ) . The estimators (i)-(iv) can be viewed as competitors to the gamma skewed estimators (v)-

(vii). The Epanechnikov skewed estimator (ii) is exactly the same as employed in the simulation study of Choi and Hall

(1998) . As mentioned in Remark 1 , this estimator is sensitive to the choice of λ, and λ∗ has some optimality. On the other

hand, we consider three different gamma skewed estimators (v)-(vii) in order to check the sensitivity of ˜ m G,λ to the choice

of λ. Furthermore, as recommended in Remark 2 , if a gamma skewed estimator is not well-defined for a very small x , then

it is replaced by the gamma LL estimator evaluated at the same design point. 

Performance of an estimator m̄ ( x ) is assessed via both global and local measures. The global measures include the root

integrated squared error (“RISE”) 

RISE { ̄m ( x ) } = 

√ ∫ ∞ 

0 
{ ̄m ( x ) − m ( x ) } 2 dx , 

and the integrated absolute deviation (“IAD”) 

IAD { ̄m ( x ) } = 

∫ ∞ 

0 
| ̄m ( x ) − m ( x ) | dx, 

where each integral is approximated by the trapezoidal rule on an equally-spaced grid of 551 points over the inter-

val [0.0, 5.5]. In addition, as the local measures, the squared bias and variance evaluated at twelve design points x ∈
{ 0 . 0 , 0 . 5 , . . . , 5 . 0 , 5 . 5 } over 10 0 0 Monte Carlo samples are computed. 

Furthermore, how to choose the tuning parameter is an important practical issue in kernel smoothing. We obtain the

optimal global tuning parameter of an estimator by an oracle method (Case #1) and then by the cross-validation (“CV”)

method (Case #2). Details of each method are discussed in the corresponding section below. 

3.1.2. Case #1: Oracle Tuning Parameters 

By the oracle tuning parameter for an estimator m̄ ( x ) we mean the optimal global tuning parameter (i.e., the bandwidth h

for the Epanechnikov kernel or the smoothing parameter b for the gamma kernel) that minimizes RISE { ̄m ( x ) } . The minimizer

is found on an equally-spaced grid of 40 points over the interval [0.01, 0.40]. 

Table 1 presents averages (“Ave”) and standard deviations (“SD”) of global performance measures and oracle tuning pa-

rameter values over 10 0 0 Monte Carlo samples. Assessing an estimator with the oracle tuning parameter value plugged in

can be interpreted as evaluating its potential. 

It can be immediately found that global measures of each estimator shrink with the sample size, which indicates con-

sistency. A closer look reveals that two Epanechnikov estimators perform inferior to other estimators for n = 100 . Although

their performances improve with the sample size, they do not surpass those of ˆ m G,C ( x ) , ˜ m G, 1 ( x ) and ˜ m G, ∞ 

( x ) even for

n = 400 . It is also worth remarking that average lengths of their tuning parameters are much larger than those of gamma

estimators. Choosing a global bandwidth for a symmetric kernel implies that amount of smoothing is fixed everywhere. It

seems that to take care of sparseness of data points on the right tail, both Epanechnikov estimators pick out fixed, long

bandwidths for extrapolation to the right. 

Now we turn to gamma estimators. As expected, each of four bias-corrected gamma estimators (i.e., ˆ m G,C ( x ) , ˜ m G, 0 . 1 ( x ) ,

˜ m G, 1 ( x ) , and ˜ m G, ∞ 

( x ) ) more or less outperforms the gamma LL estimator ˆ m G ( x ) . Comparing global measures of three gamma

skewed estimators reveals that performances of ˜ m G, 1 ( x ) and ˜ m G, ∞ 

( x ) look alike and are in general superior to those of

˜ m G, 0 . 1 ( x ) . This can be attributed to the fact that a small weight λ inflates the leading bias coefficient of ˜ m G,λ( x ) , whereas

its leading variance coefficient is insensitive to λ. Furthermore, ˜ m G, 1 ( x ) and ˜ m G, ∞ 

( x ) perform better than ˆ m G,C ( x ) for Model

A, and the results are reversed for Model B. However, margins are small for each case, and thus it may be safe to say that

these estimators perform equally well. Also observe that average tuning parameter values of gamma estimators are much

smaller than those of Epanechnikov estimators. 

Following Chen (2002) , we visualize local measures of the estimators in Fig. 1 . The results from Models A and B are

qualitatively similar, and thus only the former is presented. Notice that the vertical axis in each panel is the natural loga-

rithm of either squared bias or variance. Moreover, to avoid too many lines in a panel, we include only the limit skewed
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Table 1 

Monte Carlo Results (Gamma Case; Oracle). 

Model n Estimator RISE IAD Tuning Parameter 

Ave SD Ave SD Ave SD 

A 100 ˆ m E ( x ) 0.1042 (0.0711) 0.1483 (0.0489) 0.2797 (0.0797) 

˜ m E,λ∗ ( x ) 0.1007 (0.0688) 0.1450 (0.0537) 0.2725 (0.0763) 

ˆ m G ( x ) 0.0812 (0.0216) 0.1383 (0.0338) 0.0225 (0.0073) 

ˆ m G,C ( x ) 0.0689 (0.0277) 0.1197 (0.0451) 0.0736 (0.0385) 

˜ m G, 0 . 1 ( x ) 0.0707 (0.0235) 0.1208 (0.0367) 0.0230 (0.0064) 

˜ m G, 1 ( x ) 0.0627 (0.0208) 0.1091 (0.0322) 0.0269 (0.0088) 

˜ m G, ∞ ( x ) 0.0627 (0.0205) 0.1093 (0.0312) 0.0279 (0.0090) 

200 ˆ m E ( x ) 0.0675 (0.0319) 0.1103 (0.0247) 0.2465 (0.0650) 

˜ m E,λ∗ ( x ) 0.0640 (0.0327) 0.1034 (0.0282) 0.2401 (0.0586) 

ˆ m G ( x ) 0.0654 (0.0113) 0.1092 (0.0174) 0.0206 (0.0025) 

ˆ m G,C ( x ) 0.0468 (0.0138) 0.0810 (0.0211) 0.0540 (0.0208) 

˜ m G, 0 . 1 ( x ) 0.0541 (0.0132) 0.0925 (0.0201) 0.0222 (0.0042) 

˜ m G, 1 ( x ) 0.0444 (0.0119) 0.0778 (0.0174) 0.0228 (0.0050) 

˜ m G, ∞ ( x ) 0.0443 (0.0117) 0.0777 (0.0171) 0.0234 (0.0055) 

400 ˆ m E ( x ) 0.0473 (0.0122) 0.0830 (0.0146) 0.2182 (0.0449) 

˜ m E,λ∗ ( x ) 0.0429 (0.0130) 0.0735 (0.0160) 0.2202 (0.0398) 

ˆ m G ( x ) 0.0583 (0.0068) 0.0936 (0.0115) 0.0202 (0.0013) 

ˆ m G,C ( x ) 0.0348 (0.0099) 0.0590 (0.0143) 0.0435 (0.0154) 

˜ m G, 0 . 1 ( x ) 0.0480 (0.0107) 0.0795 (0.0167) 0.0228 (0.0045) 

˜ m G, 1 ( x ) 0.0341 (0.0080) 0.0591 (0.0123) 0.0216 (0.0037) 

˜ m G, ∞ ( x ) 0.0337 (0.0078) 0.0583 (0.0119) 0.0217 (0.0038) 

B 100 ˆ m E ( x ) 0.7646 (0.4999) 0.7307 (0.5103) 0.3841 (0.0360) 

˜ m E,λ∗ ( x ) 0.7356 (0.4812) 0.6984 (0.4966) 0.3840 (0.0352) 

ˆ m G ( x ) 0.1236 (0.0676) 0.1992 (0.0596) 0.0208 (0.0036) 

ˆ m G,C ( x ) 0.0706 (0.0364) 0.1120 (0.0468) 0.0787 (0.0404) 

˜ m G, 0 . 1 ( x ) 0.0914 (0.0751) 0.1232 (0.0567) 0.0240 (0.0062) 

˜ m G, 1 ( x ) 0.0891 (0.0742) 0.1189 (0.0516) 0.0253 (0.0073) 

˜ m G, ∞ ( x ) 0.0905 (0.0739) 0.1213 (0.0512) 0.0250 (0.0070) 

200 ˆ m E ( x ) 0.2221 (0.2709) 0.2420 (0.1959) 0.3143 (0.0658) 

˜ m E,λ∗ ( x ) 0.2129 (0.2588) 0.2184 (0.1915) 0.3139 (0.0652) 

ˆ m G ( x ) 0.0871 (0.0205) 0.1587 (0.0263) 0.0202 (0.0013) 

ˆ m G,C ( x ) 0.0463 (0.0193) 0.0731 (0.0251) 0.0584 (0.0282) 

˜ m G, 0 . 1 ( x ) 0.0495 (0.0253) 0.0784 (0.0229) 0.0229 (0.0046) 

˜ m G, 1 ( x ) 0.0487 (0.0249) 0.0756 (0.0206) 0.0230 (0.0048) 

˜ m G, ∞ ( x ) 0.0497 (0.0248) 0.0773 (0.0204) 0.0228 (0.0047) 

400 ˆ m E ( x ) 0.0755 (0.0715) 0.1146 (0.0502) 0.2158 (0.0559) 

˜ m E,λ∗ ( x ) 0.0686 (0.0711) 0.0949 (0.0494) 0.2185 (0.0534) 

ˆ m G ( x ) 0.0775 (0.0084) 0.1470 (0.0180) 0.0201 (0.0011) 

ˆ m G,C ( x ) 0.0336 (0.0148) 0.0513 (0.0152) 0.0486 (0.0173) 

˜ m G, 0 . 1 ( x ) 0.0363 (0.0106) 0.0611 (0.0156) 0.0233 (0.0047) 

˜ m G, 1 ( x ) 0.0344 (0.0102) 0.0549 (0.0122) 0.0217 (0.0039) 

˜ m G, ∞ ( x ) 0.0350 (0.0101) 0.0560 (0.0120) 0.0216 (0.0038) 

 

 

 

 

 

 

 

 

 

 

 

estimator among all gamma skewed estimators. 7 Notice that although the limit gamma skewed estimator for a very small

x is replaced with the gamma LL estimator, their local measures differ because of difference in their smoothing parameter

values. For example, ˜ m G, ∞ 

( 0 ) is replaced by ˆ m G ( 0 ) . Nonetheless, their squared bias and variance differ (although the gaps

are very small and thus almost invisible in Fig. 1 ). 

Fig. 1 indicates that the gamma LL estimator tends to have large squared bias. Both the gamma local cubic and limit

gamma skewed estimators improve the LL estimator in terms of bias in the sense that squared bias of the former in general

lies below that of the latter. We can also see that variance of each Epanechnikov estimator tends to inflate as the design

point x moves away from the origin. In contrast, three gamma estimators have similar variance properties, and their variance

reduction on the right tail is often substantial. These findings coincide with those in Chen (2002) . 

To illustrate how well each estimator can capture shapes of true regression curves, we plot pointwise averages of curve

estimates over 10 0 0 Monte Carlo samples for n = 200 in Fig. 2 . The set of estimators used here is the same as in Fig. 1 . It

can be found that the gamma local cubic and limit gamma skewed estimators can capture shapes of entire regression curves

(including peaks and troughs near the origin and right tails) equally well. On the other hand, two Epanechnikov estimators
7 Based on our preliminary analysis, local performances of gamma skewed estimators with λ = 1 and λ = 0 . 1 are similar and inferior to those of the 

limit skewed estimator, respectively. 
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Fig. 1. Squared Bias and Variance of Curve Estimates (Gamma Case [Model A]; Oracle). 

Note: Dash-dot, thin solid, dot, dash, and solid lines correspond to the Epanechnikov LL, Epanechnikov skewed, gamma LL, gamma local cubic, and limit 

gamma skewed estimates, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

are not so impressive as the gamma estimators. Despite a long bandwidth and the sample size of 200, they yield wiggly

(and often severely biased) curve estimates on the right tail. As a result of oversmoothing via the long bandwidth, they also

fail to precisely capture the peak or trough in the vicinity of the origin. 

In sum, unless a small weight is chosen, the gamma skewed estimator has nice finite-sample properties. Its finite-sample

performance in general dominates those of the Epanechnikov LL and skewed estimators and is comparable with that of the

gamma local cubic estimator. Based on these findings, we focus exclusively on the gamma skewed with λ = 1 and limit

gamma skewed estimators in the analysis below and Section 4 . The gamma LL estimator is also employed as a benchmark. 

3.1.3. Case #2: Cross-Validated Tuning Parameters 

We proceed to investigate curve estimates with data-based tuning parameter values plugged in. The leave-one-out CV is

exclusively considered as the data-driven implementation method. CV is popularly employed for LL regression smoothing,

and Choi and Hall (1998 , Remark 2.6) themselves anticipate that it may serve as a straightforward implementation method

for their skewed estimation. While a plug-in method based on the leading two terms in the MISE could be another option,

it does not look attractive because in practice it requires to estimate many derivatives of m and f (as well as themselves), as

indicated in Theorems 1 and 2 . 

Details of the CV employed in this study are as follows. Let m̄ −i,b ( ·) be a regression estimate using the smoothing pa-

rameter b and the sample with the i th observation eliminated. Then, the CV criterion function becomes 

CV ( b ) = 

n ∑ 

i =1 

{ Y i − m̄ −i,b ( X i ) } 2 . 

The data-driven optimal global smoothing parameter is defined as the minimizer of CV ( b ). As in the oracle case, the mini-

mizer is found on an equally-spaced grid of 40 points over the interval [0.01, 0.40] . 
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Fig. 2. Pointwise Averages of Curve Estimates (Gamma Case; Oracle; n = 200 ). 

Note: Thin dash lines represent true regression curves. Dash-dot, thin solid, dot, dash, and solid lines correspond to the Epanechnikov LL, Epanechnikov 

skewed, gamma LL, gamma local cubic, and limit gamma skewed estimates, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 and Fig. 3 report the global and local performance measures of the gamma LL, gamma skewed with λ = 1 and

limit gamma skewed estimators. The performance measures are exactly the same as in Table 1 and Fig. 1 . Again the results

of local measures from Models A and B are qualitatively similar, and thus only the former is presented in Fig. 3 . Notice that

in this case the random number generator is initialized using the same seed number as in Case #1. Therefore, Monte Carlo

samples for two cases are identical and thus we may compare the results in Tables 1 and 2 or Figs. 1 and 3 directly. 

It can be found in Table 2 that the CV-based smoothing parameter values are fairly close enough to the corresponding

oracle ones. Because kernel estimators are sensitive to choices of tuning parameter values, both global and local performance

measures become worse. However, thanks to small difference between oracle and CV-based smoothing parameter values,

deterioration in the measures by switching from the former to the latter is minimal at best. As indicated in the previous

section, global measures of two skewed estimators look alike again and dominate those of the gamma LL estimator. In terms

of local measures, there is not much difference in variance among the three estimators. It is not surprising that variances of

two skewed estimators are close to each other. This simply reflects that dominant terms of their variances are identical and

independent of λ. Also observe that the skewed estimators tend to have better bias properties as the sample size increases.

All in all, Monte Carlo results indicate that gamma skewed estimators work well in practice and tend to outperform the

gamma LL estimator for the sample sizes that are typically used in empirical applications. To implement the estimators, we

may rely on CV. 

3.2. On the Beta Skewed Estimator 

The second Monte Carlo study deals with a regressor with support on [0, 1]. The regressor X is generated as absolute

values of N (0, 0.3 2 ) random variables truncated on [ −1 , 1 ] . The true regression curve is m ( x ) = ( x − 1 / 2 ) 2 . The sample size

is n ∈ {10 0, 20 0, 40 0}, and the number of replications is 10 0 0. This design is again the same as in the one in Chen (2002) ,

and thus our results are directly comparable with the results therein. 
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Table 2 

Monte Carlo Results (Gamma Case; CV). 

Model n Estimator RISE IAD Tuning Parameter 

Ave SD Ave SD Ave SD 

A 100 ˆ m G ( x ) 0.0929 (0.0356) 0.1508 (0.0449) 0.0288 (0.0195) 

˜ m G, 1 ( x ) 0.0738 (0.0386) 0.1209 (0.0482) 0.0320 (0.0199) 

˜ m G, ∞ ( x ) 0.0735 (0.0384) 0.1203 (0.0469) 0.0321 (0.0202) 

200 ˆ m G ( x ) 0.0807 (0.0214) 0.1288 (0.0308) 0.0307 (0.0143) 

˜ m G, 1 ( x ) 0.0550 (0.0209) 0.0940 (0.0317) 0.0342 (0.0154) 

˜ m G, ∞ ( x ) 0.0534 (0.0204) 0.0912 (0.0298) 0.0338 (0.0153) 

400 ˆ m G ( x ) 0.0821 (0.0187) 0.1241 (0.0268) 0.0347 (0.0130) 

˜ m G, 1 ( x ) 0.0505 (0.0184) 0.0843 (0.0286) 0.0380 (0.0138) 

˜ m G, ∞ ( x ) 0.0478 (0.0177) 0.0800 (0.0269) 0.0375 (0.0138) 

B 100 ˆ m G ( x ) 0.1424 (0.0798) 0.2339 (0.0927) 0.0271 (0.0136) 

˜ m G, 1 ( x ) 0.1054 (0.0899) 0.1349 (0.0728) 0.0311 (0.0162) 

˜ m G, ∞ ( x ) 0.1063 (0.0900) 0.1366 (0.0723) 0.0308 (0.0164) 

200 ˆ m G ( x ) 0.1140 (0.0382) 0.2129 (0.0659) 0.0298 (0.0109) 

˜ m G, 1 ( x ) 0.0638 (0.0407) 0.0941 (0.0430) 0.0339 (0.0131) 

˜ m G, ∞ ( x ) 0.0639 (0.0401) 0.0943 (0.0416) 0.0333 (0.0129) 

400 ˆ m G ( x ) 0.1177 (0.0318) 0.2285 (0.0637) 0.0343 (0.0110) 

˜ m G, 1 ( x ) 0.0545 (0.0296) 0.0826 (0.0407) 0.0380 (0.0126) 

˜ m G, ∞ ( x ) 0.0541 (0.0289) 0.0815 (0.0387) 0.0374 (0.0125) 

Fig. 3. Squared Bias and Variance of Curve Estimates (Gamma Case [Model A]; CV). 

Note: Dot, dash, and solid lines correspond to the gamma LL, gamma skewed with λ = 1 , and limit gamma skewed estimates, respectively. 
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Table 3 

Monte Carlo Results (Beta Case; Oracle). 

n Estimator RISE IAD Tuning Parameter 

Ave SD Ave SD Ave SD 

100 ˆ m E ( x ) 0.0385 (0.0247) 0.0258 (0.0135) 0.3138 (0.1159) 

˜ m E,λ∗ ( x ) 0.0392 (0.0246) 0.0254 (0.0139) 0.3017 (0.1122) 

ˆ m B ( x ) 0.0270 (0.0219) 0.0185 (0.0126) 0.0881 (0.0571) 

ˆ m B,C ( x ) 0.0354 (0.0249) 0.0227 (0.0150) 0.2541 (0.1493) 

˜ m B, 0 . 1 ( x ) 0.0266 (0.0221) 0.0180 (0.0128) 0.0864 (0.0564) 

˜ m B, 1 ( x ) 0.0263 (0.0226) 0.0176 (0.0132) 0.0854 (0.0545) 

˜ m B, ∞ ( x ) 0.0264 (0.0228) 0.0176 (0.0133) 0.0844 (0.0538) 

200 ˆ m E ( x ) 0.0237 (0.0154) 0.0172 (0.0087) 0.3194 (0.0894) 

˜ m E,λ∗ ( x ) 0.0248 (0.0167) 0.0165 (0.0095) 0.2976 (0.0810) 

ˆ m B ( x ) 0.0198 (0.0154) 0.0138 (0.0086) 0.0762 (0.0440) 

ˆ m B,C ( x ) 0.0229 (0.0178) 0.0143 (0.0096) 0.2796 (0.1363) 

˜ m B, 0 . 1 ( x ) 0.0193 (0.0157) 0.0131 (0.0087) 0.0754 (0.0426) 

˜ m B, 1 ( x ) 0.0190 (0.0162) 0.0126 (0.0090) 0.0735 (0.0417) 

˜ m B, ∞ ( x ) 0.0191 (0.0163) 0.0127 (0.0091) 0.0725 (0.0407) 

400 ˆ m E ( x ) 0.0169 (0.0097) 0.0129 (0.0059) 0.2879 (0.0874) 

˜ m E,λ∗ ( x ) 0.0178 (0.0115) 0.0118 (0.0066) 0.2572 (0.0710) 

ˆ m B ( x ) 0.0151 (0.0101) 0.0108 (0.0055) 0.0639 (0.0350) 

ˆ m B,C ( x ) 0.0148 (0.0112) 0.0094 (0.0057) 0.2886 (0.1315) 

˜ m B, 0 . 1 ( x ) 0.0145 (0.0103) 0.0099 (0.0056) 0.0642 (0.0337) 

˜ m B, 1 ( x ) 0.0143 (0.0108) 0.0095 (0.0058) 0.0619 (0.0329) 

˜ m B, ∞ ( x ) 0.0143 (0.0109) 0.0095 (0.0059) 0.0612 (0.0319) 

Table 4 

Monte Carlo Results (Beta Case; CV). 

n Estimator RISE IAD Tuning Parameter 

Ave SD Ave SD Ave SD 

100 ˆ m B ( x ) 0.0540 (0.0976) 0.0311 (0.0410) 0.0539 (0.0331) 

˜ m B, 1 ( x ) 0.0466 (0.0601) 0.0278 (0.0272) 0.0726 (0.0381) 

˜ m B, ∞ ( x ) 0.0472 (0.0726) 0.0280 (0.0328) 0.0728 (0.0372) 

200 ˆ m B ( x ) 0.0382 (0.0493) 0.0214 (0.0195) 0.0394 (0.0217) 

˜ m B, 1 ( x ) 0.0304 (0.0304) 0.0179 (0.0134) 0.0613 (0.0275) 

˜ m B, ∞ ( x ) 0.0306 (0.0306) 0.0180 (0.0135) 0.0603 (0.0271) 

400 ˆ m B ( x ) 0.0310 (0.0511) 0.0162 (0.0142) 0.0294 (0.0151) 

˜ m B, 1 ( x ) 0.0219 (0.0178) 0.0129 (0.0079) 0.0518 (0.0211) 

˜ m B, ∞ ( x ) 0.0221 (0.0188) 0.0129 (0.0082) 0.0508 (0.0207) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimators for m ( x ) include ˆ m E ( x ) (the Epanechnikov LL estimator), ˜ m E,λ∗ ( x ) (the Epanechnikov skewed estimator with

λ∗ = 0 . 0352 ), ˆ m B ( x ) (the beta LL estimator), ˆ m B,C ( x ) (the beta local cubic estimator), ˜ m B, 0 . 1 ( x ) (the beta skewed estimator

with λ = 0 . 1 ), ˜ m B, 1 ( x ) (the beta skewed estimator with λ = 1 ), and ˜ m B, ∞ 

( x ) (the limit beta skewed estimator). If a beta

skewed estimator is not well-defined for x in the vicinity of 0 or 1, then it is replaced by the beta LL estimator evaluated at

the same design point. To implement all these estimators, we choose their tuning parameters via the oracle and CV methods

as before. 

The global performance measures that assess an estimator include the RISE and IAD, where each integral is approximated

by the trapezoidal rule on an equally-spaced grid of 101 points over the interval [0, 1]. As the local performance measures,

the squared bias and variance evaluated at eleven design points x ∈ { 0 . 0 , 0 . 1 , . . . , 0 . 9 , 1 . 0 } over 10 0 0 Monte Carlo samples

are computed. 

Results of global performance measures are summarized in Tables 3 (oracle tuning parameters) and 4 (CV tuning param-

eters). To save space, we only report Fig. 4 , which presents local measures of the estimators using oracle tuning parameters,

as in Chen (2002) . 

The results in Tables 3 and 4 confirm our findings in Tables 1 and 2 . Each estimator numerically indicates consistency

in that their global performance measures shrink with the sample size. The three beta skewed estimators outperform the

others. Again, performances of ˜ m B, 1 ( x ) and ˜ m B, ∞ 

( x ) look alike and are superior to those of ˜ m B, 0 . 1 ( x ) . The only difference

is that the beta cubic estimator does not perform well for n = 10 0 , 20 0 . Its performances are rather close to those of two

Epanechnikov estimators. We now check the local performance measures in Fig. 4 . As in Fig. 1 , the vertical axis in each

panel of Fig. 4 is the natural logarithm of either squared bias or variance. The figure shows that the beta cubic estimator

has the smallest bias over almost the entire unit interval, whereas the limit beta skewed estimator attains the smallest

variance around [0.4, 1]. The beta cubic estimator tends to have by far the largest variance around [0.1, 0.4], which appears
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Fig. 4. Squared Bias and Variance of Curve Estimates (Beta Case; Oracle). 

Note: Dash-dot, thin solid, dot, dash, and solid lines correspond to the Epanechnikov LL, Epanechnikov skewed, beta LL, beta local cubic, and limit beta 

skewed estimates, respectively. 

 

 

 

 

 

 

 

 

to result in its mediocre global performance measures for n = 10 0 , 20 0 . 8 Furthermore, Table 4 indicates that to implement

the beta skewed estimation, CV works well in practice. 

4. An Empirical Illustration 

4.1. The Model 

In this section the skewed estimators are applied to a real data set. Inspired by Tripathi and Kim (2003) , we concentrate

on the problem of estimating a production function with homogeneity of degree one (or linear homogeneity) imposed.

Suppose that there is the technological relationship in which two factors, namely, capital and labor inputs ( K , L ), can produce

output Y . This relationship can be expressed as a production function and formulated in a regression format as 

g ( K, L ) = E ( Y | K, L ) ⇒ Y = g ( K, L ) + ε 

for an unknown function g and the regression error ε. With no further restrictions on g , we would have to run a multiple

nonparametric regression of Y on ( K, L ) = ( k, l ) to estimate g ( k , l ). However, as is often the case with estimating production

functions, if it is known a priori (or it may be reasonably assumed) that g is homogeneous of degree one in ( K , L ) (i.e., the

technology exhibits constant returns to scale), then we can rewrite the estimation problem as that of a simple regression.
8 It seems that the mediocre performance of the beta cubic estimator is attributed to sparseness of the data on the right boundary. The lesson learnt here 

is that a guard against sparseness such as the one used in Choi and Hall (1998 , Section 3.2 ) should be considered to stabilize local polynomial estimation, 

regardless of the choice of a kernel. 
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Table 5 

Summary Statistics (in millions). 

Variable Ave SD SK Min Med Max 

W 0.1319 0.1729 4.1567 0.0094 0.0793 1.5839 

Z 0.1181 0.0770 2.8297 0.0281 0.0960 0.6552 

Note: Ave = average; SD = standard deviation; SK = skewness; Min = mini- 

mum; Med = median; and Max = maximum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specifically, the linear homogeneity implies 

g ( K, L ) = L · g 

(
K 

L 
, 1 

)
:= L · m 

(
K 

L 

)
so that the original regression can be reformulated as 

Y 

L 
= m 

(
K 

L 

)
+ 

ε 

L 
⇒ Z = m ( W ) + ε

by letting ( Z , W , ε) := ( Y / L , K / L , ε/ L ). The entire estimation procedure then takes two steps. The first step is to run a simple

nonparametric regression of Z on W = w = k/l to estimate m ( w ) . Let m̄ ( w ) be a nonparametric estimate of m ( w ) . Then,

in the second step, it follows from the relation w = k/l that g ( k , l ) can be estimated as ḡ ( k, l ) = l · m̄ ( w ) . Tripathi and Kim

(2003) investigate LL estimation of m ( w ) using standard symmetric kernels and develop statistical properties of the estima-

tor. 

4.2. The Data 

The National Bureau of Economic Research (“NBER”) makes an industry-level panel data set public on its web page

( http://www.nber.org/nberces/ ). The data set, the NBER-CES Manufacturing Industry Database, is provided in two versions,

depending on the classification of manufacturing industries; see Bartelsman and Gray (1996) and Becker et al. (2016) for

more details of the database. We choose the version with industries classified by the six-digit level of the North American

Industry Classification System (“NAICS”) in 1997. 

The 1997 NAICS version contains annual industry-level data of 473 industries from 1958 to 2011. The sample in 20 0 0

is used throughout. Because the database includes a few candidates for each of Y , K and L , we follow Kumbhakar et al.

(2012) , for instance, and define VADD ( = total value added in $1m), CAP ( = total real capital stock in $1m) and EMP ( = total

employment in 10 0 0s) as Y , K and L , respectively. Subsequently two variables ( W, Z ) = ( K/L, Y/L ) can be constructed. 

Before proceeding, we find a few observations with extremely large values of Z . Because they are highly likely to influence

our estimation results, it is desirable to eliminate them as outliers. For this purpose, we employ the generalized boxplot

by Bruffaerts et al. (2014) . 9 With its aid, two observations are detected as outliers and eliminated from the sample. The

eliminated industries are “Flavoring Syrup and Concentrate Manufacturing” (NAICS Code: 311930) with ( W, Z ) = ( 0 . 24 , 1 . 18 )
and “Cigarette Manufacturing” (NAICS Code: 312221) with ( W, Z ) = ( 0 . 43 , 2 . 19 ) . As a result, the sample size is 471. 

Table 5 presents summary statistics of ( W , Z ), where their units of measurement are converted in millions. The regressor

W is nonnegative by construction and has a positive skewness; indeed, the scatter plot of data points in Fig. 5 indicates

concentration of observations of W in the vicinity of the origin and a long right-tail of its marginal distribution. Asymmetric

kernel smoothing is likely to work well with such data, and thus we are motivated to estimate the unknown curve m ( w )
by our gamma skewed estimators. 

4.3. Estimation Results 

In what follows, the gamma skewed with λ = 1 and limit gamma skewed estimators, as well as the gamma LL estimator,

are employed for the curve estimation. Their smoothing parameter values are chosen via CV. The values for the gamma LL,

gamma skewed with λ = 1 , and limit gamma skewed estimators are 0.0733, 0.0818 and 0.0843, respectively. 

Furthermore, researchers often specify the production function g in a simple, parametric form. The Cobb-Douglas pro-

duction function ( Cobb and Douglas, 1928 ) is among the most popular ones. When it is homogenous of degree one, it can

be expressed in a multiplicative error regression model as 

Y = AK 

αL 1 −αu, 

where A > 0 and α ∈ (0, 1) are parameters and u > 0 is the regression error. A simple manipulation yields 

ln 

(
Y 

L 

)
= ln A + α ln 

(
K 

L 

)
+ ln u ⇒ ln Z = β0 + β1 ln W + v 
9 The generalized boxplot is designed for skewed and/or heavy-tailed distributions and thus fits into our context. It is available on Stata as the command 

gboxplot . 

http://www.nber.org/nberces/
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Fig. 5. Estimates of a Linear Homogeneous Production Function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by letting ( β0 , β1 , v ) := ( ln A, α, ln u ) , and parameters ( β0 , β1 ) can be estimated by running the ordinary least squares

(“OLS”) from the regression of ln Z on (1, ln W ). The OLS estimates of ( β0 , β1 ) are 

(
ˆ β0 , 

ˆ β1 

)
= ( −1 . 1537 , 0 . 4590 ) . We then

employ the swearing estimate by Duan (1983) to back-transform 

ˆ Z from 

̂ ln Z . 10 More specifically, the final parametric esti-

mate of m ( w ) is ˆ m CD ( w ) = ˆ γ exp 

(
ˆ β0 

)
· w 

ˆ β1 , where ˆ γ is the average of 

{ 
exp 

(
ln Z i − ˆ β0 − ˆ β1 ln W i 

)} n 
i =1 

. 

A parametric and three nonparametric curve estimates of m ( w ) , as well as a scatter plot of data points, are drawn

in Fig. 5 . It can be immediately found that shapes of three nonparametric estimates considerably differ from the one of

the parametric one, which is globally concave by construction. In contrast, each of the nonparametric estimates appears

to be roughly monotone with an inflection point from concavity to convexity around w = 0 . 8 . Moreover, as deduced from

the Monte Carlo results in Section 3 , two skewed estimates are nearly identical. Although it is impossible to judge which

estimate is closest to the true curve, the substantial difference between nonparametric and parametric estimates indicates

that the parametric, Cobb-Douglas specification may be incorrect. 

5. Conclusion 

This paper has demonstrated that under a suitable choice of weights and shifts, the skewing method by Choi and Hall

(1998) can accelerate bias convergences of LL regression estimators using asymmetric kernels from O ( b ) to O ( b 2 ) as b → 0

while not inflating their variances in an order of magnitude. A remarkable difference can be found in the choice of the shift

that can lead to a faster bias convergence when symmetric and asymmetric kernels are employed. While for a given weight

λ, the shift is constant regardless of the position of the design point for symmetric kernels, it varies with the design point
10 We have also applied the back-transformation method proposed in Chapter 6 of Wooldridge (2013) , which is valid under the assumption of ho- 

moscedastic normal errors. Because the result is qualitatively similar, it is unreported in Fig. 5 . 
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for asymmetric kernels. Two versions of the skewed estimator (i.e., the case with a fixed λ and the limit case with λ→ ∞ )

are studied, and their large- and finite-sample properties are explored. In particular, Monte Carlo results indicate that the

gamma (beta) skewed with λ = 1 and limit gamma (beta) skewed estimators have equally nice finite-sample properties.

In fact, their finite-sample performances are superior to those of the Epanechnikov LL, Epanechnikov skewed and gamma

(beta) LL estimators, and they are comparable with those of the gamma (beta) local cubic estimator. CV is found to be

useful for implementing the skewed estimation. Finally, the skewed estimator is applied to the US manufacturing industry-

level data, and a linear-homogeneous production function is estimated nonparametrically. We find that the nonparametric

curve estimate substantially differs from the one implied by the popular, Cobb-Douglas specification. 
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A Appendix 

A.1. A Useful Lemma 

Before proceeding, we summarize useful results on the moments of certain gamma and beta random variables as a

lemma, which is frequently applied for the bias and variance approximations. 

A.1.1. Lemma A.1 

(i) Let θ jx 
d = G ( j x/b + 1 , b/ j ) for x ∈ R + and j = 1 , 2 . Then, the moments ν j,r = E 

(
θ jx − x 

)r 
for r = 1 , 2 , . . . , are: 

ν j, 1 = 

b 

j 
;

ν j, 2 = 

b 

j 2 
( jx + 2 b ) ;

ν j, 3 = 

b 2 

j 3 
( 5 jx + 6 b ) ;

ν j, 4 = 

b 2 

j 4 

(
3 j 2 x 2 + 26 jxb + 24 b 2 

)
; and 

ν j,r = O 

(
b 3 
)

f or r ≥ 5 . 

(ii) Let η jx 
d = Beta { j x/b + 1 , j ( 1 − x ) /b + 1 } for x ∈ [0, 1] and j = 1 , 2 . Then, as b → 0 , the moments υ j,r = E 

(
η jx − x 

)r 
for r =

1 , 2 , . . . , can be approximated by: 

υ j, 1 = 

(
1 − 2 x 

j 

)
b −
{ 

2 ( 1 − 2 x ) 

j 2 

} 
b 2 + O 

(
b 3 
)
;

υ j, 2 = 

{ 
x ( 1 − x ) 

j 

} 
b + 

(
2 − 11 x + 11 x 2 

j 2 

)
b 2 + O 

(
b 3 
)
;

υ j, 3 = 

{ 
5 x ( 1 − x ) ( 1 − 2 x ) 

j 2 

} 
b 2 + O 

(
b 3 
)
;

υ j, 4 = 

{
3 x 2 ( 1 − x ) 

2 

j 2 

}
b 2 + O 

(
b 3 
)
; and (

3 
)

υ j,r = O b f or r ≥ 5 . 

https://doi.org/10.13039/501100001691
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A.1.2. Proof of Lemma A.1 

These results immediately follow from evaluating the moments of the gamma and beta random variables (for (i) and (ii))

and expanding them around b = 0 (for (ii) only). �

A.2. Proof of Theorem 1 

The proof closely follows the Proof of Theorem 2.1 in Choi (1998) . For brevity, the subscript G and the design point x are

suppressed wherever no confusions may occur. In addition, we introduce short-handed notations such as ˜ m λ,	 = ˜ m G,λ,	 ( x ) ,

ˆ m 

∗ = ˆ m G ( x | x ∗) , μp = E 
{

s Gp ( x ) 
}
, μ∗

p = E 
{

s Gp ( x 
∗) 
}
, m 

( p ) = m 

( p ) ( x ) , m 

( p ) ∗ = m 

( p ) ( x ∗) , f ( p ) = f ( p ) ( x ) , f ( p ) ∗ = f ( p ) ( x ∗) , and so

on, where s Gp ( x ) is defined in (1) . The proof takes the following steps: 

1. Approximate the bias of each of three LL estimators, conditional on X = x, up to the O ( b 2 ) term. 

2. Find the weights ( λ1 , λ2 ) and shifts ( 	 1 , 	 2 ) that can eliminate the O ( b ) and O ( b 3/2 ) terms in Bias 
(

˜ m λ,	 

)
. 

3. Substitute the results in Step 2 into the O ( b 2 ) term in Bias 
(

˜ m λ,	 

)
. 

Step 1. By a similar argument to the proof of Theorem 1 in Chen (2002) , we can expand E 
(

ˆ m 

∗) as 

E 
(

ˆ m 

∗) = m 

∗ + ( x − x ∗) m 

( 1 ) ∗ + 

Q 

∗ + R 

∗

μ∗
0 
μ∗

2 
− μ∗2 

1 

+ O 

(
n 

−1 b −1 
)
, 

where R ∗ = R ( x ∗) is the remainder term in a smaller order of magnitude by Taylor’s theorem, and Q 

∗ = Q ( x ∗) is in the form

of 

Q 

∗ = 

m 

( 2 ) ∗

2 

{(
μ∗2 

2 − μ∗
1 μ

∗
3 

)
+ ( x − x ∗) ( μ∗

0 μ
∗
3 − μ∗

1 μ
∗
2 ) 
}

+ 

m 

( 3 ) ∗

6 

{ ( μ∗
2 μ

∗
3 − μ∗

1 μ
∗
4 ) + ( x − x ∗) ( μ∗

0 μ
∗
4 − μ∗

1 μ
∗
3 ) } 

+ 

m 

( 4 ) ∗

24 

{ ( μ∗
2 μ

∗
4 − μ∗

1 μ
∗
5 ) + ( x − x ∗) ( μ∗

0 μ
∗
5 − μ∗

1 μ
∗
4 ) } . 

Moreover, μ∗
p admits the expansion 

μ∗
p = f ∗ν∗

1 ,p + f ( 1 ) ∗ν∗
1 ,p+1 + 

f ( 2 ) ∗

2 

ν∗
1 ,p+2 + O 

(
ν∗

1 ,p+3 

)
, 

where ν∗
1 ,r 

= E ( θx ∗ − x ∗) r for θx ∗
d = G ( x ∗/b + 1 , b ) . Then, it follows from Lemma A.1(i) that approximations to μ∗

p for p =
0 , 1 , . . . , 5 are: 

μ∗
0 = f ∗ + 

(
f ( 1 ) ∗ + 

x ∗

2 

f ( 2 ) ∗
)

b + O 

(
b 2 
)
;

μ∗
1 = 

(
f ∗ + x ∗ f ( 1 ) ∗

)
b + 

(
2 f ( 1 ) ∗ + 

5 

2 

x ∗ f ( 2 ) ∗
)

b 2 + O 

(
b 3 
)
;

μ∗
2 = x ∗ f ∗b + 

(
2 f ∗ + 5 x ∗ f ( 1 ) ∗ + 

3 

2 

x ∗2 f ( 2 ) ∗
)

b 2 + O 

(
b 3 
)
;

μ∗
3 = 

(
5 x ∗ f ∗ + 3 x ∗2 f ( 1 ) ∗

)
b 2 + O 

(
b 3 
)
;

μ∗
4 = 3 x ∗2 f ∗b 2 + O 

(
b 3 
)
; and 

μ∗
5 = O 

(
b 3 
)
. 

Putting x ∗ = x + 	b 1 / 2 , taking Taylor expansions of m 

( p ) ∗ and μ∗
p around x ∗ = x (i.e., 	b 1 / 2 = 0 ), doing some tedious but

straightforward calculations, and recognizing that O 

(
n −1 b −1 

)
= o 
(
b 2 
)

due to Assumption 3 , we finally have 

E 
(

ˆ m 

∗) = m + 

1 

2 

(
x − 	 2 

)
m 

( 2 ) b − 	 

{(
3 

2 

+ x 
f ( 1 ) 

f 

)
m 

( 2 ) + 

	 2 

3 

m 

( 3 ) 

}
b 3 / 2 

+ 

[ 

−
{ 

1 + x 
f ( 1 ) 

f 
− x 2 

2 

f ( 2 ) 

f 
+ x 2 

(
f ( 1 ) 

f 

)2 

+ 	 2 

( 

f ( 1 ) 

f 
+ x 

( 

f ( 2 ) 

f 
−
(

f ( 1 ) 

f 

)2 
) ) } 

m 

( 2 ) 

+ 

{
x 

3 

− 	 2 

(
2 + x 

f ( 1 ) 

f 

)}
m 

( 3 ) + 

(
x 2 

8 

− 	 2 

4 

x − 	 4 

8 

)
m 

( 4 ) 

]
b 2 + o 

(
b 2 
)
. 

The bias expansions of ˆ m G 

(
x | x − 	 1 b 

1 / 2 
)
, ˆ m G ( x | x ) and ˆ m G 

(
x | x + 	 2 b 

1 / 2 
)

immediately follow from letting 	 = −	 1 , 0 , 	 2 on

the right-hand side, respectively. In particular, a second-order bias expansion of the gamma LL estimator ˆ m G ( x | x ) = ˆ m G ( x )
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takes the form of 

Bias 
{

ˆ m G ( x ) 
}

= 

x 

2 

m 

( 2 ) b + 

[ 

−
{ 

1 + x 
f ( 1 ) 

f 
− x 2 

2 

f ( 2 ) 

f 
+ x 2 

(
f ( 1 ) 

f 

)2 
} 

m 

( 2 ) + 

x 

3 

m 

( 3 ) + 

x 2 

8 

m 

( 4 ) 

] 

b 2 + o 
(
b 2 
)
. 

Step 2. By the results in Step 1, 

E 
(

˜ m λ,	 

)
= m + 

1 

2 ( λ1 + 1 + λ2 ) 

{
( λ1 + 1 + λ2 ) x −

(
λ1 	 

2 
1 + λ2 	 

2 
2 

)}
m 

( 2 ) b 

+ 

1 

λ1 + 1 + λ2 

{
( λ2 	 2 − λ1 	 1 ) 

(
3 

2 

+ x 
f ( 1 ) 

f 

)
m 

( 2 ) + 

1 

3 

(
λ2 	 

3 
2 − λ1 	 

3 
1 

)
m 

( 3 ) 

}
b 3 / 2 

+ 

[ 

−
{ 

1 + x 
f ( 1 ) 

f 
− x 2 

2 

f ( 2 ) 

f 
+ x 2 

(
f ( 1 ) 

f 

)2 
} 

m 

( 2 ) + 

x 

3 

m 

( 3 ) + 

x 2 

8 

m 

( 4 ) 

− 1 

λ1 + 1 + λ2 

{ (
λ1 	 

2 
1 + λ2 	 

2 
2 

)( ( 

f ( 1 ) 

f 
+ x 

( 

f ( 2 ) 

f 
−
(

f ( 1 ) 

f 

)2 
) ) 

m 

( 2 ) 

+ 

(
2 + x 

f ( 1 ) 

f 

)
m 

( 3 ) 

)
+ 

(
λ1 	 

2 
1 

(
x 

4 

+ 

	 2 1 

8 

)
+ λ2 	 

2 
2 

(
x 

4 

+ 

	 2 2 

8 

))
m 

( 4 ) 

}]
b 2 + o 

(
b 2 
)
. 

Therefore, both O ( b ) and O ( b 3/2 ) terms vanish if and only if { 

( λ1 + 1 + λ2 ) x −
(
λ1 	 

2 
1 + λ2 	 

2 
2 

)
= 0 

λ2 	 2 − λ1 	 1 = 0 

λ2 	 
3 
2 − λ1 	 

3 
1 = 0 

. 

Solving this system for ( λ1 , λ2 , 	 1 , 	 2 ) yields 

λ1 = λ2 = λ and 	 1 = 	 2 = 	 = 	 ( λ, x ) = 

√ (
2 λ + 1 

2 λ

)
x . 

Step 3. Substituting ( λ, 	 ) into the coefficient on b 2 in Bias 
(

˜ m λ,	 

)
finally gives 

−
{ 

1 + x 
f ( 1 ) 

f 
− x 2 

2 

f ( 2 ) 

f 
+ x 2 

(
f ( 1 ) 

f 

)2 
} 

m 

( 2 ) + 

x 

3 

m 

( 3 ) + 

x 2 

8 

m 

( 4 ) − x 

[ { 

f ( 1 ) 

f 
+ x 

( 

f ( 2 ) 

f 
−
(

f ( 1 ) 

f 

)2 
) } 

m 

( 2 ) 

+ 

(
2 + x 

f ( 1 ) 

f 

)
m 

( 3 ) + x 

(
1 

4 

+ 

2 λ + 1 

16 λ

)
m 

( 4 ) 

]
= −

{(
1 + 2 x 

f ( 1 ) 

f 
+ 

x 2 

2 

f ( 2 ) 

f 

)
m 

( 2 ) + x 

(
5 

3 

+ x 
f ( 1 ) 

f 

)
m 

( 3 ) + 

x 2 

4 

(
1 + 

1 

4 λ

)
m 

( 4 ) 

}
. 

Denoting the right-hand side by B G,λ( x ; m, f ) completes the proof. �

A.3. Proof of Corollary 1 

This has been already established in Step 1 of the proof of Theorem 1 . �

A.4. Proof of Theorem 2 

The proof closely follows the Proof of Theorem 2.2 in Choi (1998) . In this proof, we mean by the symbols “Var ”

and “Cov ” the conditional variance and covariance, conditional on X = x, respectively. In addition to the short-handed

notations in the proof of Theorem 1 , we use short-handed notations such as ˜ m λ = ˜ m G,λ( x ) , v 0 = V ar 
{

ˆ m G ( x | x ) 
}
, c ∗† =

Cov 
{

ˆ m G ( x | x ∗) , ˆ m G 

(
x | x † )}, ( ˆ α∗, ˆ β∗

)
= 

(
ˆ αG ( x 

∗) , ˆ βG ( x 
∗) 
)
, s ∗p = s Gp ( x 

∗) , t ∗p = t Gp ( x 
∗) , σ 2 = σ 2 ( x ) , and so on, where 

(
x ∗, x † 

)
=(

x + 	b 1 / 2 , x − 	b 1 / 2 
)

and s Gp ( x ) and t Gp ( x ) are defined in (1) and (2) , respectively. Then, 

V ar ( ̃  m λ) = 

λ2 v ∗ + v 0 + λ2 v † + 2 λc 0 ∗ + 2 λc 0 † + 2 λ2 c ∗† 

( 2 λ + 1 ) 
2 

. 

We start from working on the case for interior x and concentrate on approximating v ∗. Observe that 

v ∗ = V ar 
(

ˆ α∗)+ 	 2 bV ar 

(
ˆ β∗
)

− 2 	b 1 / 2 Cov 
(

ˆ α∗, ˆ β∗
)

:= A 1 + A 2 − 2 A 3 (say) , 
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where 

A 1 = 

(
μ∗

0 μ
∗
2 − μ∗2 

1 

)−2 {
μ∗2 

2 V ar ( t ∗0 ) + μ∗2 
1 V ar ( t ∗1 ) − 2 μ∗

1 μ
∗
2 Cov ( t ∗0 , t 

∗
1 ) 
}

+ R 1 , 

A 2 = 

(
μ∗

0 μ
∗
2 − μ∗2 

1 

)−2 
	 2 b 
{
μ∗2 

0 V ar ( t ∗1 ) + μ∗2 
1 V ar ( t ∗0 ) − 2 μ∗

0 μ
∗
1 Cov ( t ∗0 , t 

∗
1 ) 
}

+ R 2 , 

A 3 = 

(
μ∗

0 μ
∗
2 − μ∗2 

1 

)−2 
	b 1 / 2 

{(
μ∗

0 μ
∗
2 + μ∗2 

1 

)
Cov ( t ∗0 , t 

∗
1 ) − μ∗

1 μ
∗
2 V ar ( t ∗0 ) − μ∗

0 μ
∗
1 V ar ( t ∗1 ) 

}
+ R 3 , 

and it can be shown that the remainder terms R 1 , R 2 and R 3 are in smaller orders of magnitude. By the proof of

Theorem 1 and Assumption 3 , 

μ∗
0 ∼ f ∗, μ∗

1 ∼
(

f ∗ + x ∗ f ( 1 ) ∗
)
b and μ∗

2 ∼ x ∗ f ∗b 

so that 

μ∗
0 μ

∗
2 − μ∗2 

1 ∼ x ∗ f ∗2 b. 

In addition, 

Cov 
(
t ∗p , t 

∗
q 

)
= 

1 

n 

E 
{
σ 2 ( X ) ( X − x ∗) p+ q K 

2 
G ( x ∗,b ) ( X ) 

}{ 1 + o ( 1 ) } , 
where 

E 
{
σ 2 ( X ) ( X − x ) 

p+ q K 

2 
G ( x,b ) ( X ) 

}
= B b ( x ) E 

{
( θ2 x − x ) 

p+ q σ 2 ( θ2 x ) f ( θ2 x ) 
}
, 

and 

B b ( x ) := 

�( 2 x/b + 1 ) 

b2 

2 x/b+1 �2 ( x/b + 1 ) 
∼ b −1 / 2 

2 

√ 

π
√ 

x 

by Chen (20 0 0b) . It also follows from Lemma A.1(i) that 

E 
{
( θ2 x − x ) 

p+ q σ 2 ( θ2 x ) f ( θ2 x ) 
}

∼

⎧ ⎨ ⎩ 

σ 2 f if p + q = 0 

1 
2 

{ 
σ 2 f + x 

(
σ 2 f 

)( 1 ) } 
b if p + q = 1 

x 
2 
σ 2 f b if p + q = 2 

. 

After combining these results, taking a Taylor expansion around x ∗ = x (i.e., 	b 1 / 2 = 0 ) and doing some tedious calculations,

we can find that 

A 1 = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 
{ 1 + o ( 1 ) } , 

A 2 = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 

(
	 2 

2 x 

)
{ 1 + o ( 1 ) } , 

and A 3 = o 
(
n −1 b −1 / 2 

)
. Therefore, 

v ∗ = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 

(
1 + 

	 2 

2 x 

)
{ 1 + o ( 1 ) } . 

Expanding other terms similarly, we have the following results for interior x : 

v † = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 

(
1 + 

	 2 

2 x 

)
{ 1 + o ( 1 ) } ;

v 0 = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 
{ 1 + o ( 1 ) } ;

c 0 ∗ = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 

(
1 + 

	 2 

2 x 

)
{ 1 + o ( 1 ) } ;

c 0 † = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 

(
1 + 

	 2 

2 x 

)
{ 1 + o ( 1 ) } ; and 

c ∗† = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 

(
1 + 

3 	 2 

2 x 
+ 

	 4 

x 2 

)
{ 1 + o ( 1 ) } . 

Using these and 	 = 

√ 

( 2 λ + 1 ) x/ ( 2 λ) finally establishes that for interior x , 
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V ar ( ̃  m λ) = 

1 

nb 1 / 2 
σ 2 

2 

√ 

π
√ 

x f 
{ 1 + o ( 1 ) } 1 

( 2 λ + 1 ) 
2 

{
λ2 

(
1 + 

	 2 

2 x 

)
+ 1 + λ2 

(
1 + 

	 2 

2 x 

)
+ 2 λ

(
1 + 

	 2 

2 x 

)
+ 2 λ

(
1 + 

	 2 

2 x 

)
+ 2 λ2 

(
1 + 

3 	 2 

2 x 
+ 

	 4 

x 2 

)}
= 

1 

nb 1 / 2 
5 σ 2 

4 

√ 

π
√ 

x f 
{ 1 + o ( 1 ) } . 

On the other hand, for boundary x , each of B b ( x ), B b ( x 
∗) and B b ( x † ) are shown to be O 

(
b −1 
)
, where the coefficient on

each O 

(
b −1 
)

term depends on ( κ , λ). Modifying the expansions of μp and E 
{
( θ2 x − x ) 

p+ q σ 2 ( θ2 x ) f ( θ2 x ) 
}

in light of x =
κb { 1 + o ( 1 ) } leads to V ar ( ̃  m λ) = O 

(
n −1 b −1 

)
. �

A.5. Proof of Proposition 1 

The results can be obtained by taking limits of the corresponding parts as λ→ ∞ in the proofs of Theorems 1 and 2 . �

A.6. Proof of Theorem 3 

Replacing Part (i) of Lemma A.1 in the proofs of Theorems 1 and 2 with Part (ii) and doing some tedious but straightfor-

ward calculations can establish the theorem. �

A.7. Proof of Corollary 2 

This can be established in the middle of the proof of Theorem 3 . �

A.8. Proof of Proposition 2 

The proof strategy is exactly the same as in the proof of Proposition 1 . �
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