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ABSTRACT
This paper studies the problem of estimating the first-order deriva-
tive of an unknown density with support on R+ or [0, 1]. Nonpara-
metric density derivative estimators smoothed by the asymmetric,
gamma and beta kernels are defined, and their convergence prop-
erties are explored. It is demonstrated that these estimators can
attain the optimal convergence rate of themean integrated squared
error n−4/7 when the underlying density has third-order smooth-
ness. Superior finite-sample properties of the proposed estimators
are confirmed in Monte Carlo simulations, and usefulness of the
estimators is illustrated in two real data examples.
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1. Introduction

The aim of this paper is to explore statistical properties of density derivative estimators
using asymmetric kernels. Throughout we focus exclusively on univariate random vari-
ables supports of which have at least one boundary (e.g. R+ or [0, 1]). Indeed, there
are many economic and financial variables values of which are either nonnegative or
limited within a certain interval by construction. For example, wages, incomes, consump-
tion expenditures, and insurance claims (or financial losses) are nonnegative. Variables
expressed in the forms of shares or proportions, including expenditure and budget shares,
unemployment rates, and default and recovery rates, are bounded from above and below.
In addition, distributions of these nonnegative variables tend to be right-skewed and
unimodal.

Asymmetric kernels are a viable device that can capture shapes of density curves with
aforementioned features effectively. Because an asymmetric kernel is based on a probabil-
ity density function (‘pdf’) having the same support as that of the curves, it is free of the
boundary bias by construction. Furthermore, shapes of an asymmetric kernel vary across
design points at which smoothing is made, signifying an adaptive adjustment in the degree
of smoothing. In this context, asymmetric kernel smoothing exhibits similarities to, and
can be considered a variation of, variable kernel (or bandwidth) methods. This adaptive
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2 B. FUNKE ANDM. HIRUKAWA

smoothing attribute proves particularly advantageous when the underlying distribution
has both dense and sparse regions.

To make our discussion more concrete, let the random variable X be drawn from a
univariate distribution having the pdf f (·). Because the support of X has a boundary, we
employ an asymmetric kernel to estimate the pdf. Let KJ (x,b)(·) be an asymmetric kernel
indexed by J that depends on the design point x and the smoothing parameter b. Given
n i.i.d. observations {Xi}ni=1, the kernel density estimator (‘KDE’) of f (x) smoothed by an
asymmetric kernel KJ is defined as

f̂J (x) = 1
n

n∑
i=1

KJ (x,b) (Xi) . (1)

This class of density estimators, introduced in the pioneered work by Chen (1999, 2000),
is now popular in various practical applications.

Often practitioners’ focus is not only on the density itself but also on its deriva-
tives. From theoretical and practical standpoints, it is of particular importance and
interest to estimate the first-order density derivative f (1)(x) = ∂f (x)/∂x among den-
sity derivatives of all orders. A natural first-order derivative estimator implied by the
KDE (1) is

f̂ (1)J (x) := ∂

∂x
f̂J (x) = 1

n

n∑
i=1

∂

∂x
KJ (x,b) (Xi) . (2)

The kernel density derivative estimator of this class may be abbreviated as ‘KDDE’ here-
inafter, whenever no confusions occur. While we deal exclusively with the first-order
derivative estimation, extending the analysis in this paper to estimation of higher-order
density derivatives is straightforward; actually, this task is more complicated, and these
derivatives appear to be less relevant for practical issues.

Among all asymmetric kernels proposed so far, our main focuses are on the beta and
gamma kernels proposed by Chen (1999, 2000), respectively. Our preference is based on
(i) empirical relevance of the kernels in economics and finance and (ii) analytical tractabil-
ity. For (i), Hirukawa (2018, Table 1.1) presents a list of applications of these kernels to
estimation and testing problems. For (ii), unlike standard symmetric kernels, exploring
statistical properties of nonparametric estimators smoothed by asymmetric kernels relies
on kernel-specific and thus diversified approaches. The density derivative estimators are
not an exception. The gamma function is a building block for the beta and gamma kernels.
There is rich literature on approximation techniques to the gamma and related functions
as they are actively studied.

Contributions of this paper can be summarised in two respects. First, this paper studies
convergence properties of asymmetric KDDEs and presents conclusive bias and variance
expansions for the first time in the literature, to the best of our knowledge. It is demon-
strated that each of the gamma and beta KDDEs has a usualO(b) bias, whereas the variance
convergence of each estimator isO(n−1b−3/2) for the interior region andO(n−1b−3) for the
boundary region. As in the case of derivative estimators smoothed by symmetric kernels
and thus as expected, the rates of the variance are slower than those of the correspond-
ing KDE (1); invoke that the variance of a KDE is O(n−1b−1/2) for the interior region
and O(n−1b−1) for the boundary region. Second, a few new techniques are employed for
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the bias and variance expansions of the gamma and beta KDDEs. These expansions involve
evaluations ofmoments of log-transformed gamma and beta randomvariables.We address
this issue by exploring a moment-generating function-based approach inspired by Ye and
Chen (2017). Finally, combining this approach with double-inequalities on digamma and
trigamma functions by Gordon (1994) helps us determine expressions of the leading bias
and variance terms of the estimators.

There are potentially many applications of the KDDEs. First, these can be used to evalu-
ate peaks, valleys and inflection points of the underlying density. A direct application arises
from the field of actuarial science. Understanding themode of an actuarial loss distribution
is of particular significance for insurance companies, as the mode, representing the most
probable payout amount of an insurance obligation, plays an essential role in the calcula-
tion of an appropriate premium. Second, the KDDEs can be employed to estimate density
scores, which are a key ingredient for (indirect) average derivative estimation of nonpara-
metric regression curves. Third, there are several important economic applications. The
density derivative is a key component of the Engel curve, which is essential for empirically
verifying the law of demand. It also plays a significant role in the estimation of elastici-
ties; see Hildenbrand andHildenbrand (1986) for a comprehensive understanding of these
concepts, their motivations, and the economic conclusions drawn from them. Interested
readers may also consult Härdle et al. (1990) for further applications.

The remainder of this paper is organised as follows. In Section 2, the gamma and beta
KDDEs are defined and their convergence properties are explored under some regularity
conditions. Section 3 conducts Monte Carlo simulations to investigate finite-sample prop-
erties of the KDDEs in comparison with several competing density derivative estimators.
In Section 4, we apply the gamma and beta KDDEs to two real datasets to illustrate their
usefulness. Section 5 concludes. All proofs are provided in the Appendix.

This paper adopts the following notational conventions: for a > 0, �(a) =∫ ∞
0 ta−1 exp(−t) dt is the gamma function; for p, q > 0, B(p, q) = ∫ 1

0 yp−1(1 − y)q−1 dy
denotes the beta function;�(x) = ∂ log�(x)/∂x = �(1)(x)/�(x) and�1(x) = �(1)(x) =
∂�(x)/∂x are the digamma and trigamma functions, respectively; 1{·} signifies an
indicator function; and (r)m = �(r + m)/�(r) = r(r + 1) · · · (r + m − 1) represents the
Pochhammer symbol. The expression ‘X d= Y ’ reads ‘A random variable X obeys the dis-
tribution Y ’. The expression ‘Xn ∼ Yn’ is used whenever Xn/Yn → 1 as n → ∞. Lastly, in
order to describe different asymptotic properties of an asymmetric kernel estimator across
positions of the design point x ∈ R+ (x ∈ [0, 1]), we denote by ‘interior x’ and ‘boundary
x’ a design point x that satisfies x/b → ∞ (x/b → ∞ and (1 − x)/b → ∞) and x/b → κ

(x/b or (1 − x)/b → κ) for some κ ∈ (0,∞) as n → ∞, respectively.

2. Estimators and their large-Sample properties

2.1. The estimators

Due to their popularity in a wide range of empirical studies and analytical tractability, here-
inafter we confine our discussion on kernels chosen for the KDDE (2) to the gamma and
beta ones. Extending the scope of asymmetric kernels to other distribution-specific ones
is, in principle, feasible but falls outside the primary focus of this paper.
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The first estimator employs the gamma kernel (J = G)

KG(x,b) (u) = ux/b exp (−u/b)
bx/b+1� (x/b + 1)

1 {u ≥ 0}

for x ∈ R+ by Chen (2000). The gamma KDDE is defined as

f̂ (1)G (x) = 1
n

n∑
i=1

∂

∂x
KG(x,b) (Xi) := 1

n

n∑
i=1

LG(x,b) (Xi)KG(x,b) (Xi) ,

where

LG(x,b) (u) = 1
b

{
log u − log b − �

(x
b

+ 1
)}

.

The second estimator is built on the beta kernel (J = B)

KB(x,b) (u) = ux/b (1 − u)(1−x)/b

B {x/b + 1, (1 − x) /b + 1}1 {u ∈ [0, 1]}

for x ∈ [0, 1] by Chen (1999). The beta KDDE is given by

f̂ (1)B (x) = 1
n

n∑
i=1

∂

∂x
KB(x,b) (Xi) := 1

n

n∑
i=1

LB(x,b) (Xi)KB(x,b) (Xi) ,

where

LB(x,b) (u) = 1
b

{
log

(
u

1 − u

)
− �

(x
b

+ 1
)

+ �

(
1 − x
b

+ 1
)}

.

Before proceeding, we inspect shapes of two weight functions ∂KG(x,b)(u)/∂x and
∂KB(x,b)(u)/∂x used for density derivative estimation. Figure 1 presents plots of the func-
tions evaluated at five different design points; more specifically, ∂KG(x,b)(u)/∂x for x =

Figure 1. Shapes of Weight Functions with a Fixed Smoothing Parameter (b = 0.1) at Various Design
Points.
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1, 2, 3, 4, 5 and ∂KB(x,b)(u)/∂x for x = 0.1, 0.3, 0.5, 0.7, 0.9 are presented. It is worth
emphasising that for all plotted functions, the smoothing parameter value is fixed at
b = 0.1.

A few remarks are in order. First, each plot produces an asymmetric S-shape, and the
sign changes from negative to positive around (but not exactly at) the design point, in
general. An exception is ∂KB(x,b)(u)/∂x for x = 1/2; in this case the sign change occurs
exactly at 1/2. To make this argument more precise, let u∗

J be the interior solution to
∂KJ (x,b)(u)/∂x = 0 for a given interior design point x. Then,

u∗
J =

⎧⎨
⎩

x + b/2 + O
(
b2
)

for J = G and x ∈ (0,∞)

x + (x − 1/2) b + O
(
b2
)

for J = B and x ∈ (0, 1/2) ∪ (1/2, 1)
x for J = B and x = 1/2

. (3)

The derivation of (3) is documented in the Appendix. Moreover, the weight func-
tions implied by the gamma and beta kernels have a sharp contrast to the one implied
by the normal kernel KN(u) = exp(−u2/2)/

√
2π . The weight function ∂KN(u)/∂u =

−u exp(−u2/2)/
√
2π generates a reverse S-shape and is symmetric with respect to the

origin.
Second, shapes of theweight functions vary across the design points at which smoothing

is made, and they become flatter as the design point moves away from the boundary for
the gamma case and from both boundaries for the beta case. Hence, it can be observed
that when smoothing is made at a boundary, the weighting functions put their maximum
weights (in magnitude) on the boundary. An eminent feature of an asymmetric kernel is
that the kernel shape changes according to the location of the design point. The weight
functions do inherit the property of altering the amount of smoothing in a locally adaptive
manner by using a single smoothing parameter. This property makes them much more
appealing in empirical work, especially when data is unequally spaced.

2.2. Regularity conditions

To deliver convergence properties of each KDDE, we impose the following common
regularity conditions.

Assumption 2.1: The i.i.d. random sample {Xi}ni=1 is drawn from a univariate distribution
having support either onR+ (for the gamma estimator) or on [0, 1] (for the beta estimator).

Assumption 2.2: The third-order derivative of f (·) is uniformly bounded and Hölder-
continuous of order ς ∈ (0, 1] over the entire support.

Assumption 2.3: The smoothing parameter b(= bn > 0) satisfies b + (nb3)−1 → 0 as
n → ∞.

Random sampling in Assumption 2.1 makes it easier to derive the dominant terms in
bias and variance of the estimators. Observe that supports of the kernel and underlying
distribution match. Therefore, no boundary bias occurs.

Boundedness and Hölder-continuity of the third-order density derivative f (3)(·) in
Assumption 2.2 are key requirements for the bias expansion of the estimators. The former
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helps determine the leading bias term, whereas the latter controls the order of magnitude
in the remainder term in the bias expansion. Boundedness and (Hölder or some other class
of) continuity of the second-order derivative are typically assumed for density estimation.
Now that our target quantity is the first-order density derivative, these regularity conditions
are consistently transferred to the third-order derivative. Notice that Hölder-continuity of
f (3)(·) implies that there is a constant C ∈ (0,∞) such that∣∣∣f (3) (u) − f (3) (v)

∣∣∣ ≤ C |u − v|ς , ∀ u, v. (4)

The condition (nb3)−1 → 0 in Assumption 2.3 is stronger than (nb)−1 → 0, which is
typically imposed for the variance expansion of KDEs smoothed by asymmetric kernels;
see Chen (1999, 2000) for more details. It will be shown shortly that the MSE-optimal
smoothing parameter for each KDDE becomes b∗ = O(n−2/7) for interior x and b† =
O(n−1/5) for boundary x; these convergence rates are indeed within the required range.

2.3. Convergence properties of the estimators

2.3.1. Local property
Bias-Variance Tradeoff.Asymptotic properties of the gamma and beta KDDEs are explored
below. We start from delivering their bias-variance tradeoffs in the following theorem.

Theorem 2.1: If Assumptions 2.1–2.3 hold, then f̂ (1)J (x) forJ ∈ {G,B} admits the following
expansions as n → ∞.

(i) Bias:

E
{
f̂ (1)J (x)

}
:= f (1) (x) + BJ

(
x, f

)
b + o (b) ,

where

BJ
(
x, f

) =

⎧⎪⎨
⎪⎩
1
2
{
3f (2) (x) + xf (3) (x)

}
for J = G

−2f (1) (x) + 3
2

(1 − 2x) f (2) (x) + 1
2
x (1 − x) f (3) (x) for J = B

.

(ii) Variance:

Var
{
f̂ (1)J (x)

}
:=

⎧⎪⎨
⎪⎩

1
nb3/2

VJ (x) f (x) + o
(
n−1b−3/2) for interior x

1
nb3

� (2κ + 1) f (x)
κ22κ+2�2 (κ + 1)

+ o
(
n−1b−3) for boundary x

,

where

VJ (x) =
{(

4
√

πx3/2
)−1 for J = G[

4
√

π {x (1 − x)}3/2]−1 for J = B
.

Before discussing the above theorem in detail, we describe a few new strategies taken
for its proof in the Appendix. The bias and variance expansions in the theorem involve
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evaluations of moments of log-transformed gamma and beta random variables. We tackle
this issue by developing amoment-generating function-based approach inspired by Ye and
Chen (2017). Finally, combining this approach with Gordon’s (1994) double-inequalities
on digamma and trigamma functions yields the leading bias and variance terms.

Theorem 2.1 implies that the pointwise bias convergence of f̂ (1)J (x) is O(b), just like
that of the corresponding KDE. Observe that while BG(x, f ) is free of f (1)(x), BB(x, f )
involves this quantity. This is because the moments E{LB(x,b)(θx)(θx − x)j} for θx

d=
Beta{x/b + 1, (1 − x)/b + 1} are rational functions of (x, b), whereas the moments
E{LG(x,b)(ξx)(ξx − x)j} for ξx

d= G(x/b + 1, b) are polynomials of (x, b); see Appendix for
more details. In particular, E{LB(x,b)(θx)(θx − x)} is not exactly 1 unlike E{LG(x,b)(ξx)(ξx −
x)}, and as a consequence, the term including f (1)(x) is left over in BB(x, f ).

Moreover, the pointwise variance convergence of f̂ (1)J (x) slows down from that of the
correspondingKDE; it isO(n−1b−3/2) andO(n−1b−3) for interior and boundary x, respec-
tively, to be more precise. It follows from the bias and variance expansions that f̂ (1)J (x) is
consistent for f (1)(x) under the set of assumptions.

Furthermore, Chen (2000) calls the quantity VJ (x) the variance coefficient. Vari-
ance coefficients for the gamma and beta KDEs are known to be (2

√
π

√
x)−1 and

{2√π
√
x(1 − x)}−1, respectively. Observe that each variance coefficient decreases as the

design point x moves away from the boundaries. For the gamma and beta KDDEs, this
feature is preserved in that their variance coefficients are (4

√
πx3/2)−1 and [4

√
π{x(1 −

x)}3/2]−1, respectively. It can be inferred from this property that the gamma KDDE works
well for estimating the density derivative over sparse areas with fewer observations (e.g.
the right-tail part), as in the gamma KDE. The sparse areas are typically observed in the
applications of asymmetric kernel functionsmentioned in Section 1, which emphasises the
practical relevance of our approach once again.

Mean Squared Error (‘MSE’). It follows from Theorem 2.1 that the MSE for interior x of
f̂ (1)J (x) is given by

MSE
{
f̂ (1)J (x)

}
= b2

{BJ
(
x, f

)}2 + 1
nb3/2

VJ (x) f (x) + o
(
b2 + 1

nb3/2

)
. (5)

The smoothing parameter value that minimises the two leading terms on the right-hand
side of (5) is

b∗
J =

[
3VJ (x) f (x)

4
{BJ

(
x, f

)}2
]2/7

n−2/7.

Observe that the MSE-optimal smoothing parameter b∗
J = O(n−2/7) = O(h∗2), where h∗

is the MSE-optimal bandwidth for KDDEs using nonnegative symmetric kernels (see, e.g.
Wand and Jones 1995). Therefore, when best implemented, the approximation to the MSE
becomes

MSE∗
{
f̂ (1)J (x)

}
∼ 7

[
1
3
{BJ

(
x, f

)}2]3/7 {1
4
VJ (x) f (x)

}4/7
n−4/7.

Observe that the optimal MSE of f̂ (1)J (x) for interior x becomesO(n−4/7), which is also the
optimal convergence rate in the MSE of the nonnegative symmetric KDDE. On the other
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hand, for boundary x, MSE{f̂ (1)J (x)} = O(b2 + n−1b−3), which yields the MSE-optimal
smoothing parameter b†

J = O(n−1/5) and the optimal MSE of O(n−2/5).

2.3.2. Global property
The inferior rate in the optimal MSE of f̂ (1)J (x) for boundary x does not affect its global
property. If

∫ {BJ (x, f )}2 dx and
∫ VJ (x)f (x) dx are both finite, then applying the trim-

ming argument in Chen (1999, 2000) yields the mean integrated squared error (‘MISE’) of
f̂ (1)J (x) as

MISE
{
f̂ (1)J (x)

}

= b2
∫ {BJ

(
x, f

)}2 dx + 1
nb3/2

∫
VJ (x) f (x) dx + o

(
b2 + 1

nb3/2

)
. (6)

The smoothing parameter value that minimises the two leading terms on the right-hand
side of (6) is

b∗∗
J =

[
3
∫ VJ (x) f (x) dx

4
∫ {BJ

(
x, f

)}2 dx

]2/7

n−2/7.

Therefore, when best implemented, the approximation to the MISE becomes

MISE∗∗
{
f̂ (1)J (x)

}
∼ 7

[
1
3

∫ {BJ
(
x, f

)}2 dx
]3/7 {1

4

∫
VJ (x) f (x) dx

}4/7
n−4/7.

It is worth remarking that the rate n−4/7 coincides with the optimal convergence rate of
the MISE for a KDDE under third-order smoothness in the underlying density f that is
implied by Theorem 1 of Müller and Gasser (1979) and Theorem of Stone (1980).

3. Finite-sample performance

In theMonte Carlo study below, finite-sample performances of the asymmetric KDDEs are
compared with those of other competing density derivative estimators. For each estimator,
how to select the tuning parameter is an important practical issue. We start our analysis
from the ‘oracle’ method, where a tuning parameter value that minimises a performance
measure is taken as the optimal one. While assessing an estimator with the oracle tuning
parameter value plugged in can be interpreted as examining its performance in the best-
case scenario, this method is infeasible in reality. To make the asymmetric KDDEs fully
operational, we also examine a cross-validation (‘CV’) method.

3.1. Oraclemethod

3.1.1. Case #1: gamma KDDE
Our simulation study starts from appraising the gamma KDDE. Three density functions
with support on R+ are examined. The first case is the Weibull distribution with density
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and derivative

f (x) = k
λ

( x
λ

)k−1
exp

{
−

( x
λ

)k}
, (k, λ) = (2, 1) ⇒ f (1) (x) = (−4x2 + 2

)
exp

(−x2
)
.

The second case is the beta prime distribution (also known as the beta distribution of the
second kind) with density and derivative

f (x) = 1
B (α,β)

xα−1

(1 + x)α+β
, (α,β) = (3, 3) ⇒ f (1) (x) = −120x2 + 60x

(1 + x)7
.

The third case is the Lomax distribution (also known as the Pareto distribution of the second
kind) by Lomax (1954) with density and derivative

f (x) = α

λ

(
1 + x

λ

)−(α+1)
, (α, λ) = (1, 1) ⇒ f (1) (x) = − 2

(1 + x)3
.

Shapes of these densities and derivatives can be found in Figure 2. Observe that theWeibull
distribution has a thin tail with an exponential decay, whereas two others have thick tails
with polynomial decays. For each distribution, 1000 data sets of sample size n ∈ {250, 500}
are simulated.

The density derivative estimators compared are: (i) the KDDE using the normal kernel
[KDDE-N]; (ii) the KDDEs obtained via the second- and third-order local polynomial
density estimators using the triangular kernel KT(u) = (1 − |u|)1{|u| ≤ 1} by Cattaneo
et al. (2020) [LPDE2-T, LPDE3-T]; and (iii) theKDDEusing the gammakernel [KDDE-G].
The choice of the normal kernel is based on the recommendation by Härdle et al. (1990),
who study the CV bandwidth choice for density derivative estimation and report superior
performance of this kernel.

The idea of local polynomial density estimation by Cattaneo et al. (2020) comes from
local polynomial regression estimation. Local polynomial regression-based techniques

Figure 2. True Densities, True Density Derivatives and Pointwise Averages of Density Derivative Esti-
mates (Case #1, n = 500).
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typically require prebinning of the data, which results in choosing an additional tuning
parameter (i.e. the bin width) and decreasing the sample size at the stage of density esti-
mation. By smoothing out the empirical cumulative distribution function (‘cdf’) directly,
Cattaneo et al. (2020) preserve the original sample size and avoid choosing an extra tuning
parameter. The KDDE can be obtained from their estimation procedure in the follow-
ing manner. Let F̂(x) := (1/n)

∑n
i=1 1{Xi ≤ x} be the empirical cdf, which is a consistent

estimator of the unknown cdf F(x) = ∫ x
0 f (u) du. Then, using n data points {F̂(Xi)}ni=1

as regressands, we run a local polynomial regression of order p (≥ 1). Also let rp(u) :=
(1, u, u2, . . . , up) and e2 := (0, 0, 1, 0, . . . , 0) be a pth-order polynomial expansion and
the third (p + 1)-dimensional unit vector, respectively. Finally, f (1)(x) can be estimated by
f̂ (1)LP (x) := e2 β̂(x), where

β̂ (x) = arg min
b∈Rp+1

n∑
i=1

{
F̂ (Xi) − [

rp (Xi − x)
] b

}2
KT

(
Xi − x

h

)
,

and h is the bandwidth. We consider two orders of polynomials, namely, p = 2, 3, because
of the difference in bias convergences of f̂ (1)LP (x) between the polynomial orders. To bemore
precise, f̂ (1)LP (x) for p = 2 has O(h2) and O(h) biases for interior and boundary x, respec-
tively, whereas the bias convergence of the one for p = 3 isO(h2) everywhere. The variance
convergence of the estimator for p = 2, 3 isO(n−1h−3); see the supplemental appendix of
Cattaneo et al. (2020) for more details.

As performance measures of an estimator f̄ (1)(·), we adopt the root integrated squared
error (‘RISE’)

RISE
(
f̄ (1)

)
=

√∫ ∞

0

{
f̄ (1) (x) − f (1) (x)

}2 dx

and the integrated absolute deviation (‘IAD’)

IAD
(
f̄ (1)

)
=

∫ ∞

0

∣∣∣f̄ (1) (x) − f (1) (x)
∣∣∣ dx,

where each integral is approximated by the trapezoidal rule on an equally-spaced grid of
551 points over the interval [0.0, 5.5].

The value of a tuning parameter a ∈ {h, b} is chosen via the oracle method. For each
simulated sample the RISE is computed over a grid of a, and then aminimiser of the RISE is
obtained. Theminimiser is found on an equally-spaced grid of 100 points over the interval
[0.005, 0.500].

Table 1 reports averages and standard deviations of two performancemeasures and tun-
ing parameter values over 1000Monte Carlo samples. It can be immediately found that for
each distribution, KDDE-G outperforms all other estimators. Moreover, its tuning param-
eter values are by far the smallest among all (and this tendency continues to hold for the
beta KDDE in Case #2 below). This is not surprising, because the MISE-optimal smooth-
ing parameter of two asymmetric KDDEs b∗∗

J = O(n−2/7) tends to be smaller than the
MISE-optimal bandwidth for a symmetric KDDE h∗∗ = O(n−1/7). While KDDE-N per-
forms much better than two LPDEs for Weibull and beta prime distributions, it performs
poorly for the Lomax distribution, failing to capture concavity of the curve. There is slight
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Table 1. Monte Carlo Results (Oracle: Case #1).

n = 250 n = 500

Estimator RISE IAD h or b RISE IAD h or b

Weibull
KDDE-N 0.4504 0.4866 0.1858 0.4008 0.4206 0.1628

(0.0756) (0.0999) (0.0264) (0.0591) (0.0776) (0.0220)
LPDE2-T 0.7956 0.9786 0.3866 0.7618 0.9419 0.3344

(0.0956) (0.0986) (0.0781) (0.0689) (0.0718) (0.0758)
LPDE3-T 0.7782 0.9569 0.4314 0.7065 0.8986 0.4125

(0.1443) (0.1268) (0.0815) (0.1015) (0.0881) (0.0846)
KDDE-G 0.3867 0.4296 0.0656 0.3255 0.3612 0.0532

(0.1061) (0.1206) (0.0133) (0.0804) (0.0894) (0.0105)

Beta Prime
KDDE-N 0.5519 0.7395 0.1647 0.4881 0.6546 0.1401

(0.0874) (0.1032) (0.0232) (0.0709) (0.0873) (0.0161)
LPDE2-T 0.7843 0.9856 0.3430 0.7365 0.9091 0.2939

(0.1261) (0.1440) (0.0870) (0.0945) (0.1223) (0.0744)
LPDE3-T 0.6782 0.8424 0.4299 0.5907 0.7303 0.4030

(0.1987) (0.1726) (0.0892) (0.1396) (0.1213) (0.0851)
KDDE-G 0.4497 0.4442 0.0560 0.3979 0.3834 0.0441

(0.1327) (0.1057) (0.0162) (0.1088) (0.0854) (0.0109)

Lomax
KDDE-N 0.9875 0.8223 0.5000 0.9869 0.8054 0.5000

(0.0184) (0.0383) (0.0000) (0.0126) (0.0277) (0.0000)
LPDE2-T 0.5343 0.6678 0.4210 0.5043 0.6069 0.3829

(0.1323) (0.1264) (0.0846) (0.1023) (0.0973) (0.0919)
LPDE3-T 0.5302 0.6507 0.4199 0.4727 0.5601 0.4230

(0.1862) (0.1659) (0.1325) (0.1560) (0.1388) (0.1009)
KDDE-G 0.3263 0.2762 0.1602 0.2891 0.2354 0.1291

(0.1459) (0.0969) (0.0612) (0.1258) (0.0763) (0.0441)

Note: Simulation averages and standard deviations (in parentheses) of two performance measures (‘RISE’ and ‘IAD’) and
tuning parameter values (‘h or b’) are reported.

advantage of LPDE3-T over LPDE2-T, which appears to reflect better bias properties of the
former. For this reason, we do not include LPDE2-T in Figure 2.

Figure 2 exhibits plots of pointwise averages of KDDE-N, LPDE3-T and KDDE-G
for n = 500 over 1000 Monte Carlo samples. Although no significant differences can be
foundwhen x > 3 for all distributions, there are substantial differences over x ∈ [0, 3]. The
density derivative for the Weibull distribution is initially decreasing, and KDDE-G alone
successfully traces the shape. For the beta prime case, the density derivative starts from the
origin and has a sharp mode in the vicinity of the origin. While all three estimators fail to
start from the origin, KDDE-G captures the curvature better than two others.

KDDE-N exhibits erratic behaviour for the Lomax distribution; more specifically, the
plot of KDDE-N is initially decreasing and then increasing, whereas the truth is mono-
tone increasing everywhere. As discussed in Section 2.1, the weight function for KDDE-N
∂KN(u)/∂u = −u exp(−u2/2)/

√
2π exhibits a reverse S-shape, unlike ∂KG(x,b)(u)/∂x

(or ∂KB(x,b)(u)/∂x). When a density f (x) has support on R, it dies out as x → ±∞.
KDDE-N works well in this scenario, because the corresponding density derivative takes
a reverse S-shape. However, a density with support on R+ or [0, 1] is allowed to be mono-
tone decreasing everywhere, and the corresponding density derivative becomes monotone
increasing in this case. Moreover, the amount of smoothing by symmetric kernels with a
single bandwidth parameter is fixed everywhere. Under these conditionsKDDE-N tends to
mistakenly assume a reverse S-shape of the density derivative and then produces a reverse
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S-curve with a fictitious decreasing part. Also observe that the oracle bandwidth for this
estimator is persistently chosen at the upper bound 0.5. Such an oversmoothing bandwidth
reflects that KDDE-N focuses more on smoothing out the flat part on the right tail. Notice
that although KDDE-G is built on an S-shape weight function, it can successfully handle
such an irregular shape by varying shapes of the function across design points.

3.1.2. Case #2: beta KDDE
Now we assess the beta KDDE. Again we investigate three density functions with support
on [0, 1]. The first case is the beta distribution with density and derivative

f (x) = xα−1 (1 − x)β−1

B (α,β)
, (α,β) = (2.5, 2) ⇒ f (1) (x) = −21.875

√
x (x − 0.6) .

The second case is the truncated normal distribution with density and derivative

f (x) =
1√
2πσ

exp
{
− (x−μ)2

2σ 2

}
�

(
1−μ
σ

)
− �

(−μ
σ

) , (μ, σ) = (0.2, 0.4)

⇒ f (1) (x) =
(−125x + 25) exp

{
− (5x−1)2

8

}
8
√
2π {�(2) − �(−0.5)} ,

where �(·) is the standard normal cdf. The third case is the Kumaraswamy distribution by
Kumaraswamy (1980) and Jones (2009) with density and derivative

f (x) = αβxα−1 (1 − xα
)β−1 , (α,β) = (1, 4) ⇒ f (1) (x) = −12 (1 − x)2 .

Shapes of these densities and derivatives can be found in Figure 3. For each distribution,
1000 data sets of sample size n ∈ {250, 500} are simulated, as before.

The KDDE using the beta kernel, labelled as KDDE-B, is compared with KDDE-N,
LPDE2-T and LPDE3-T. To implement all these estimators, we choose their tuning param-
eters via the oracle method. The RISE and IAD are again considered as performance
measures, where each integral is approximated by the trapezoidal rule on an equally-spaced
grid of 101 points over the interval [0, 1].

Table 2 reports averages and standard deviations of two performance measures and
tuning parameter values over 1000 Monte Carlo samples. We can see the dominance
of KDDE-B over the other three estimators. As before, pointwise averages of KDDE-N,
LPDE3-T andKDDE-B for n = 500 over 1000Monte Carlo samples are plotted in Figure 3.
It can be immediately found that KDDE-B captures the entire shape of each density deriva-
tive well. KDDE-N continues to produce a reverse S-curve for each of three distributions,
and plots of LPDE3-T are often off target.

3.2. CVmethod

Before proceeding to real data examples in the next section, we should investigate a CV
method. Our construction of a CV criterion is inspired by Härdle et al. (1990). The inte-
grated squared error (‘ISE’) of KDDE-J using the smoothing parameter b for J ∈ {G,B}
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Figure 3. True Densities, True Density Derivatives and Pointwise Averages of Density Derivative Esti-
mates (Case #2, n = 500).

Table 2. Monte Carlo Results (Oracle: Case #2).

n = 250 n = 500

Estimator RISE IAD h or b RISE IAD h or b

Beta
KDDE-N 1.3051 0.9098 0.0969 1.1891 0.8086 0.0831

(0.1652) (0.1431) (0.0154) (0.1433) (0.1280) (0.0128)
LPDE2-T 2.2846 1.8768 0.2402 2.1695 1.7873 0.1931

(0.2247) (0.1823) (0.0589) (0.1656) (0.1279) (0.0489)
LPDE3-T 2.0021 1.6521 0.4164 1.8529 1.5679 0.3887

(0.3645) (0.2705) (0.1015) (0.2560) (0.1844) (0.1044)
KDDE-B 1.1704 0.9069 0.0481 1.0036 0.7716 0.0383

(0.2668) (0.2205) (0.0103) (0.2013) (0.1676) (0.0074)

Truncated Normal
KDDE-N 0.7895 0.6871 0.2397 0.7896 0.6857 0.2377

(0.0905) (0.0759) (0.0171) (0.0644) (0.0543) (0.0125)
LPDE2-T 0.9275 0.8087 0.3667 0.8988 0.7892 0.3226

(0.1519) (0.1398) (0.0921) (0.1108) (0.1092) (0.0901)
LPDE3-T 0.9925 0.8720 0.3728 0.9213 0.8143 0.3853

(0.1818) (0.1639) (0.1096) (0.1168) (0.1160) (0.1101)
KDDE-B 0.7031 0.5787 0.1420 0.6243 0.5052 0.1067

(0.2409) (0.2047) (0.0606) (0.2020) (0.1610) (0.0326)

Kumaraswamy
KDDE-N 5.3098 3.6365 0.3857 5.3133 3.6553 0.3846

(0.0366) (0.1751) (0.0780) (0.0238) (0.1206) (0.0621)
LPDE2-T 2.7114 1.9286 0.2483 2.6707 1.9093 0.2076

(0.4150) (0.2333) (0.0971) (0.3271) (0.1707) (0.0873)
LPDE3-T 2.6403 1.9679 0.3727 2.5344 1.9236 0.3334

(0.5454) (0.3184) (0.1164) (0.4104) (0.2533) (0.1210)
KDDE-B 1.5498 0.9562 0.0735 1.3378 0.8121 0.0601

(0.5570) (0.2980) (0.0215) (0.4523) (0.2314) (0.0167)

Note: Simulation averages and standard deviations (in parentheses) of two performance measures (‘RISE’ and ‘IAD’) and
tuning parameter values (‘h or b’) are reported.
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is defined as

ISEJ (b) =
∫ {

f̂ (1)J ,b (x) − f (1) (x)
}2

dx

=
∫ {

f̂ (1)J ,b (x)
}2

dx − 2
∫

f̂ (1)J ,b (x) f (1) (x) dx +
∫ {

f (1) (x)
}2

dx,

where f̂ (1)J ,b(x) signifies the dependence of KDDE-J on b, and the third term of the right-
hand side does not depend on b and thus may be safely omitted from the CV criterion.
We also assume that f (0) = 0 forJ = G and that f (0) = f (1) = 0 forJ = B, where these
assumptions are called the ‘zero-boundary condition’ hereinafter. Then, by integration by
parts, it holds that ∫

f̂ (1)J ,b (x) f (1) (x) dx = −
∫

f̂ (2)J ,b (x) dx.

Therefore, the CV criterion is given by

CV1
J (b) =

∫ {
f̂ (1)J ,b (x)

}2
dx + 2

n

n∑
i=1

f̂ (2)J ,b,−i (Xi) , (7)

where the superscript ‘1’ in CV1
J (b) signifies the CV criterion for the first-order density

derivative estimator, and

f̂ (2)J ,b,−i (x) = 1
n − 1

n∑
j=1,j�=i

∂2

∂x2
KJ (x,b)

(
Xj
)

is the second-order density derivative estimate using the sample with the ith observation
eliminated. Specifically,

∂2

∂x2
KJ (x,b) (u)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
L2G(x,b) (u) − 1

b2
�1

( x
b + 1

)}
KG(x,b) (u) for J = G

[
L2B(x,b) (u) − 1

b2

{
�1

(x
b

+ 1
)

+ �1

(
1 − x
b

+ 1
)}]

KB(x,b) (u) for J = B

.

Finally, the CV smoothing parameter b̂ is defined as the minimiser of CV1
J (b).

The same Weibull and beta distributions as in Section 3.1 are chosen to check finite-
sample performances of KDDE-G and KDDE-B, respectively, because each distribution
satisfies the zero-boundary condition. For each distribution, 1000 data sets of sample size
n ∈ {250, 500} are simulated. Judging from performance measures in the corresponding
oracle cases, we focus exclusively on KDDE-N as a competitor, where the CV bandwidth
ĥ is chosen via the method by Härdle et al. (1990). As before, b̂ and ĥ are found on an
equally-spaced grid of 100 points over the interval [0.005, 0.500].

Table 3 reports averages, standard deviations and medians of two performance mea-
sures and CV tuning parameter values over 1000 Monte Carlo samples. The reason for
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Table 3. Monte Carlo Results (CV).

n = 250 n = 500

Estimator RISE IAD ĥ or b̂ RISE IAD ĥ or b̂

Weibull (Case #1)
KDDE-N 4.7562 5.1578 0.1277 3.4975 3.8651 0.1141

(10.9551) (11.4842) (0.0905) (7.4160) (8.0525) (0.0775)
[0.7318] [0.8514] [0.1200] [0.6075] [0.6965] [0.1150]

KDDE-G 0.4767 0.5202 0.0685 0.3815 0.4213 0.0570
(0.1397) (0.1285) (0.0245) (0.0903) (0.0893) (0.0174)
[0.4550] [0.5167] [0.0750] [0.3712] [0.4181] [0.0600]

Beta (Case #2)
KDDE-N 9.9746 7.4058 0.0680 6.6297 4.9283 0.0606

(17.7338) (13.1133) (0.0469) (11.3958) (8.5476) (0.0398)
[1.9212] [1.5355] [0.0650] [1.6902] [1.3296] [0.0550]

KDDE-B 1.8429 1.4384 0.0443 1.4427 1.1237 0.0361
(0.9501) (0.7288) (0.0243) (0.6113) (0.4790) (0.0181)
[1.4146] [1.1383] [0.0500] [1.1894] [0.9381] [0.0400]

Note: Simulation averages, standard deviations (in parentheses) and medians (in brackets) of two performance measures
(‘RISE’ and ‘IAD’) and CV tuning parameter values (‘ĥ or b̂’) are reported.

presentingmedians is that KDDE-N generates extremely large averages and standard devi-
ations of the performancemeasures. This phenomenon can be attributed to the fact that its
CV bandwidths are systematically shorter than the corresponding oracle ones. Such short
bandwidths introduce additional variability to the resulting derivative estimates andmakes
them highly volatile and unstable. In contrast, CV smoothing parameters for KDDE-G and
KDDE-B are very close to the corresponding oracle ones. As a consequence, these estima-
tors do not induce extra bias or variability even after they are implemented by the CV
smoothing parameters.

4. Real data examples

The first-order density derivative serves as a tool for finding locations of peaks and valleys
in the underlying pdf. Consequently, we are motivated to see how precisely two asymmet-
ric KDDEs can detect such locations. For this exercise, these estimators are applied to two
datasets. Strictly speaking, features of curve estimates including peaks, valleys and their
locations vary across resolutions (i.e. smoothing parameter values). Accordingly, it is desir-
able to conduct a scale-space analysis like the SiZermap by Chaudhuri andMarron (1999).
However, for simplicity, we exclusively examine KDEs and KDDEs implemented by CV
smoothing parameters.

4.1. Data descriptions

The first dataset, used in Vella and Verbeek (1998), comprises a sample of 545 full-time
working males who completed their schooling by 1980 over the period from 1980 to 1987,
and it is originally taken from theNational Longitudinal Survey (Youth Sample).We utilise
hourly wages, labelled as ‘Wage’, in year 1980. Since all observations are recorded in the
log-transformed scale, they are exponentiated to restore the original scale onR+ before the
analysis. The second one is the dataset on the Old Faithful Geyser in Yellow Stone National
Park, Wyoming, USA. While the literature suggests that several different versions of the
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Table 4. Descriptive Statistics.

n Mean SD SK Min. Q1 Q2 Q3 Max.

(a) US Hourly Wages (in US dollars)
545 4.59 2.20 1.06 0.33 3.21 4.25 5.71 16.81

(b) Eruption Durations (in minutes)
272 3.49 1.14 −0.42 1.60 2.16 4.00 4.46 5.10

Note: n = sample size; Mean = average; SD = standard deviation; SK = skewness; Min. = mini-
mum value; Q1 = first quartile; Q2 = median (i.e. second quartile); Q3 = third quartile; andMax.
= maximum value.

data exist, we employ what is used in Wasserman (2006). Our focus is on durations of 272
consecutive eruptions. Both datasets analysed in this section are openly available; see the
data availability statement for the URLs at which these can be downloaded.

4.2. Estimationmethods

We estimate densities and density derivatives of wages and eruption durations nonpara-
metrically using the gamma and beta kernels, respectively. Table 4 presents summary
statistics of two variables. While observations of wages may be directly smoothed by the
gamma kernel, those of eruption durations are not confined within [0, 1]. Considering that
the longest eruption duration is less than six minutes, we map observations in the original
scale, denoted as X, onto the unit interval by dividing them by six, before employing the
beta kernel. Then, the density and density derivative estimates evaluated at a design point
x in the original scale become f̂B(x/6)/6 and f̂ (1)B (x/6)/36, respectively, where f̂B(·) and
f̂ (1)B (·) are the beta KDE and KDDE using the transformed observationsU = X/6 ∈ [0, 1].

Density and density derivative estimations are implemented by CV.Wemay safely apply
the CV criterion for density derivative estimation (7), as Table 4 indicates that the zero
boundary condition is fulfilled for densities of both wages (in the original scale) and
eruption durations (in the transformed scale). Furthermore, the CV criterion for KDE-J
is

CV0
J (b) =

∫ {
f̂J ,b (x)

}2
dx − 2

n

n∑
i=1

f̂J ,b,−i (Xi) ,

where f̂J ,b,−i(x) is the density estimate using the sample with the ith observation elimi-
nated. CV smoothing parameters are found on an equally-spaced grid of 200 points over
the interval [0.0025, 0.5000].

4.3. Results

Figure 4 displays plots of density and density derivative estimates of two variables. First,
CV smoothing parameter values for the KDE-G and KDDE-G using the wage data are
(coincidentally) 0.1375 and 0.1375, respectively. The density estimate looks single-peaked,
having the peak located around 3.57. The density derivative estimate supports the location
of the peak in that its sign changes from positive to negative between 3.56 and 3.57.

Second, CV smoothing parameter values for the KDE-B and KDDE-B using the erup-
tion duration data (in the transformed scale on [0, 1]) are 0.0025 and 0.0050, respectively.
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Figure 4. Estimates of Densities and Density Derivatives from Real Data.

The distribution of eruption durations is empirically known to be bimodal. The density
estimate captures this shape successfully and indicates that that two peaks are located
around 1.89 and 4.47, whereas a valley exists around 3.06. The density derivative estimate
changes its sign from positive to negative between 1.92 and 1.93 and between 4.44 and
4.45, and from negative to positive between 2.97 and 2.98. Again, locations of two peaks
and a valley of the density estimate roughly coincide with the information provided by the
density derivative estimate. All in all, both KDDEs work fine in practice in the sense that
each derivative estimate can well detect locations of local maximums andminimums of the
corresponding density estimate.

5. Conclusion

In this paper, we have proposed to employ asymmetric kernels to estimate first-order den-
sity derivatives. The gamma and betaKDDEs are defined, and their large-sample properties
including the novel bias and variance expansions are explored. It is demonstrated that these
estimators can attain the optimal convergence rate of theMISE n−4/7 if the underlying den-
sity has third-order smoothness. Superior finite-sample properties of these estimators have
been confirmed in Monte Carlo simulations, and two real data examples have illustrated
their usefulness.

It is of importance and interest to see whether these estimators can be applicable to other
problems than detection of locations of peaks and valleys in a pdf. In particular, incorporat-
ing them into (indirect) average derivative estimation of nonparametric regression curves
appears to be promising. We leave this task for our future research.
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Appendix

A.1. A list of useful results

Before proceeding, we summarise useful results. All results but two recursive formulae are stated
as lemmata. First two lemmata refer to the moments of log-transformed gamma and beta random
variables. The third lemma provides approximations to certain types of digamma and trigamma
functions. These are key ingredients for the bias and variance expansions of f̂ (1)J (x).

A.1.1. Recursive formulae for digamma and trigamma functions
For z> 0,

Ψ (z + 1) = Ψ (z) + 1
z
, and (A1)

Ψ1 (z + 1) = Ψ1 (z) − 1
z2
. (A2)

A.1.2. LemmaA.1
Let X d= G(α,β). Then,

E
(
Xm logX

) = βm (α)m
{
logβ + Ψ (α + m)

}
, m ∈ {0, 1, 2, . . .} , and

E
(
log2 X

) = {
logβ + Ψ (α)

}2 + Ψ1 (α) .

A.1.3. LemmaA.2
Let X d= Beta(γ , δ). Then,

E
{
Xm log

(
X

1 − X

)}
= (γ )m

(γ + δ)m
{Ψ (γ + m) − Ψ (δ)} , m ∈ {0, 1, 2, . . .} , and

E
{
log2

(
X

1 − X

)}
= {Ψ (γ ) − Ψ (δ)}2 + Ψ1 (γ ) + Ψ1 (δ) .

A.1.4. LemmaA.3
For z> 0,

Ψ
( z
b

+ 1
)

= log
( z
b

)
+ b

2z
+ O

(
b2
)
, and

Ψ1

( z
b

+ 1
)

= b
z

+ O
(
b2
)
,

as b → 0.

A.1.5. Proof of LemmaA.1
E(X logX) is available in the proof of Theorem 3.1 of Ye and Chen (2017). E(logX) and E(log2 X)

are also provided in the proof of Theorem 3.2 of Ye and Chen (2017). Finally, E(Xm logX) form ≥ 2
can be derived analogously to the proof of Lemma A.2 below. �

A.1.6. Proof of LemmaA.2
The proof strategy largely comes from Ye and Chen (2017). Observe that the moment generating
function of log{X/(1 − X)} for X d= Beta(γ , δ) is given by

M
log

(
X

1−X

) (z) = E
[
exp

{
z log

(
X

1 − X

)}]
= E

{(
X

1 − X

)z}
= � (γ + z)

� (γ )

� (δ − z)
� (δ)

.
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Therefore,

E
{
log

(
X

1 − X

)}
= � (γ ) − � (δ) , and

E
{
log2

(
X

1 − X

)}
= {� (γ ) − � (δ)}2 + �1 (γ ) + �1 (δ) .

To obtain E[Xm log{X/(1 − X)}] form ≥ 1, consider that

E
{
Xm log

(
X

1 − X

)}
=

∫ 1

0
um log

(
u

1 − u

)
uγ−1 (1 − u)δ−1

B (γ , δ)
du

= B (γ + m, δ)
B (γ , δ)

∫ 1

0
log

(
u

1 − u

)
uγ+m−1 (1 − u)δ−1

B (γ + m, δ)
du,

where the integral corresponds to E[log{Y/(1 − Y)}] for Y d= Beta(γ + m, δ). Then, the result
immediately follows. �

A.1.7. Proof of LemmaA.3
By Theorems 4 and 5 of Gordon (1994),

log y − 1
2y

− 1
12y2

< �
(
y
)

< log y − 1
2y

− 1

12
(
y + 1/14

)2 , and

1
y

+ 1
2y2

+ 1

6
(
y + 1/14

)3 < �1
(
y
)

<
1
y

+ 1
2y2

+ 1
6y3

for all y> 0. The stated results can be demonstrated by putting y = z/b + 1 and using (A1) and (A2).
�

A.2. Derivation of (3)

(a) For J = G:
It suffices to solve

LG(x,b) (u) = 1
b

{
log u − log b − �

(x
b

+ 1
)}

= 0

for u. It follows from Lemma A.3 that

log u = log b + �
(x
b

+ 1
)

= log x + b
2x

+ O
(
b2
)
.

Then,

u∗
G = x exp

{
b
2x

+ O
(
b2
)} = x

{
1 + b

2x
+ O

(
b2
)} = x + b

2
+ O

(
b2
)
.

(b) For J = B:
Again, we solve

LB(x,b) (u) = 1
b

{
log

(
u

1 − u

)
− �

(x
b

+ 1
)

+ �

(
1 − x
b

+ 1
)}

= 0

for u. If x = 1/2, then this equation reduces to log{u/(1 − u)} = 0 and thus u∗
B = 1/2 = x trivially

holds. If x �= 1/2, then, by Lemma A.3,

log
(

u
1 − u

)
= �

(x
b

+ 1
)

− �

(
1 − x
b

+ 1
)

= log
(

x
1 − x

)
−

{
1 − 2x

2x (1 − x)

}
b + O

(
b2
)
,



JOURNAL OF NONPARAMETRIC STATISTICS 21

so that
u

1 − u
=

(
x

1 − x

)
exp

[
−

{
1 − 2x

2x (1 − x)

}
b + O

(
b2
)]

=
(

x
1 − x

)[
1 −

{
1 − 2x

2x (1 − x)

}
b + O

(
b2
)]

.

Therefore,

u∗
B =

x −
{

1−2x
2(1−x)

}
b + O

(
b2
)

1 −
{

1−2x
2(1−x)

}
b + O

(
b2
)

=
[
x −

{
1 − 2x
2 (1 − x)

}
b + O

(
b2
)] [

1 +
{

1 − 2x
2 (1 − x)

}
b + O

(
b2
)]

= x +
(
x − 1

2

)
b + O

(
b2
)
.

�

A.3. Proof of Theorem 2.1

A.3.1. Proof of (i)
(a) For J = G:

Let ξx
d= G(x/b + 1, b). Because the gamma kernel is the pdf of G(x/b + 1, b), we may write

E
{
f̂ (1)G (x)

}
=

∫ ∞

0
LG(x,b) (u)KG(x,b) (u) f (u) du = E

{
LG(x,b) (ξx) f (ξx)

}
. (A3)

Substituting

f (ξx) = f (x) + f (1) (x) (ξx − x) + f (2) (x)
2!

(ξx − x)2 + f (3) (x̄)
3!

(ξx − x)3

with x̄ = tξx + (1 − t)x for some t ∈ [0, 1] into the right-hand side of (A3) yields

E
{
f̂ (1)G (x)

}
=

3∑
j=0

f (j) (x)
j!

E
{
LG(x,b) (ξx) (ξx − x)j

}

+ E

[{
f (3) (x̄) − f (3) (x)

}
3!

LG(x,b) (ξx) (ξx − x)3
]

=
3∑

j=0
AG

(
j
) + RG

(
say

)
.

It also follows from Lemma A.1 and a property of gamma random variables that

E
{
LG(x,b) (ξx) ξmx

} = bm−1
(x
b

+ 1
)
m

{
�

(x
b

+ m + 1
)

− �
(x
b

+ 1
)}

.

By this and (A1),

E
{
LG(x,b) (ξx)

} = 0,

E
{
LG(x,b) (ξx) (ξx − x)

} = 1,

E
{
LG(x,b) (ξx) (ξx − x)2

} = 3b, and

E
{
LG(x,b) (ξx) (ξx − x)3

} = 3xb + 11b2.
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Therefore,
3∑

j=0
AG

(
j
) = f (1) (x) + 1

2

{
3f (2) (x) + xf (3) (x)

}
b + O

(
b2
)
.

The remaining task is to demonstrate thatRG = o(b). It follows from (4) and theCauchy-Schwarz
inequality that

|RG| ≤ Ctζ

6
E
{∣∣LG(x,b) (ξx)

∣∣ |ξx − x|3+ζ
} ≤ C

6

[
E
{
L2G(x,b) (ξx)

}]1/2 {
E |ξx − x|2(3+ζ )

}1/2
.

Lemmata A.1 and A.3 jointly imply that

E
{
L2G(x,b) (ξx)

}
= 1

b2
�1

(x
b

+ 1
)

= 1
b2

O (b) = O
(
b−1) .

Also, by Hölder’s inequality and E|ξx − x|8 = O(b4),

E |ξx − x|2(3+ζ ) ≤ {
E |ξx − x|8}(3+ζ )/4 = O

(
b3+ζ

)
.

Hence,

|RG| ≤ O
(
b−1/2)O {

b(3+ζ )/2
}

= O
(
b1+ζ/2) = o (b) ,

and thus the bias expansion is demonstrated.
(b) For J = B:

Let θx
d= Beta{x/b + 1, (1 − x)/b + 1}. Since the beta kernel is the pdf of

Beta{x/b + 1, (1 − x)/b + 1}, it holds that E{f̂ (1)B (x)} := ∑3
j=0 AB(j) + RB, where

AB
(
j
) = f (j) (x)

j!
E
{
LB(x,b) (θx) (θx − x)j

}
,

RB = E

[{
f (3) (x̄) − f (3) (x)

}
3!

LB(x,b) (θx) (θx − x)3
]
,

and x̄ = tθx + (1 − t)x for some t ∈ [0, 1] as before. It also follows from Lemma A.2 and a property
of beta random variables that

E
{
LB(x,b) (θx) θmx

} = b−1 (x/b + 1)m
(1/b + 2)m

{
�

(x
b

+ m + 1
)

− �
(x
b

+ 1
)}

.

Combining this with (A1) yields

E
{
LB(x,b) (θx)

} = 0,

E
{
LB(x,b) (θx) (θx − x)

} = 1
1 + 2b

= 1 − 2b + O
(
b2
)
,

E
{
LB(x,b) (θx) (θx − x)2

} = 2x + 3b
(1 + 2b) (1 + 3b)

− 2x
1 + 2b

= 3 (1 − 2x) b + O
(
b2
)
, and

E
{
LB(x,b) (θx) (θx − x)3

} = 3x2 + 12xb + 11b2

(1 + 2b) (1 + 3b) (1 + 4b)

− 3x (2x + 3b)
(1 + 2b) (1 + 3b)

+ 3x2

1 + 2b

= 3x (1 − x) b + O
(
b2
)
.

It can be also shown that |RB| ≤ O(b1+ζ/2) = o(b), which establishes the stated result.
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A.3.2. Proof of (ii)
(a) For J = G:

It follows from

Var
{
f̂ (1)G (x)

}
= 1

n
E
{
L2G(x,b) (X)K2

G(x,b) (X)
}

+ O
(
n−1)

that we focus on approximating E{L2G(x,b)(X)K2
G(x,b)(X)}. Let ηx d= G(2x/b + 1, b/2). Then, as in the

proof of (i),

E
{
L2G(x,b) (X)K2

G(x,b) (X)
}
:= BGE

{
L2G(x,b) (ηx) f (ηx)

}
,

where, by Chen (2000, p. 474),

BG = b−1� (2x/b + 1)
22x/b+1�2 (x/b + 1)

∼
{

b−1/2/
(
2
√

π
√
x
)

if x/b → ∞
b−1� (2κ + 1) /

{
22κ+1�2 (κ + 1)

}
if x/b → κ

.

In addition,

E
{
L2G(x,b) (ηx) f (ηx)

}
∼ f (x) E

{
L2G(x,b) (ηx)

}
,

and it follows from Lemma A.1 that the expectation can be simplified as

E
{
L2G(x,b) (ηx)

}
= 1

b2

[{
�

(x
b

+ 1
)

− �

(
2x
b

+ 1
)

+ log 2
}2

+ �1

(
2x
b

+ 1
)]

.

It follows from Lemma A.3 that

E
{
L2G(x,b) (ηx)

}
= b−1

2x
+ O (1) ∼

{
b−1/ (2x) if x/b → ∞
b−2/ (2κ) if x/b → κ

,

which leads to the variance expansion.
(b) For J = B:

By

Var
{
f̂ (1)B (x)

}
= 1

n
E
{
L2B(x,b) (X)K2

B(x,b) (X)
}

+ O
(
n−1) ,

we have

E
{
L2B(x,b) (X)K2

B(x,b) (X)
}
:= BBE

{
L2B(x,b) (ϑx) f (ϑx)

}
,

where ϑx
d= Beta{2x/b + 1, 2(1 − x)/b + 1}. Lemma of Chen (1999) implies that

BB = B {2x/b + 1, 2 (1 − x) /b + 1}
B2 {x/b + 1, (1 − x) /b + 1}

∼
{

b−1/2/
(
2
√

π
√
x (1 − x)

)
if x/b → ∞ and (1 − x) /b → ∞

b−1� (2κ + 1) /
{
22κ+1�2 (κ + 1)

}
if x/b → κ or (1 − x) /b → κ

.

In addition, E{L2B(x,b)(ϑx)f (ϑx)} ∼ f (x)E{L2B(x,b)(ϑx)}, where the expectation reduces to

E
{
L2B(x,b) (ϑx)

}

= 1
b2

[{
�

(x
b

+ 1
)

− �

(
1 − x
b

+ 1
)

− �

(
2x
b

+ 1
)

+ �

(
2 (1 − x)

b
+ 1

)}2

+�1

(
2x
b

+ 1
)

+ �1

{
2 (1 − x)

b
+ 1

}]
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by Lemma Lemma A.2. Then, Lemma A.3 implies that

E
{
L2B(x,b) (ϑx)

}
= b−1

2x (1 − x)
+ O (1)

∼
{

b−1/ {2x (1 − x)} if x/b → ∞ and (1 − x) /b → ∞
b−2/ (2κ) if x/b → κ or (1 − x) /b → κ

,

which completes the proof. �
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