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ABSTRACT
This paper proposes a nonparametric method for detecting splicing
points within cost distributions. Leveraging techniques from change
point detection, we adopt an asymmetric gamma kernel estimator to
identify these transition points in often highly skewed distributions.
Our method focuses on identifying locations within the distribution
where a significant change occurs, allowing for the application of
distinct models on either side of the splicing point. Theoretical prop-
erties of the estimator, including strong consistency and asymptotic
normality, are established. In particular, it is demonstrated that the
estimator is consistent with a faster convergence rate than the para-
metric one. Since this estimator tends to underestimate the splic-
ing point in finite samples, we propose a bias correction method
to enhance accuracy. Our proposed approach is validated through
simulations and real data applications.
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1. Introduction

Estimating the precise location within a distribution where significant structural changes
occur is a critical task in many areas, including economics, actuarial science, and finance.
Such points, often referred to as splicing points, mark transitions where the distribution
may exhibit different characteristics that are better captured by distinct models on either
side. For example, in the context of incomedistributions, thismight correspond to a thresh-
old beyond which a different regime or model is necessary to accurately describe the ‘elite
income’ tier. In the field of non-life insurance, a handful of severe losses within a collection
of policies beyond some threshold can significantly contribute to the total claim amount. In
geophysics and hydrology, studies examine catastrophic disasters from the perspective of
significant event analysis. It is widely recognised that a single model cannot capture char-
acteristics over the entire range of such distributions. Typically, in income distributions,
the segment above a certain threshold is modelled separately from the bulk of the data,
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which lies below this threshold; see Cowell et al. (1998) and Jenkins (2017), for instance.
Moreover, modelling the whole range of a loss distribution is of particular importance and
interest in actuarial science, particularly in non-life insurance. Then, splicing (e.g., Klug-
man et al. 2019) or composite modelling (e.g., Cooray and Ananda 2005; Scollnik and
Sun 2012) – the practice of modelling the parts below and above a threshold differently –
is frequently employed.

The aim of this paper is to propose a nonparametric method of finding a threshold
in these distributions. Accordingly, the words ‘threshold’ and ‘splicing point’ are used
exchangeably hereinafter, whenever no confusion may arise. Our estimation strategy is
grounded on prior knowledge (or stylised facts) about shapes of the underlying distribu-
tions of interest. Our particular focus is on the distributions of nonnegative economic and
financial variables including incomes, wages, consumption expenditures, short-term inter-
est rates, and actuarial losses. These variables are examples of cost variables. Distributions
of cost variables have support on R+ with a natural boundary at the origin and are highly
right-skewed, with a concentration of observations near the origin and fewer data points
as values increase. As will be revealed shortly, we employ a specific kernel to capture these
characteristics while avoiding possible misspecification by relying on a particular para-
metric model. In addition, we translate the problem of threshold estimation into that of
change point detection, which has been actively studied in statistics. Our translation or
interpretation of the problem is motivated by the original idea of splicing, which refers to
the technique of combining two different probability density functions (pdfs) for the two
regions below and above a threshold or a splicing point, and continuity of the distribution
at this point is not required.1

Following the literature on change point detection (e.g., Chu and Cheng 1996; Coual-
lier 1999; Huh 2002), we take the absolute difference of two kernel density estimates as the
diagnostic function and define its maximiser as the splicing point estimator.2 Nonetheless,
our procedure remarkably differs from previous ones. While they are designed to work in
the central part of a distribution (i.e. near the peak), a threshold that divides the bulk and
less dense regions is expected to be situated far from the peak of the distribution. To over-
come such difficulty while exploiting prior information on shapes of cost distributions, we
adopt the asymmetric gamma kernel by Chen (2000); our contribution is the first work
in which an asymmetric kernel is applied for the problem of splicing point estimation in
composite models of density or regression curves, to the best of our knowledge. For a data
point u ∈ R+, a design point x ∈ R+ and a smoothing parameter b>0, the gamma kernel
is defined as

KG(x,b) (u) = ux/b exp (−u/b)
bx/b+1� (x/b + 1)

1 {u ≥ 0} , (1)

where �(a) = ∫ ∞
0 ta−1 exp(−t) dt for a>0 is the gamma function, and 1{·} denotes

an indicator function. A nonnegative random variable Z is said to obey the gamma
distribution having the shape parameter α > 0 and the scale parameter β > 0, which
is denoted as G(α,β) in shorthand notation hereinafter, if its pdf is given by f (z) =
zα−1 exp(−z/β)1{z ≥ 0}/{βα�(α)}. Observe that the gamma kernel can be interpreted
as the pdf of G(x/b + 1, b).

The use of asymmetric kernels, particularly the gamma kernel described in (1), rep-
resents a significant methodological contribution in our threshold estimation approach.
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This kernel offers several advantages over traditional symmetric kernels that are worth
highlighting. The gamma kernel provides adaptive smoothing by automatically changing
shapes across design points while requiring only a single smoothing parameter to gener-
ate a variety of shapes. This property enables effective calibration of right-skewed densities
with support on R+, such as those typically found in cost distributions.

Beyond these initial advantages, the gamma kernel offers additional benefits that
strengthen our methodology. First, the gamma kernel naturally respects the boundary
constraints of the data, eliminating the boundary bias problem that occurs with symmet-
ric kernels near the origin. Since many financial and actuarial data sets have a natural
lower bound at zero, this property ensures more accurate density estimation in the crit-
ical region near this boundary. Second, the gamma kernel maintains optimal convergence
rates in mean integrated squared error (MISE) within the class of nonnegative kernel
density estimators (see, e.g., Chen 2000, p. 477). Third, the gamma kernel’s adaptabil-
ity to different degrees of data concentration is especially beneficial when dealing with
unequally distributed data. Its variable bandwidth property automatically provides more
smoothing in regions with sparse data (often in the tails) and less smoothing in regions
with dense data. Fourth, the asymmetric nature of the gamma kernel aligns naturally
with the inherent asymmetry present in skewed distributions. This alignment improves
the accuracy of threshold identification by better capturing the underlying structure of
the data. Fifth, our method benefits from the gamma kernel’s capability to maintain
nonnegative estimates throughout the support range, which is mathematically consis-
tent with the nonnegative nature of the variables we typically analyze in cost distribution
applications.

Our splicing point estimator is super-consistent (i.e. its convergence rate exceeds
√
n,

where n is the sample size) and asymptotically normal when suitably implemented. While
the estimator shares its asymptotic properties with the existing literature (e.g., Chu and
Cheng 1996; Couallier 1999; Huh 2002), our proof strategy is totally different. The gamma
kernel admits neither the location-scale transformationKh(u − x) = K{(u − x)/h}/hwith
a bandwidth h(> 0) nor exchangeability between u and x, unlike standard symmetric
kernels. Instead, approximations to the incomplete gamma, digamma and polygamma
functions studied by Funke andHirukawa (2019, 2024) are tailored for the technical proofs.
This proof strategy is novel and of independent interest; see the Appendix and/or the Sup-
plemental Material for more details. It is also demonstrated that a uniform approximation
to our diagnostic function has a unique maximum. So far existence of the maximum in
the diagnostic function has been simply suggested, not formally proven, in the literature,
although it is a key ingredient for consistency of the splicing point estimator. A concern
is that the proposed estimator tends to generate negative biases in finite samples. How-
ever, an elementary bias correction can instantly improve bias properties of the estimator
without inflating its variance, and thus we advocate putting the bias-corrected version to
practical use.

The integration of asymmetric gamma kernels into threshold selection methodol-
ogy represents a significant methodological innovation in the statistical literature, as it
combines the boundary-respecting properties of asymmetric kernels with rigorous math-
ematical foundations to deliver improved convergence properties and bias reduction – a
contribution that addresses fundamental challenges in optimal threshold detection for data
with natural boundaries.



4 B. FUNKE ANDM. HIRUKAWA

Acknowledging that threshold estimation is a notoriously difficult problem, many
authors have proposed various threshold detection methods, mainly in the field of non-
life insurance. Below a summary of different types of approaches is providedwith emphasis
on specific difficulties that arise. The approaches are divided roughly into three categories,
namely, (i) heuristic approaches, (ii) graphical diagnostics and (iii) automated procedures.
For (i), a threshold is defined as a fixed quantile (DuMouchel 1983) or determined by some
formula depending on the sample size (Loretan and Phillips 1994); see Scarrott and Mac-
Donald (2012) formore details. Despite no theoretical justification, thesemethods are used
by actuaries in practical applications.

Examples of (ii) include the Hill plot and its variants, which were extensively analysed
by Kratz and Resnick (1996) for their theoretical properties and stability. The mean excess
plot (Davison and Smith 1990) and various quantile-based visualisation techniques sys-
tematically reviewed by Drees et al. (2020) have become standard tools in extreme value
analysis. Complementing these approaches, Reiss and Thomas (2007) develop a procedure
to identify regions of stability among extreme value index estimates, whereas Neves and
Fraga Alves (2004) provide further analysis on the tuning parameters required for opti-
mal threshold selection. For practical applications where sample size considerations are
paramount, Ferreira et al. (2003) propose the formula k = √

n as a systematic approach
to determining appropriate thresholds. These approaches are easy to grasp and thus used
regularly, whereas there is room for practitioners’ discretion at the stage of identifying a
threshold.

Recent research has shifted toward (iii) such as the minimum Kolmogorov-Smirnov
(KS) distance procedure (Clauset et al. 2009; Drees et al. 2020), sequential goodness-of-fit
testing (e.g., Bader et al. 2018), and the minimum quantile discrepancy and automated
Eye-Balling methods (Danielsson et al. 2019). A significant category within these pro-
cedures involves selecting thresholds based on goodness-of-fit of the generalised Pareto
distribution (GPD), where the threshold is chosen as the lowest level above which the GPD
provides adequate fit to the exceedances (Dupuis 1999; Choulakian and Stephens 2001;
Northrop and Coleman 2014). These approaches employ various techniques, includ-
ing comparing the empirical distribution to the fitted GPD via goodness-of-fit tests
(Wadsworth 2016) or by minimising the distance between them (Pickands 1975; Gonzalo
andOlmo2004), with the latter approach theoretically analysed again byDrees et al. (2020).
The KS and Anderson-Darling tests are commonly applied in this context. Another related
method is the rootmean square error (RMSE) approach by Li et al. (2014), whichmeasures
the difference between analytical and observed cumulative distribution functions (cdfs)
of exceedances at different thresholds, with the threshold having the lowest RMSE con-
sidered optimal. While these approaches are conceptually straightforward, error control
remains challenging due to the ordered nature of the hypotheses, with standard multi-
ple testing methods like false discovery rate (Benjamini 2010a, 2010b) not being directly
applicable. Another promising approach treats the data as a mixture of distributions, with
a GPD for the tail and another distribution for the bulk joined at the threshold (Mac-
Donald et al. 2011; Wadsworth and Tawn 2012; Naveau et al. 2016). By considering the
threshold as a parameter to estimate, thesemethods account for uncertainty from threshold
selection in inferences, although care is needed to ensure the bulk and tail models remain
robust to misspecification. These procedures circumvent arbitrariness but rely on a cer-
tain parametric model of the tail part including GPD. There is also a class of theoretically
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motivated procedures that target the optimal sample fraction for specific estimation
tasks, such as the estimation of high probabilities (Hall and Weissman 1997) or the Hill
estimator.

Beyond these categories, Langousis et al. (2016) identify several additional specialised
approaches for threshold selection. These include methods based on asymptotic results
about estimators of tail distribution properties, such as the Jackson or the Lewis kernel
statistics (Jackson 1967 resp. Lewis 1965), modified by Goegebeur et al. (2008) to enhance
the performance of the Hill estimator. Another significant approach is the automated ver-
sion of the mean residual life (MRL) plot. For more complex scenarios, resampling-based
estimators have been developed, although these are computationally demanding and often
require practitioners to select tuning parameters (Danielsson et al. 2001), which may ren-
der them unsuitable for smaller sample sizes (Ferreira et al. 2003). Our threshold detection
procedure will be able to serve as amore objective and flexible alternative to thesemethods.

Furthermore, there will be potentiallymany applications of our proposal. The definition
of a ‘cost’ is not strict, actually. Our threshold estimation procedure is expected to work
equally for non-cost variables (e.g., quantities demanded, transaction volumes, etc.), as
long as shapes of their distributions have similarities to those of costs. It can be also
employed for threshold detection prerequisite for tracing out the evidence of illegal trading
(James et al. 2023) and implementing extreme changes in changes (CIC) estimation (Sasaki
and Wang 2024), for instance.

The remainder of this paper is organised as follows. Section 2 overviews the splicing
point estimation using the gamma kernel and then recommends its practical implemen-
tation. In Section 3, convergence properties of the proposed estimator, namely, strong
consistency and asymptotic normality, are explored. Section 4 conducts Monte Carlo sim-
ulations to compare finite-sample behaviours of our splicing point estimator with those
of several existing competitive estimation methods. Our aim is to show numerically the
advantage of our proposal over these alternatives. In Section 5, the proposed estimation
approach is applied to a couple of real world datasets. Section 6 concludes. Proofs of the-
orems and propositions are provided in the Appendix. Proofs of lemmata are deferred to
the online Supplementary Material.

This paper adopts the following notational conventions: ‘an ∼ bn’ means that an/bn
converges to 1; ‘an = o(bn)’ signifies that an/bn converges to 0; ‘an = O(bn)’ means that
an/bn is bounded; and we say that ‘an � bn’ if there exist constants 0 < c1 < c2 < ∞ so
that c1an ≤ bn ≤ c2an. For a function h(x) and a point c, h(c−) = limx↑c h(x), h(c+) =
limx↓c h(x) and h(m)(x) = dmh(x)/dxm denote the left and right limits, and the mth-
order derivative, respectively. The abbreviation ‘a.s.’ stands for ‘almost surely’. Finally, the
expression ‘X d= Y ’ reads ‘A random variable X obeys the distribution Y.’

2. Our proposal: an informal overview

2.1. Estimation of a splicing point

It is suspected that f (x), the pdf of a ‘cost’ variable X ∈ R+, is discontinuous at t0 on a pre-
specified closed interval I0 := [t, t] with 0 < t < t < ∞. It is assumed that the interval I0
is situated in the upper region of the underlying cost distribution. Prior knowledge on the
interval is not at all unrealistic, because quite often practitioners have a rough idea about
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the location of the threshold through, for example, preliminary threshold estimates, his-
torical experiences and/or empirical quantiles. Against this background, our method can
complement existing practices and objectify the graphical analysis procedures mentioned
in Section 1.

Themodel below basically follows those of Chu andCheng (1996) andCouallier (1999).
A similar local structure can be also found in threshold detection problems for nonpara-
metric regression (e.g., Wu and Chu 1993a, 1993b; Joo and Qiu 2009) and deconvolution
(e.g., Delaigle and Gijbels 2006). It is assumed that the pdf f (x) for x ∈ I0 can be modelled
locally as

f (x) = g (x) + d01 {x < t0} , (2)

where g(x) is a sufficiently smooth function, and t0 ∈ I0 is the splicing point (or threshold).
The local structure (2) also implies the jump size

d0 := f
(
t−0

) − f
(
t+0

)
,

where |d0| ∈ (0,∞) is assumed throughout.
Our problem is how to estimate the threshold t0 nonparametrically. Suppose that there

are n i.i.d. observations {Xi}ni=1 at hand. If t0 were located in the bulk region, as in the
existing literature, splitting the entire sample into two sub-samples near t0 would cause no
serious issue. Two sample sizes are roughly the same, and thus both left and right limits of a
density can be estimated equally well. This is clearly not the case in our problem. Because t0
is located in the upper region, sample-splitting near t0 results in imbalance in sample sizes
of two sub-samples and an imprecise density estimate from the right sub-sample. In view
of this, we use the entire sample to estimate both limits of the pdf. To do so, we introduce
‘shifted’ gamma kernels KG(x,b;±�)(·), which are defined as pdfs of gamma distributions
G{(x ± �)/b + 1, b}, i.e.

KG(x,b;±�) (u) := u(x±�)/b exp (−u/b)
b(x±�)/b+1� {(x ± �) /b + 1}1 {u ≥ 0} ,

where b(= bn > 0) is the smoothing parameter, �(= �n > 0) plays the role of a
shift parameter, and each parameter shrinks towards zero at a certain rate. Obviously,
KG(x,b;±�)(·) collapse to Chen’s (2000) original gamma kernel (1) when � = 0. The ker-
nels can be interpreted as those designed to smooth the data off the target design point
x by a margin of �. In addition, they put the maximum weight at sightly left or right of x
because they have their modes at x ± �.

Our threshold estimator is derived from the difference between two density esti-
mates, which is generated by introducing a shift parameter �. Let the shifted density
estimators be

f̂± (x) := f̂±b,� (x) := 1
n

n∑
i=1

KG(x,b;±�) (Xi) .

Also define

Ĵ (x) := f̂− (x) − f̂+ (x) ,

where a single, common value is chosen for the smoothing parameter b in both den-
sity estimates, as in Chu and Cheng (1996), Couallier (1999) and Huh (2002). Following
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these articles, we also utilise |Ĵ(x)| as the diagnostic function for threshold detection.
The estimator of the splicing point t0, denoted as t̂, is defined as the maximiser of |Ĵ(x)|
on x ∈ I0, i.e.

t̂ := argmax
x∈I0

∣∣∣Ĵ (x)
∣∣∣ .

2.2. Recommended estimation procedure

Monte Carlo results in Section 4 indicate that t̂ tends to underestimate t0. However, it turns
out that the negative bias can be alleviated substantially, with no additional cost of spread,
by an elementary bias correction. In practice, we recommend the bias-corrected version of
the proposed estimator

t̃ := t̂ + b

for a suitably chosen smoothing parameter b. A theoretical foundation of the bias correc-
tion can be found in Remark 3.2, and its necessity is also visualised in Figure 1. Superior
finite-sample properties of t̃ over t̂ are confirmed in Section 4.

We can compute t̃ in the following steps:

(1) Prespecify the interval I0 that is likely to cover the splicing point t0.
(2) Put the shift parameter � = bα for α = 0.70 and select the smoothing parameter

b via the modified likelihood cross-validationmethod given by (11)–(12). Both the
exponent α in� and the choice method for b are based on our judgments from the
Monte Carlo study and real data examples.

(3) Find the maximiser of |Ĵ(x)| on x ∈ I0 and take it as t̂.
(4) Obtain the bias-corrected estimate t̃ = t̂ + b using the value of b selected in Step

(2).

3. Large-sample properties of the splicing point estimator

In this section convergence properties of the estimator t̂ are documented. Our particular
focus is on its consistency and asymptotic normality. In the course of this, we demonstrate
existence of a unique maximum in a certain uniform approximation to |Ĵ(x)| on x ∈ I0,
which constitutes a key condition for consistency of t̂. The asymptotic distribution of t̂
also hints that a simple form of its leading bias enables us to derive the bias-corrected
estimator t̃.

3.1. Regularity conditions

Convergence results below rely on the fact that |Ĵ(x)| can be approximated by the difference
between two incomplete gamma functions. To deliver the results, we impose the following
regularity conditions.

Assumption 3.1: {Xi}ni=1 ∈ R+ are i.i.d. random variables.
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Assumption 3.2:

(i) The pdf f (x) is uniformly bounded on x ∈ R+.
(ii) The local structure (2) holds, g(2)(x) is uniformly bounded on x ∈ R+, and g(3)(x)

is Lipschitz continuous and bounded on x ∈ I0.

Assumption 3.3: Tuning parameters b and � satisfy b,� → 0,

b3/4

�
+ �

b1/2+δ1
+ b1/2−4δ1

n1−δ2�2 → 0 (3)

for some arbitrarily small δ1, δ2 > 0, and

ln n
nb3/2−κ

= O (1) (4)

for some κ ∈ [0, 1), as n → ∞.

All these assumptions are standard for uniform approximations to asymmetric kernel
estimators. Similar conditions can be found, for example, in Funke and Hirukawa (2024).
It follows from Assumption 3.2(ii) that f (1)(t−0 ) = f (1)(t+0 ). Two boundedness conditions
on derivatives of the smoothed component g(·) also serve as important ingredients for
approximations to E{̂J(p)(x)} on x ∈ I0 for p = 0, 1, 2. This type of condition has been
often imposed in simulation studies on change point detection (e.g., Wu and Chu 1993a,
1993b; Chu and Cheng 1996).

Assumption 3.3 controls the shrinkage rates of tuning parameters b and �. The con-
dition (3) draws the following important conclusions: (i) b = o(�); (ii) b1/2 = o(�2/b);
and (iii) � = o(�3/b3/2). These are frequently used to controls remainder terms in the
asymptotic expansions. It also follows from b = o(�) and � = o(b1/2) that although the
shift parameter � should shrink to zero more slowly than the smoothing parameter b, the
convergence rate of�must not be too slow (ormust be faster than b1/2, to bemore precise).
Couallier (1999), for instance, also imposes a similar rate requirement. The condition (3)
also implies that

ln n
nb1/2

=
(
b1/2−4δ1

n1−δ2�2

)(
ln n
nδ2

)(
�

b1/2+δ1

)2
b6δ1 → 0.

This result serves as a prerequisite for Proposition 3.1, as will be revealed shortly. The other
condition (4) is an additional technical requirement for strong uniform consistency of t̂.

3.2. Consistency

Below asymptotic properties of the splicing point estimator t̂ are explored. Our analy-
sis starts from a uniform approximation to f̂±(x) on I0, which is documented in the
next proposition. To save space, we adopt the following shorthand notation whenever no
confusion may arise: K±

x (u) = KG(x,b;±�)(u); Kx(u) = KG(x,b)(u); a± = (x ± �)/b; and
z0 = t0/b.
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Proposition 3.1: If Assumptions 3.1–3.3 hold, then

sup
x∈I0

∣∣∣∣E {
f̂± (x)

}
−

{
g (x) ± g(1) (x) � + d0

∫ t0

0
K±
x (u) du

}∣∣∣∣ = O (b) (5)

and

sup
x∈I0

∣∣∣f̂± (x) − E
{
f̂± (x)

}∣∣∣ = O

(√
ln n
nb1/2

)
a.s., (6)

as n → ∞.

A direct outcome from Proposition 3.1 is that

sup
x∈I0

∣∣∣Ĵ (x) − E
{
Ĵ (x)

}∣∣∣ = O

(√
ln n
nb1/2

)
a.s..

It also follows from ||Ĵ(x)| − |E{̂J(x)}|| ≤ |Ĵ(x) − E{̂J(x)}| that
∣∣∣Ĵ (x)

∣∣∣ =
∣∣∣E {

Ĵ (x)
}∣∣∣ + O

(√
ln n
nb1/2

)
a.s.

uniformly on I0. In short, |E{̂J(x)}| constitutes the dominant term in |Ĵ(x)|, or the effect of
the location x on the magnitude of |Ĵ(x)| appears only in the value of |E{̂J(x)}| in a first-
order asymptotic sense. This result also plays a key role in the proof of Theorem 3.1 below;
see the Appendix for more details.

It follows from (5) and Assumption 3.2(ii) that |E{̂J(x)}| can be further approximated
by ∣∣∣E {

Ĵ (x)
}∣∣∣ := |d0| J (x) + O (�) (7)

uniformly on I0, where

J (x) =
∣∣∣∣
∫ t0

0
K−
x (u) du −

∫ t0

0
K+
x (u) du

∣∣∣∣
=

∫ t0

0
K−
x (u) du −

∫ t0

0
K+
x (u) du

= P
(
a− + 1, z0

) − P
(
a+ + 1, z0

)
,

and P(a, z) := γ (a, z)/�(a) is a normalised version of the lower incomplete gamma func-
tion γ (a, z) = ∫ z

0 ta−1 exp(−t) dt for a, z>0. The reasons why P(a− + 1, z0) ≥ P(a+ +
1, z0) holds are that P(a± + 1, z0) = Pr(Y± ≤ z0) for Y± d= G(a± + 1, 1) (i.e. P(a± +
1, z0) are cdfs of Y± evaluated at z0) and that the larger the shape parameter is, the flatter
the gamma distribution becomes.

We are about to demonstrate strong consistency of t̂. Before proceeding, it is curious
whether J(x) on x ∈ I0 indeed has a unique maximum at t0 (or within a shrinking neigh-
bourhood of t0 even if it is not maximised exactly at this point). In reality, however, it is
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quite cumbersome to look into the local property of J(x) analytically. Fortunately, several
approximations to the incomplete gamma function are available, and we rely on one of
them. More specifically, we employ Equation (1) of Pagurova (1965) to approximate the
normalised lower incomplete gamma functions P(a± + 1, z0) around the standard nor-
mal cdf. The next proposition refers to properties of the approximation and the maximiser
of the approximated function.

Proposition 3.2: If Assumption 3.3 holds, then the followings hold true.

(i) Define

Q (x) :=
(
x + t0
x3/2

)
φ

(
x − t0√

bx

)
,

where φ(·) is the pdf of N(0, 1). Then,

sup
x∈I0

∣∣∣∣J (x) − Q (x)
(

�

b1/2

)∣∣∣∣ = O
(

�3

b3/2

)
,

as n → ∞.
(ii) Q(x) on I0 has a unique maximum at x = t∗ ∈ (t0 − b, t0).

Before establishing strong consistency of t̂, we show by some numerical illustration that
maximising |Ĵ(x)| is a well-defined problem. A discontinuous density f (x) and the diag-
nostic function |Ĵ(x)| are drawn in Panel (a) of Figure 1. Model 1-A in Section 4 is chosen
for this illustration. The density is discontinuous at t0 = 4 with amagnitude of discontinu-
ity d0 = 0.15. The diagnostic function is computed from a Monte Carlo sample of sample
size 500 under tuning parameters b = 0.05 and � = b0.70.

Propositions 3.1 and 3.2 jointly imply that |Ĵ(x)| ∼ |d0|J(x) ∼ |d0|Q(x)(�/b1/2) holds
in theory. This result tempts us to make a visual inspection of shapes of these three curves.
The curves around the true threshold t0 = 4 are plotted in Panel (b) of Figure 1. Notice
that the panel magnifies the area surrounding t0 to visualise preciseness of the approxima-
tions. It can be immediately found that all three curves are single-peaked around the true
threshold, which confirms well-definedness of the optimisation problem. Approximating
|Ĵ(x)| by |d0|J(x) looks decent, whereas the discrepancy between the two curves suggests
that the approximation errors which are asymptotically negligible may not be ignored in
finite samples. Furthermore, |d0|Q(x)(�/b1/2) approximates |d0|J(x) quite well; rather,
they are almost indistinguishable. For reference, Panel (b) also indicates maximisers of
|Ĵ(x)| and Q(x) are t̂ ≈ 3.8693 and t∗ ≈ 3.9502, respectively. It follows from b = 0.05 that
the latter confirms Proposition 3.2(ii).

The function Q(x) has the following properties. Observe that

b−1/2Q (x) =
√

t20/b
2πx3

exp

{
−

(
t20/b

)
(x − t0)2

2t20x

}(
x + t0
t0

)
,

where
√

(t20/b)/(2πx3) exp{−(t20/b)(x − t0)2/(2t20x)} is the pdf of the inverse Gaussian
distribution IG(t0, t20/b). Because the shape parameter of this distribution t20/b → ∞, the
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Figure 1. The diagnostic function and its approximations.

pdf is close to a normal one for a sufficiently small b>0. In addition, the distribution has
mean t0 and variance bt0. It follows that the pdf roughly behaves like N(t0, bt0), and thus,
heuristically, the shape of Q(x) also looks like a bell curve centred around t0.

Strong consistency of t̂ for t0 is formally delivered in the theorem below.

Theorem 3.1: Let cn := b1/2+δ1 for δ1 defined in Assumption 3.3. If Assumptions 3.1–3.3
hold, then |t̂ − t0| = O(cn) a.s. as n → ∞.

The proof of Theorem 3.1 closely follows that of Theorem 3.1 in Chu and Cheng (1996);
see the Appendix for more details. Some readers may wonder why Theorem 2.1 of Newey
and McFadden (1994) is not employed. There are two reasons for not relying on this
theorem. First, we can immediately see the followings: Q(x) is uniquely maximised at
x = t∗; I0 is compact; and Q(x) is continuous. The problem is that while (b1/2/�)|Ĵ(x)|
is uniformly approximated by |d0|Q(x) on I0, Q(x) still depends on n through b. There-
fore, Theorem 2.1 of Newey andMcFadden (1994) is not directly applicable. Second, while
Theorem 2.1 of Newey and McFadden (1994) can lead to (weak) consistency t̂

p→ t0, it
says nothing about the convergence rate. In contrast, Theorem 3.1 above and cn = o(b1/2)
jointly establish that |t̂ − t0| = op(b1/2). As will be seen in LemmaA.8 in theAppendix, the
weak consistency of t̂with this rate plays a key role in establishing the asymptotic normality
of t̂.

3.3. Asymptotic normality

The theorem below documents asymptotic normality of t̂. The asymptotic distribution is
derived indirectly, as in Chu and Cheng (1996, Theorem 1), Couallier (1999, Théorème
2) and Delaigle and Gijbels (2006, Theorem 3.1). The indirect derivation comes from the
fact that t̂ solves the first-order condition Ĵ(1)(t̂) = 0. Then, a mean-value expansion of
the left-hand side around t̂ = t0 is made, and suitable approximations to the incomplete
gamma, digamma and polygamma functions are utilised in the expansion; see the Supple-
mental Material for more details. This is possible because unlike f (x), its estimates f̂±(x)
are smooth functions even at t0 due to differentiability of shifted gamma kernels K±

x (·)
with respect to x.
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Theorem 3.2: If Assumptions 3.1–3.3 hold, then

√
n

b1/2
{
t̂ − t0 − (−b)

} d→ N (0,V0) := N

(
0,
3
√

π t1/20
4d20

{
f (t−0 ) + f (t+0 )

2

})

as n → ∞.

Remark 3.1: While it is difficult to obtain asymptotic bias and variance of t̂ in light of the
indirect nature, the asymptotic distribution in Theorem 3.2 implies the first two moments
of t̂. The dominant bias term of t̂ is−b regardless of the position of t0. The expression of the
term is much simpler than what is obtained by Couallier (1999, Théorème 2). The differ-
ence arises from different assumptions on the local structure of the pdf f on I0; invoke
that our Assumption 3.2(ii) follows the setup by Chu and Cheng (1996). As discussed
in Remark 3.2 below, simplicity of the dominant bias term enables us to make the bias
correction of t̂ straightforward. Moreover, V0, the coefficient of the dominant variance
term, suggests that the larger the magnitude of discontinuity |d0|, the easier the estima-
tion of t0. It can be also recognised that the farther t0 moves away from the origin, the
less precise its estimator becomes. Finally, both bias and variance terms are free of the
shift parameter �. A similar result is obtained in Théorème 2 of Couallier (1999); to put
it another way, � does not affect convergence properties of t̂ in a first-order asymptotic
sense.

Remark 3.2: As will be seen in the next section, t̂ tends to yield negative biases in finite
samples, i.e. it is likely to underestimate the location of the splicing point, which coin-
cides with what Theorem 3.2 predicts. However, the theorem also suggests that the bias
can be corrected straightforwardly by adding b to t̂. This is the foundation of the bias-
corrected estimator t̃ = t̂ + b described in Section 2.2. Indeed, the proofs of Lemma A.6
and Theorem 3.2 jointly imply that the leading bias of t̃ is O(�2), whereas its variance is
still O(b1/2/n). It will be confirmed in the Monte Carlo study shortly that t̃ is a remedy for
better finite-sample properties.

Remark 3.3: An approximation to the mean squared error (AMSE) of t̂ is

AMSE
(
t̂
) = b2 + b1/2

n
V0 = O

(
b2 + b1/2

n

)
, (8)

where O(b2) and O(b1/2/n) terms are leading squared bias and variance of t̂, respectively.
The AMSE for the threshold parameter implied by Théorème 2 of Couallier (1999) is in the
form of O(h4 + h/n), where h is the the bandwidth for standard symmetric kernels. It can
be found that this AMSE and (8) are of the same order of magnitude by recognising that
b � h2. Furthermore, it follows from (8) that no bias-variance trade-off occurs, because a
smaller bmakes both squared bias and variance terms smaller.

Remark 3.4: Some readers may wonder how to pick b and � for super-consistency
of t̂. Then, for arbitrarily small δ1, δ2 > 0 as given in Assumption 3.3, put � � bα for
some α ∈ (1/2 + δ1, 3/4) and b � n−β for some β ∈ (0, (1 − δ2)/(2α − 1/2 + 4δ1)). It
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is straightforward to see that such � and b jointly satisfy (3). In addition, when α ∈
(1/2, 3/4), we have

1 − δ2

1 + 4δ1
<

1 − δ2

2α − 1/2 + 4δ1
<

2 (1 − δ2)

1 + 12δ1
,

where the two bounds (1 − δ2)/(1 + 4δ1) and 2(1 − δ2)/(1 + 12δ1) are slightly below
1 and 2, respectively. Using this, we may draw the following three conclusions on the
convergence rate of t̂:

(1) We are always allowed to pick β > 1/2. Then, AMSE(t̂) = o(n−1), or t̂ becomes
super-consistent.

(2) It is even possible to set β = 2/3, in particular. This value balances orders of mag-
nitude in the squared bias and variance so thatO(b2) = O(b1/2/n) = O(n−4/3). As
a consequence, AMSE(t̂) = O(n−4/3). It is also clear that the AMSE convergence
rate of t̂ is determined by the exponent β . AMSE(t̂) = O(b2) (i.e. the squared bias
dominates) for β ≤ 2/3, and AMSE(t̂) = O(b1/2/n) (i.e. the squared bias becomes
asymptotically negligible) otherwise. The latter case corresponds to an ‘under-
smoothing’ scenario so that nb3/2 → 0 holds. As a consequence, the asymptotic

normality statement in Theorem 3.2 reduces to
√
n/b1/2(t̂ − t0)

d→ N(0,V0).
(3) The best possible rate is AMSE(t̂) = O(n−2+ε) for an arbitrarily small ε > 0. The

rate can be attained by setting α and β slightly above 1/2 and slightly below 2,
respectively. Chu and Cheng (1996) and Couallier (1999) also report that their
threshold estimators can attain the same convergence rate under the best case
scenario.

Furthermore, it is not hard to see that for� and bdefined above,we can always find some
κ ∈ [0, 1) satisfying (4). To see this, observe that (4) holds if nb3/2−κ → ∞ at a polynomial
rate. The rate requirement is attained for conclusion (1) by setting β slightly above 1/2 and
κ = 0. For conclusion (2), β = 2/3 and any κ ∈ (0, 1) can jointly establish a polynomial
divergence of nb3/2−κ . Finally, for conclusion (3), β slightly below 2 and κ slightly below 1
lead to nb3/2−κ → ∞ at a polynomial rate.

Remark 3.5: As long as f (x) can be locally modelled as or well-approximated by (2), both
t̂ and t̃ become super-consistentwhen implemented as inRemark 3.4. It follows that regard-
less of whether a parametric (e.g., GPD) or nonparametric model (e.g., Markovitch and
Krieger 2000) is fitted to the upper part, our splicing point estimator can be safely used
as a threshold estimate without deteriorating the convergence rate for the model of the
upper part of the distribution. In addition, Table 1 of Clauset et al. (2009) lists examples
of non-power law distributions that behave like the GPD. Clauset et al. (2009) even argue
that fitting a power law distribution in their procedure has nothing to do with a plausi-
ble match of the distribution with the data, and they recommend a goodness-of-fit test as a
post-estimation analysis. Super-consistency of our estimators does no harm to convergence
rates of the test statistics, either.
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4. Finite-sample performance

4.1. Monte Carlo design

We consider two alternative models in the simulation study. For each model, 1000 Monte
Carlo replications of {Xi}ni=1 with sample size n ∈ {250, 500} are simulated.

In the first case, the univariate random variableX ∈ R+ is drawn from a log-normal-like
distribution. What differs from a usual log-normal distribution is that a quadratic term is
added to the pdf on the interval [0, t0) = [0, 4). Specifically, the pdf f (x) is

f (x) =
{

1
1 + (2/3)Dt0

}[
1

xσ
√
2π

exp

{
− (ln x − μ)2

2σ 2

}
+ S (x)

]
, (μ, σ) =

(
1
5
,
3
4

)
,

where

S (x) := D

{
1 −

(
x − t0
t0

)2
}
1 {x < t0}

and

d0 = f (t−0 ) − f
(
t+0

) = D
1 + (2/3)Dt0

.

The shift parameterD takes two values, andD = 1/4, 3/22 yield d0 = 0.15, 0.10, respec-
tively. The former and latter cases are labelled as ‘Model 1-A’ and ‘Model 1-B’. It also follows
from f (1)(t−0 ) = f (1)(t+0 ) that (2) is satisfied in the neighbourhood of the splicing point
t0 = 4.

This design is in some sense similar to that of Chu and Cheng (1996), who consider the
density f (x) constructed by splicing left and right sides of two normal distributions with
zero mean but different variances. In their design, f (0−) �= f (0+) but f (1)(0−) = f (1)(0+),
and thus (2) holds in the neighbourhood of the origin (aside from the fact that the threshold
lies in the middle part).

In the second case, the nonnegative randomvariableX is generated by some distribution
spliced at t0 = 4. The pdf f (x) in this case takes the general form

f (x) = fL (x) 1 {x < t0} + (1 − cL) fR (x) 1 {x ≥ t0} ,

where fL(x) is some density function truncated at t0, fR(x) is another density function with
support on [t0,∞), and cL := ∫ t0

0 f (x) dx = ∫ t0
0 fL(x) dx ensures unity of the integral of

f (x) over its entire support R+; in other words, fL(x) and fR(x) represent bulk and upper
part models, respectively. This scenario is labelled as ‘Model 2’.

Throughout theWeibull distribution with density

fL (x) = κ

λ

( x
λ

)κ−1
exp

{
−

( x
λ

)κ}
, (κ , λ) =

(
3,
11
4

)
,

is considered as the bulk part ofModel 2. Densities of the following distributions are exam-
ined for the tail part, and three cases are denoted as ‘Model 2-A’, ‘Model 2-B’ and ‘Model
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2-C’, depending on the corresponding tail model:

fR (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
s

{
1 + ξ(x−t0)

s

}−(1+1/ξ)
1 {x ≥ t0} , (ξ , s) = ( 1

4 , 4
)

[A: GPD]

k
� exp

{( 1
�

)k} (
x−t0+1

�

)k−1
exp

{
−

(
x−t0+1

�

)k}
1 {x ≥ t0 − 1} ,

(k, �) = ( 1
4 , 1

)
[B : Translated Weibull]

1
ς

√
2
π exp

{
− (x−t0)2

2ς2

}
1 {x ≥ t0} , ς = 4

√
2
π

[
C : Half -Normal

]
,

where f (t−0 ) = fL(4) and f (t+0 ) = (1 − cL)fR(4).
Drees et al. (2020, p.83) argue that discontinuity of the density at the threshold is an

easy scenario for the threshold detection method by Clauset et al. (2009). Model 2-A is
most favourable to existing threshold detectionmethods because of the chosen level of dis-
continuity. The tail part in Model 2-B, also known as a stretched exponential distribution,
reflects that again it seemingly behaves like a power law distribution (Clauset et al. 2009).
Because this pdf is unbounded at the boundary of the support t0 − 1, it is truncated at t0.
Model 2-C adopts a (shifted) half-normal distribution for the tail part. This distribution
has a normal-type thin tail. Because our splicing point estimator is grounded on no partic-
ular parametric model for the tail part, we are curious to see how tail thickness influences
finite-sample properties of our estimator.

Each of three cases violates (2) by construction but may be more realistic, because it is
hard to judge whether the local structure (2) indeed holds in real data. Moreover, the bulk
model and the jump size d0 = f (t−0 ) − f (t+0 ) are common across three cases of Model 2.
The only difference is the tail modelling. In short, Model 2 is designed to investigate how
robust our estimator is against violation of an important regularity condition and how our
estimator behaves toward different tail models.

Table 1 presents the mode of the distribution of X, the constant cL, left and right limits
of the density at the splicing point f (t±0 ), and the jump size d0 = f (t−0 ) − f (t+0 ). More than
95% of observations concentrate on the interval [0, t0) (i.e. in the bulk region) in each
model, and all models but Model 2-C have polynomially decaying tails. These features
reasonably mimic properties of cost distributions.

Our estimation procedure for t0 is implemented as follows. There are two optimiza-
tions required, namely, (i) the one for tuning parameters (b,�) and (ii) the other for
the search of the splicing point. For (i), Remark 3.4 suggests α ∈ (1/2, 3/4), and thus
we restrict our attention to four values, namely, α ∈ {0.55, 0.60, 0.65, 0.70}. A few cross-
validation (CV) methods for b are investigated, and their details are deferred to the next
section. For each CV method, candidates of b are taken from 100 equally-spaced grids
over the interval [0.005, 0.500]. For (ii), after (b,�) are determined, the threshold location

Table 1. Characteristic numbers of underlying distributions.

Model Distribution Mode cL f (t−0 ) f (t+0 ) d0

1 A Log-Normal+Quadratic (D = 1/4) 0.7499 0.9659 0.1728 0.0228 0.1500
B Log-Normal+Quadratic (D = 3/22) 0.7240 0.9583 0.1279 0.0279 0.1000

2 A Splicing withWeibull & GPD 2.4023 0.9539 0.1063 0.0115 0.0948
B Splicing withWeibull & TranslatedWeibull 2.4023 0.9539 0.1063 0.0115 0.0948
C Splicing withWeibull & Half-Normal 2.4023 0.9539 0.1063 0.0115 0.0948
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is searched via a numerical optimisation routine for the diagnostic function |Ĵ(x)| on the
interval I0 = [3, 5].3 Once the splicing point estimator t̂ is obtained as the maximiser of
|Ĵ(x)|, the bias-corrected estimator is computed as t̃ = t̂ + b.

Finite-sample performances of t̂ and t̃ are compared with those of existing (i) kernel-
smoothed competitive threshold estimation procedures and (ii) automated threshold
detectionmethods. For (i), we focus on the procedure by Chu and Cheng (1996) [CC]. The
CC diagnostic function is |ĴCC(x)| = |f̂1(x) − f̂2(x)|, where f̂j(x) = (nh)−1 ∑n

i=1 Kj{(Xi −
x)/h}, j = 1, 2, for the kernels K1 and K2 to be specified shortly and a common band-
width h(> 0). As in ourmethod, themaximiser of |ĴCC(x)| on I0 is defined as the threshold
estimator. The kernels K1 and K2 are fourth-order polynomial ones. These are

K1 (u) = (
0.4857 − 3.8560u + 2.8262u2 + 19.1631u3 + 11.9952u4

)
× 1 {u ∈ [−1, 0.2012]} ,

and K2(u) = K1(−u) for all u. These kernels are also employed for threshold detection
in nonparametric regression curves by Wu and Chu (1993a, 1993b). The CC procedure
is implemented as in ours. After the bandwidth value is found via grid search for a CV
criterion in the next section, the threshold location is searched via numerical optimisation
for the diagnostic function |ĴCC(x)| on I0.

For (ii), we investigate the followings: (a) the minimumKS distance procedure between
the empirical and GPD-based distribution functions by Clauset et al. (2009) [KS]; (b) the
minimum quantile discrepancy criterion for the mean absolute deviation between empir-
ical and GPD-based quantiles by Danielsson et al. (2019) [Q-MAD]; (c) the minimum
quantile discrepancy criterion for the sup-norm between empirical and GPD-based quan-
tiles by Danielsson et al. (2019) [Q-SUP]; (d) the automated Eye-Balling method based
on tail index estimates by Danielsson et al. (2019) [AEB]; and (e) the Anderson-Darling
sequential testing procedure by Bader et al. (2018) [ADST]. For (e), candidates of thresh-
olds are 20 empirical percentiles from 50.0% until 97.5% with an increment of 2.5%, i.e.
{50.0%, 52.5%, . . . , 95.0%, 97.5%}. The 5% level of significance is used for testing, and
p-values for multiple tests are adjusted by the ForwardStop procedure.

All simulations are conducted on R. In particular, R-packages poweRlaw, tea and
eva are employed to implement automated threshold detection methods (a), (b)–(d) and
(e), respectively.

4.2. Smoothing parameter selection

Selecting the smoothing parameter b is the most important practical issue. In our context,
values of (b,�)must be determined before threshold location search so that the diagnostic
function can be fixed on I0. However, Remark 3.3 does not help resolve this issue. There is
no optimal choice for b on the basis of the bias-variance trade-off. Theorem 3.2 provides
no guidance for �, either, because it does not automatically guarantee that any � satisfy-
ing (3) works equally well in finite samples. Furthermore, to the best of our knowledge,
there is no decisive conclusion on selecting the tuning parameter in the context of thresh-
old estimation; in fact, Chu andCheng (1996) adopt fixed bandwidths in theirMonte Carlo
study.
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Taking the dependence of � on b into account, we tailor Huh’s (2012) approach to
construct a few CV criterion functions. Before proceeding, put � = bα for a given α.
Accordingly, f̂±(x) are rewritten as f̂±b (x;α), which signify the dependence of density
estimates on (b,α). Also let

f̂±b,−i (x;α) := 1
n − 1

n∑
j=1,j�=i

K±
x

(
Xj

)

be density estimates using the sample with the ith observation eliminated. Finally, denote
the number of observations falling into I0 as n0 := ∑n

i=1 1{Xi ∈ I0}.
The CV criterion function by Huh (2012) is defined as the sum of CV criteria for two

density estimates that construct the diagnostic function for threshold location estimation.
We incorporate this idea into three CV criterion functions. Theminimiser of each criterion
function is taken as the corresponding CV smoothing parameter. The first one is the least-
squares cross-validation (LSCV) criterion. It is defined as

CVLS (b;α) = CV−
LS (b;α) + CV+

LS (b;α) , (9)

where

CV±
LS (b;α) :=

∫
I0

{
f̂±b (x;α)

}2
dx − 2

n0

∑
i:Xi∈I0

f̂±b,−i (Xi;α) . (10)

The remaining two criteria are likelihood-based ones. One is the simple likelihood cross-
validation (LCV) criterion, which is analogous to L̂2(h) of Marron (1985) and equation
(2.1) of Van Es (1991). It is given by

CVL (b;α) = CV−
L (b;α) + CV+

L (b;α) ,

where

CV±
L (b;α) := −

∑
i:Xi∈I0

ln
{
f̂±b,−i (Xi;α)

}

is the negative log-likelihood. The other is the modified LCV (MLCV) criterion, which
corresponds to L̂5(h) of Marron (1985) and equation (2.2) of Van Es (1991). It takes the
form of

CVML (b;α) = CV−
ML (b;α) + CV+

ML (b;α) , (11)

where

CV±
ML (b;α) := −

⎡
⎣ ∑
i:Xi∈I0

ln
{
f̂±b,−i (Xi;α)

}
−

n∑
i=1

∫
I0
K±
Xi

(u) du

⎤
⎦

= −
⎡
⎣ ∑
i:Xi∈I0

ln
{
f̂±b,−i (Xi;α)

}

−
n∑

i=1

{
P
(
Xi ± �

b
+ 1,

t
b

)
− P

(
Xi ± �

b
+ 1,

t
b

)}]
, (12)
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and the second term is intended to eliminate the endpoint effect of the interval I0 = [t, t].
Corresponding threshold location estimates are labelled ‘SG-LS’, ‘SG-L’ and ‘SG-ML’,
where ‘SG’ abbreviates ‘shifted gamma’. For their bias-corrected versions, we put ‘-BC’
at the end.

Finally, choosing the bandwidth h is also required to implement the CC procedure. The
LSCV analogous to (9)–(10) (i.e. finding a minimiser of the sum of two LSCV criteria for
f̂1(x) and f̂2(x)) is adopted.

4.3. Results

Table 2 presents several performance measures of threshold estimators. These include the
bias, standard deviation and RMSE of each threshold estimator over 1000 Monte Carlo
samples. In addition, for CC and SG estimators, Monte Carlo averages and standard devi-
ations (in parentheses) of CV tuning parameters are reported for reference. Furthermore,
there is no guarantee that automated threshold detectionmethods necessarily yield thresh-
old estimates falling into the interval I0. For these methods, percentages of threshold
estimates inside I0 out of 1000 Monte Carlo samples are provided.

Properties of the tail parts in Model 2-C and other four models differ; while the tail for
the former decays exponentially fast, the latter has a polynomially decaying tail. Therefore,
it is reasonable to evaluate theMonteCarlo results from the former and the latter separately.

4.3.1. Models 1-A, 1-B, 2-A, and 2-B
We start from examining the results from automated threshold detection methods. Q-
MAD generates the smallest RMSE for Models 1-A, 1-B and 2-A, whereas ADST yields
the smallest RMSE for Model 2-B. In addition, more than 90% of estimates from Q-MAD
are inside I0 for eachmodel and sample size, despite no restriction on the parameter space.
WhileModels 2-A and 2-B are thought to bemore favourable thanModels 1-A and 1-B for
these automatedmethods, Q-MAD is comparable to SGmethods in terms of RMSE for the
latter case. There are also general tendencies of underestimation by KS and Q-MAD and
overestimation by AEB. No clear tendencies can be observed in ADST. In particular, the
degree of overestimation by AEB is considerable.

CC also looks comparable to SG methods. It consistently overestimates the location
of the splicing point. However, the bias reduces with the sample size, and jointly by the
decrease in dispersion, its RMSE becomes smaller as the sample size is larger.

There is also a general tendency in the results from SG methods. It can be immediately
found that the initial estimate t̂ tends to be negatively biased, as Theorem 3.2 predicts.
Moreover, a short b makes both the bias and variance small, as suggested in Remark 3.3.
Accordingly, it can be reasonably conjectured that a CV algorithm that can generate a small
smoothing parameter value b̂ will contribute to the initial estimate t̂ with good quality.
Clearly, MLCV alone fulfills this requirement. In contrast, LSCV and LCV consistently
give a large value of b̂, which leads to a considerably biased t̂. This is the source of their
poor performance, and the sizable bias cannot be corrected completely even after adding
a large b̂ to t̂.

In what follows, we look into SG-ML and SG-ML-BCmore carefully. Although the shift
parameter � does not enter the asymptotic normality result in Theorem 3.2, the choice of
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Table 2. Monte Carlo results.

n = 250 n = 500

Estimator α Bias SD RMSE ĥ or b̂ %{I0} Bias SD RMSE ĥ or b̂ %{I0}
Model 1-A: Log-Normal+ Quadratic (D = 1/4)

CC − 0.2260 0.6340 0.6731 0.0116 (0.0092) − 0.0487 0.5775 0.5796 0.0073 (0.0037) −
KS − −0.8770 0.5392 1.0295 − (−) 64.4% −0.5234 0.7046 0.8778 − (−) 70.7%
Q-MAD − −0.2990 0.1569 0.3376 − (−) 100.0% −0.3229 0.1962 0.3778 − (−) 99.7%
Q-SUP − −0.1039 0.4014 0.4146 − (−) 97.6% 0.0800 0.6708 0.6755 − (−) 91.3%
AEB − 0.6615 0.8305 1.0618 − (−) 72.9% 0.7181 0.5745 0.9197 − (−) 70.8%
ADST − −0.2662 0.7930 0.8365 − (−) 78.1% 0.2605 0.5359 0.5958 − (−) 90.2%
SG-LS 0.55 −0.6680 0.4375 0.7985 0.3302 (0.212) − −0.7461 0.4079 0.8503 0.3716 (0.2027) −

0.60 −0.6578 0.4423 0.7927 0.3263 (0.2206) − −0.7351 0.4149 0.8441 0.3666 (0.2066) −
0.65 −0.6501 0.4444 0.7874 0.3221 (0.2220) − −0.7185 0.4243 0.8345 0.3585 (0.2113) −
0.70 −0.6333 0.4497 0.7767 0.3141 (0.2243) − −0.7053 0.4310 0.8266 0.3518 (0.2147) −

SG-LS-BC 0.55 −0.3378 0.2250 0.4058 − (−) − −0.3745 0.2078 0.4283 − (−) −
0.60 −0.3315 0.2273 0.4020 − (−) − −0.3685 0.2107 0.4245 − (−) −
0.65 −0.3280 0.2282 0.3996 − (−) − −0.3600 0.2155 0.4196 − (−) −
0.70 −0.3192 0.2313 0.3942 − (−) − −0.3535 0.2192 0.4160 − (−) −

SG-L 0.55 −0.5628 0.4462 0.7182 0.2725 (0.2076) − −0.6063 0.4269 0.7415 0.2914 (0.1987) −
0.60 −0.5118 0.4494 0.6811 0.2449 (0.2052) − −0.5363 0.4320 0.6886 0.2548 (0.1989) −
0.65 −0.4758 0.4468 0.6527 0.2262 (0.2011) − −0.4898 0.4288 0.6510 0.2311 (0.1939) −
0.70 −0.4590 0.4433 0.6381 0.2160 (0.1966) − −0.4608 0.4219 0.6247 0.2148 (0.1877) −

SG-L-BC 0.55 −0.2904 0.2474 0.3814 − (−) − −0.3149 0.2357 0.3933 − (−) −
0.60 −0.2668 0.2546 0.3688 − (−) − −0.2814 0.2417 0.3710 − (−) −
0.65 −0.2497 0.2575 0.3586 − (−) − −0.2587 0.2437 0.3554 − (−) −
0.70 −0.2430 0.2598 0.3557 − (−) − −0.2460 0.2437 0.3463 − (−) −

SG-ML 0.55 0.1375 0.4524 0.4728 0.0315 (0.0210) − 0.3265 0.5146 0.6094 0.0249 (0.0183) −
0.60 0.0465 0.3836 0.3864 0.0335 (0.0196) − 0.1547 0.4346 0.4613 0.0297 (0.0173) −
0.65 −0.0035 0.3204 0.3204 0.0351 (0.0188) − 0.0608 0.3497 0.3550 0.0326 (0.0166) −
0.70 −0.0352 0.2737 0.2759 0.0364 (0.0187) − 0.0101 0.2831 0.2832 0.0342 (0.0157) −

SG-ML-BC 0.55 0.1690 0.4378 0.4693 − (−) − 0.3514 0.4993 0.6105 − (−) −
0.60 0.0800 0.3714 0.3799 − (−) − 0.1845 0.4216 0.4602 − (−) −
0.65 0.0316 0.3098 0.3114 − (−) − 0.0933 0.3390 0.3516 − (−) −
0.70 0.0011 0.2639 0.2639 − (−) − 0.0443 0.2741 0.2777 − (−) −

(continued).
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Table 2. Continued.

n = 250 n = 500

Estimator α Bias SD RMSE ĥ or b̂ %{I0} Bias SD RMSE ĥ or b̂ %{I0}
Model 1-B: Log-Normal+ Quadratic (D = 3/22)

CC − 0.3200 0.6223 0.6998 0.0139 (0.0126) − 0.1409 0.5942 0.6107 0.0086 (0.0056) −
KS − −0.9832 0.6012 1.1525 − (−) 59.4% −0.6664 0.6955 0.9632 − (−) 66.0%
Q-MAD − −0.3227 0.2688 0.4200 − (−) 99.3% −0.3638 0.2716 0.4540 − (−) 99.5%
Q-SUP − −0.0720 0.6380 0.6421 − (−) 92.5% 0.1549 0.9658 0.9782 − (−) 83.7%
AEB − 0.9418 0.8936 1.2983 − (−) 60.2% 1.0100 0.6164 1.1832 − (−) 53.5%
ADST − −0.6039 1.0622 1.2219 − (−) 56.5% 0.0711 0.9103 0.9131 − (−) 72.3%
SG-LS 0.55 −0.9517 0.2014 0.9727 0.4740 (0.1070) − −0.9940 0.0711 0.9965 0.4967 (0.0392) −

0.60 −0.9472 0.2109 0.9703 0.4717 (0.1115) − −0.9923 0.0808 0.9956 0.4958 (0.0444) −
0.65 −0.9363 0.2304 0.9642 0.4658 (0.1220) − −0.9914 0.0856 0.9951 0.4953 (0.0468) −
0.70 −0.9303 0.2398 0.9607 0.4625 (0.1273) − −0.9856 0.1130 0.9921 0.4925 (0.0590) −

SG-LS-BC 0.55 −0.4777 0.0973 0.4875 − (−) − −0.4973 0.0321 0.4983 − (−) −
0.60 −0.4755 0.1029 0.4865 − (−) − −0.4965 0.0367 0.4979 − (−) −
0.65 −0.4705 0.1122 0.4837 − (−) − −0.4961 0.0390 0.4976 − (−) −
0.70 −0.4679 0.1165 0.4822 − (−) − −0.4931 0.0545 0.4961 − (−) −

SG-L 0.55 −0.9171 0.2572 0.9525 0.4554 (0.1321) − −0.9809 0.1295 0.9894 0.4897 (0.0660) −
0.60 −0.8958 0.2857 0.9403 0.4437 (0.1469) − −0.9652 0.1737 0.9807 0.4819 (0.0875) −
0.65 −0.8789 0.3064 0.9308 0.4347 (0.1556) − −0.9605 0.1840 0.9780 0.4789 (0.0939) −
0.70 −0.8711 0.3138 0.9259 0.4304 (0.1592) − −0.9510 0.2031 0.9724 0.4740 (0.1029) −

SG-L-BC 0.55 −0.4617 0.1294 0.4794 − (−) − −0.4912 0.0649 0.4955 − (−) −
0.60 −0.4521 0.1439 0.4745 − (−) − −0.4833 0.0878 0.4912 − (−) −
0.65 −0.4443 0.1573 0.4713 − (−) − −0.4816 0.0925 0.4904 − (−) −
0.70 −0.4407 0.1616 0.4694 − (−) − −0.4770 0.1029 0.4880 − (−) −

SG-ML 0.55 0.0586 0.5252 0.5285 0.0379 (0.0278) − 0.2704 0.5556 0.6179 0.0308 (0.0246) −
0.60 −0.0557 0.4497 0.4532 0.0423 (0.0279) − 0.0642 0.4729 0.4772 0.0398 (0.0253) −
0.65 −0.1146 0.3854 0.4021 0.0450 (0.0275) − −0.0434 0.3983 0.4007 0.0454 (0.0259) −
0.70 −0.1498 0.3557 0.3859 0.0468 (0.0275) − −0.0943 0.3433 0.3560 0.0489 (0.0260) −

SG-ML-BC 0.55 0.0965 0.5064 0.5155 − (−) − 0.3012 0.5360 0.6149 − (−) −
0.60 −0.0133 0.4332 0.4334 − (−) − 0.1040 0.4549 0.4667 − (−) −
0.65 −0.0696 0.3706 0.3771 − (−) − 0.0020 0.3822 0.3822 − (−) −
0.70 −0.1030 0.3408 0.3560 − (−) − −0.0455 0.3280 0.3311 − (−) −

(continued).
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Table 2. Continued.

n = 250 n = 500

Estimator α Bias SD RMSE ĥ or b̂ %{I0} Bias SD RMSE ĥ or b̂ %{I0}
Model 2-A: Splicing with Weibull & GPD

CC − 0.3261 0.6679 0.7432 0.0104 (0.0228) − 0.1999 0.6443 0.6746 0.0060 (0.0023) −
KS − −1.3273 0.9856 1.6533 − (−) 9.1% −0.6556 1.8320 1.9458 − (−) 16.2%
Q-MAD − −0.2051 0.7303 0.7585 − (−) 97.5% 0.1488 1.4884 1.4958 − (−) 90.5%
Q-SUP − 0.3085 1.6298 1.6588 − (−) 86.4% 1.0775 2.9302 3.1221 − (−) 78.4%
AEB − 4.3704 2.9114 5.2514 − (−) 8.1% 4.2648 2.0070 4.7135 − (−) 2.9%
ADST − 1.0151 1.9948 2.2382 − (−) 49.1% 2.1329 1.5330 2.6266 − (−) 23.3%
SG-LS 0.55 −0.6238 0.1250 0.6362 0.1503 (0.0644) − −0.6202 0.0914 0.6269 0.1528 (0.0450) −

0.60 −0.6268 0.1260 0.6393 0.1550 (0.0675) − −0.6237 0.0914 0.6304 0.1578 (0.0473) −
0.65 −0.6290 0.1272 0.6417 0.1583 (0.0705) − −0.6265 0.0919 0.6333 0.1613 (0.0495) −
0.70 −0.6308 0.1282 0.6437 0.1608 (0.0728) − −0.6285 0.0935 0.6354 0.1635 (0.0514) −

SG-LS-BC 0.55 −0.4736 0.0848 0.4811 − (−) − −0.4674 0.0615 0.4714 − (−) −
0.60 −0.4717 0.0841 0.4792 − (−) − −0.4659 0.0601 0.4698 − (−) −
0.65 −0.4708 0.0840 0.4782 − (−) − −0.4652 0.0592 0.4690 − (−) −
0.70 −0.4700 0.0839 0.4775 − (−) − −0.4649 0.0592 0.4687 − (−) −

SG-L 0.55 −0.6196 0.1186 0.6309 0.1848 (0.0668) − −0.6224 0.0831 0.6279 0.1862 (0.0470) −
0.60 −0.6216 0.1233 0.6337 0.1767 (0.0660) − −0.6242 0.0871 0.6303 0.1779 (0.0466) −
0.65 −0.6231 0.1282 0.6362 0.1718 (0.0648) − −0.6259 0.0898 0.6323 0.1728 (0.0459) −
0.70 −0.6239 0.1346 0.6383 0.1692 (0.0638) − −0.6275 0.0915 0.6342 0.1701 (0.0452) −

SG-L-BC 0.55 −0.4348 0.0715 0.4407 − (−) − −0.4362 0.0491 0.4389 − (−) −
0.60 −0.4449 0.0759 0.4513 − (−) − −0.4464 0.0522 0.4494 − (−) −
0.65 −0.4514 0.0811 0.4586 − (−) − −0.4531 0.0547 0.4564 − (−) −
0.70 −0.4547 0.0881 0.4632 − (−) − −0.4574 0.0566 0.4609 − (−) −

SG-ML 0.55 −0.4484 0.3354 0.5600 0.0333 (0.0082) − −0.4259 0.3665 0.5619 0.0331 (0.0079) −
0.60 −0.4518 0.3036 0.5443 0.0332 (0.0074) − −0.4568 0.2998 0.5464 0.0332 (0.0064) −
0.65 −0.4506 0.2968 0.5395 0.0335 (0.0073) − −0.4697 0.2632 0.5384 0.0337 (0.0057) −
0.70 −0.4334 0.3124 0.5342 0.0340 (0.0075) − −0.4733 0.2508 0.5356 0.0343 (0.0057) −

SG-ML-BC 0.55 −0.4152 0.3313 0.5311 − (−) − −0.3928 0.3612 0.5336 − (−) −
0.60 −0.4186 0.3005 0.5153 − (−) − −0.4237 0.2964 0.5171 − (−) −
0.65 −0.4171 0.2940 0.5102 − (−) − −0.4360 0.2609 0.5081 − (−) −
0.70 −0.3994 0.3092 0.5051 − (−) − −0.4390 0.2487 0.5046 − (−) −

(continued).
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Table 2. Continued.

n = 250 n = 500

Estimator α Bias SD RMSE ĥ or b̂ %{I0} Bias SD RMSE ĥ or b̂ %{I0}
Model 2-B: Splicing with Weibull & Translated Weibull

CC − 0.3302 0.6788 0.7548 0.0116 (0.0351) − 0.1609 0.6716 0.6906 0.0058 (0.0020) −
KS − −1.4714 0.9325 1.7420 − (−) 12.4% −1.0546 3.0694 3.2455 − (−) 17.3%
Q-MAD − −0.2656 1.3378 1.3639 − (−) 97.2% 0.4715 4.2932 4.3190 − (−) 93.6%
Q-SUP − 0.1266 1.8973 1.9015 − (−) 92.1% 2.7196 16.7906 17.0094 − (−) 80.1%
AEB − 6.4959 13.3971 14.8889 − (−) 39.8% 3.7522 5.4395 6.6081 − (−) 37.6%
ADST − −0.6069 0.7234 0.9442 − (−) 85.3% −0.6242 0.4701 0.7814 − (−) 95.2%
SG-LS 0.55 −0.6123 0.1278 0.6255 0.1384 (0.0591) − −0.5991 0.0968 0.6068 0.1364 (0.0427) −

0.60 −0.6154 0.1283 0.6287 0.1425 (0.0619) − −0.6024 0.0974 0.6103 0.1405 (0.0448) −
0.65 −0.6175 0.1296 0.6309 0.1453 (0.0645) − −0.6050 0.0982 0.6130 0.1434 (0.0467) −
0.70 −0.6193 0.1307 0.6329 0.1473 (0.0665) − −0.6069 0.0993 0.6150 0.1453 (0.0484) −

SG-LS-BC 0.55 −0.4739 0.0899 0.4824 − (−) − −0.4626 0.0670 0.4675 − (−) −
0.60 −0.4730 0.0888 0.4812 − (−) − −0.4620 0.0658 0.4667 − (−) −
0.65 −0.4721 0.0883 0.4803 − (−) − −0.4616 0.0652 0.4662 − (−) −
0.70 −0.4720 0.0881 0.4801 − (−) − −0.4616 0.0649 0.4662 − (−) −

SG-L 0.55 −0.6036 0.1328 0.6181 0.1502 (0.0621) − −0.5977 0.0968 0.6055 0.1477 (0.0443) −
0.60 −0.6028 0.1397 0.6188 0.1428 (0.0614) − −0.5969 0.1013 0.6054 0.1404 (0.0438) −
0.65 −0.6022 0.1461 0.6196 0.1386 (0.0605) − −0.5969 0.1041 0.6059 0.1364 (0.0430) −
0.70 −0.6023 0.1518 0.6211 0.1368 (0.0596) − −0.5976 0.1056 0.6068 0.1346 (0.0423) −

SG-L-BC 0.55 −0.4534 0.0857 0.4615 − (−) − −0.4500 0.0611 0.4541 − (−) −
0.60 −0.4600 0.0925 0.4692 − (−) − −0.4565 0.0656 0.4612 − (−) −
0.65 −0.4635 0.0993 0.4741 − (−) − −0.4605 0.0687 0.4656 − (−) −
0.70 −0.4654 0.1061 0.4774 − (−) − −0.4630 0.0706 0.4683 − (−) −

SG-ML 0.55 −0.4056 0.3411 0.5300 0.0325 (0.0087) − −0.3769 0.3688 0.5273 0.0350 (0.0101) −
0.60 −0.4099 0.3227 0.5217 0.0326 (0.0082) − −0.4048 0.3125 0.5114 0.0355 (0.0090) −
0.65 −0.3956 0.3177 0.5074 0.0329 (0.0078) − −0.4224 0.2595 0.4958 0.0359 (0.0080) −
0.70 −0.3742 0.3280 0.4976 0.0330 (0.0077) − −0.4118 0.2559 0.4848 0.0359 (0.0078) −

SG-ML-BC 0.55 −0.3732 0.3370 0.5028 − (−) − −0.3418 0.3625 0.4982 − (−) −
0.60 −0.3774 0.3194 0.4944 − (−) − −0.3693 0.3079 0.4808 − (−) −
0.65 −0.3628 0.3147 0.4802 − (−) − −0.3865 0.2567 0.4640 − (−) −
0.70 −0.3412 0.3249 0.4711 − (−) − −0.3758 0.2532 0.4532 − (−) −

(continued).
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Table 2. Continued.

n = 250 n = 500

Estimator α Bias SD RMSE ĥ or b̂ %{I0} Bias SD RMSE ĥ or b̂ %{I0}
Model 2-C: Splicing with Weibull & Half-Normal

CC − 0.3235 0.6634 0.7381 0.0104 (0.0228) − 0.1936 0.6369 0.6657 0.0060 (0.0023) −
KS − −1.3201 0.3891 1.3762 − (−) 6.4% −1.2673 0.7162 1.4557 − (−) 2.2%
Q-MAD − −0.3307 0.3061 0.4506 − (−) 99.3% −0.2735 0.3994 0.4841 − (−) 96.5%
Q-SUP − 0.0444 0.9760 0.9770 − (−) 87.8% 0.1620 1.3087 1.3187 − (−) 84.8%
AEB − 1.6486 1.0892 1.9760 − (−) 30.2% 1.7211 0.7767 1.8882 − (−) 19.0%
ADST − −0.0373 1.3417 1.3422 − (−) 51.0% 1.1259 1.1772 1.6289 − (−) 39.7%
SG-LS 0.55 −0.6274 0.1236 0.6394 0.1549 (0.0661) − −0.6243 0.0900 0.6308 0.1576 (0.0463) −

0.60 −0.6304 0.1244 0.6425 0.1598 (0.0692) − −0.6279 0.0901 0.6343 0.1628 (0.0486) −
0.65 −0.6328 0.1256 0.6451 0.1634 (0.0721) − −0.6308 0.0905 0.6373 0.1666 (0.0506) −
0.70 −0.6344 0.1271 0.6470 0.1659 (0.0748) − −0.6330 0.0913 0.6395 0.1691 (0.0527) −

SG-LS-BC 0.55 −0.4725 0.0825 0.4796 − (−) − −0.4667 0.0596 0.4705 − (−) −
0.60 −0.4706 0.0818 0.4776 − (−) − −0.4651 0.0582 0.4687 − (−) −
0.65 −0.4693 0.0818 0.4764 − (−) − −0.4642 0.0573 0.4677 − (−) −
0.70 −0.4685 0.0819 0.4756 − (−) − −0.4639 0.0568 0.4674 − (−) −

SG-L 0.55 −0.6234 0.1163 0.6342 0.1948 (0.0690) − −0.6266 0.0805 0.6318 0.1970 (0.0487) −
0.60 −0.6257 0.1207 0.6373 0.1861 (0.0684) − −0.6288 0.0845 0.6344 0.1881 (0.0485) −
0.65 −0.6275 0.1255 0.6399 0.1808 (0.0674) − −0.6307 0.0872 0.6367 0.1827 (0.0479) −
0.70 −0.6284 0.1321 0.6422 0.1779 (0.0663) − −0.6325 0.0890 0.6388 0.1795 (0.0471) −

SG-L-BC 0.55 −0.4287 0.0683 0.4341 − (−) − −0.4296 0.0463 0.4321 − (−) −
0.60 −0.4396 0.0720 0.4455 − (−) − −0.4406 0.0492 0.4434 − (−) −
0.65 −0.4467 0.0771 0.4533 − (−) − −0.4480 0.0515 0.4510 − (−) −
0.70 −0.4505 0.0843 0.4584 − (−) − −0.4530 0.0533 0.4562 − (−) −

SG-ML 0.55 −0.4538 0.3291 0.5606 0.0337 (0.0086) − −0.4331 0.3675 0.5680 0.0340 (0.0085) −
0.60 −0.4587 0.3067 0.5517 0.0336 (0.0078) − −0.4606 0.2958 0.5473 0.0338 (0.0068) −
0.65 −0.4638 0.2877 0.5458 0.0339 (0.0075) − −0.4755 0.2557 0.5399 0.0344 (0.0062) −
0.70 −0.4526 0.2988 0.5423 0.0345 (0.0078) − −0.4852 0.2422 0.5423 0.0352 (0.0063) −

SG-ML-BC 0.55 −0.4202 0.3252 0.5313 − (−) − −0.3991 0.3618 0.5387 − (−) −
0.60 −0.4251 0.3035 0.5223 − (−) − −0.4267 0.2922 0.5172 − (−) −
0.65 −0.4299 0.2852 0.5159 − (−) − −0.4411 0.2532 0.5086 − (−) −
0.70 −0.4181 0.2959 0.5122 − (−) − −0.4500 0.2400 0.5100 − (−) −

Note: ‘Bias’, ‘SD’ and ‘RMSE’ are biases, standard deviations and RMSEs of splicing point or threshold estimates over 1000Monte Carlo samples, respectively. For kernel-smoothed threshold location
estimation procedures, Monte Carlo averages and standard deviations (in parentheses) of CV tuning parameters are presented under the heading ‘ĥ or b̂’. For automated threshold detection
methods, percentages of threshold estimates falling into I0 are reported under the heading ‘%{I0}’.
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� (or the exponent α, to be more precise) matters in finite samples. For each model and
sample size, smoothing parameter values viaMLCVdo not varymuch across four values of
α. On the other hand, α = 0.70 (i.e. the smallest shift) always results in the smallest RMSE
among four initial SG-ML estimates. Because bias correction ismade by simply adding b̂ to
the initial estimate t̂, additional variability through bias correction (i.e. estimation error of
the correction term) is not introduced. As a consequence, superiority of the smallest shift is
maintained after the bias correction. Indeed SG-ML-BCwith α = 0.70 outperforms others
in terms of RMSE forModels 1-A and 1-B. Its RMSE is not the smallest forModels 2-A and
2-B; an exception is Model 2-B with n = 500, to be more precise. For these cases, however,
the RMSE is simply larger than those from other bias corrected SG methods, and it is still
smaller than those from CC and five automated methods.

4.3.2. Model 2-C
It is of particular interest to see how threshold estimators behave in case of a thin tail.
Q-MAD continues to perform best among five automated threshold detection methods
for each sample size. It produces the smallest RMSE, and again more than 90% of esti-
mates fall within I0. The performance of CC is also qualitatively similar to above. The
RMSE of SG-ML with α = 0.70 becomes worse than that of Q-MAD, and as a result, Q-
MAD outperforms SG-ML-BC in terms of RMSE even after the bias correction. It is worth
emphasising that the RMSE of SG-ML with α = 0.70 is smaller than those of SG-LS and
SG-L, and bias correction using a sizable b̂merely improves their RMSEs.

However, it is dubious whether this can be thought of as ‘satisfactory’ for the automated
threshold detection method. Q-MAD is designed to detect the point at which deviation
from a GPD occurs, and the exponentially decaying tail contradicts the premise of a thick
tail. In this standpoint, results from other automated methods could be more reasonable.
Another lesson learnt here is that based on no particular parametric model in the tail part,
SG methods identify a jump point of the distribution as the threshold, regardless of its tail
thickness.

4.3.3. Summary
Invoke that the local structure (2) holds in the neighbourhood of the true threshold loca-
tion for two cases of Model 1, whereas it is violated for three cases of Model 2. It can be
confirmed fromMonte Carlo results that SG-ML-BCwithα = 0.70 is ofmost practical rel-
evance and importance, because its RMSE is by far the smallest in favourable scenarios and
in general less than those from other competing methods even in unfavourable scenarios
with deviation from (2).

5. Real data examples

5.1. Data description

In this section our threshold estimation procedure is applied to two datasets on cost vari-
ables that are made publicly available. The one is of actuarial losses and the other of wages.
Below each dataset is discussed in detail.

The first dataset is of Danish fire insurance losses. Since the seminal analysis by
McNeal (1997), the dataset has been arguably most popularly chosen for empirical studies
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onnon-life insurance.We extract the one nameddanish in R-packageSMPracticals.
The dataset contains 2,492 fire insurance losses denominated in millions of Danish kroner
from 1980 to 1990.

The second dataset is taken from Merged Outgoing Rotation Group Earnings Data of
the US Current Population Survey (CPS), also known as CPS Labour Extract, which is
available on the webpage of the National Bureau of Economic Research. We extract hourly
wages (the variable earnhre) earned by males from the dataset in 1979. Before proceed-
ing, all observations denominated originally in US cents are converted into US dollars. The
original sample size is 54,769. Considering the computation burden of kernel smoothing,
we downsize the dataset to a sub-sample of sample size 2, 709 by random sampling, which
roughly accounts for 5% of the original.

Table 3 reports summary statistics of the datasets. Each distribution is right-skewed and
thus reasonably represents stylised facts of a ‘cost’ distribution. It can be also found that the
distribution of the downsized dataset of USmale wages well represents that of the original.

5.2. Estimation details

Based on simulation results in Section 4, we compare SG-ML(-BC) with α = 0.70 with
KS, Q-MAD, Q-SUP, AEB, ADST, and CC. The tuning parameter for each of SG-ML(-BC)
andCC is taken from100 equally-spaced grids over the interval [0.005, 0.500], and then the
threshold estimate t̂ is searched via a numerical optimisation routine of the corresponding
diagnostic function.

The prespecified interval I0 for each dataset roughly covers the upper part of the
distribution. In addition, Cooray and Ananda (2005) and Scollnik and Sun (2012)
estimate several different parametric composite models from the Danish fire insur-
ance dataset and obtain threshold estimates ranging roughly from 1 through 3. Using
the same dataset, Reynkens et al. (2017) report the threshold estimate of 17 via a
graphical method. The interval I0 for this dataset also incorporates these empirical
findings.

In addition, to implement ADST, we adopt the 5% level of significance and
the ForwardStop procedure for p-value adjustments in multiple tests. Candidates of
thresholds are 54 empirical percentiles from 20.0% until 99.5% with an increment
of 1.5%, i.e. {20.0%, 21.5%, . . . , 98.0%, 99.5%}, for Danish fire insurance losses and
34 empirical percentiles from 50.0% until 99.5% with an increment of 1.5%, i.e.
{50.0%, 51.5%, . . . , 98.0%, 99.5%}, for US male hourly wages. The range of percentiles for
each dataset roughly coincides with the corresponding interval I0.

5.3. Results

Table 4 presents the estimation results. For the Danish fire insurance data, there is no con-
sensus in threshold estimates among five GPD-based detection methods, except that those
from KS and ADST are fairly close each other. The estimate from SG-ML is close to those
from KS and ADST, so is the one from its bias-corrected version SG-ML-BC. In contrast,
the result from CC is problematic and recognised as an example of estimation failure in
that the threshold estimate is a corner solution.
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Table 3. Descriptive statistics of datasets.

Data n Mean SD SK Min. Q1 Q2 Q3 90% 95% 99% Max.

(A) Danish Fire Insurance Losses (in millions of Danish kroner)
Original 2, 492 3.063 7.975 19.884 0.313 1.157 1.634 2.646 5.080 8.406 24.614 263.250

(B) US Male Hourly Wages (in US dollars)
Original 54, 769 6.136 2.972 3.013 0.500 3.850 5.630 8.000 9.980 11.000 14.793 99.990
Downsized 2, 709 6.080 2.858 1.525 1.000 3.750 5.550 8.000 9.954 11.000 14.640 40.000

Note: n = sample size; Mean = average; SD = standard deviation; SK = skewness; Min. = minimum value; Q1 = first quartile; Q2 = median (i.e. second quartile); Q3 = third quartile; 90%
= 90% quantile; 95% = 95% quantile; 99% = 99% quantile; and Max. = maximum value.
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Table 4. Results for real data examples.

Data Estimator Estimate of t0 Estimator α I0 Estimate of t0 ĥ or b̂

(A) Danish Fire Insurance Losses (in millions of Danish kroner)
Original KS 1.375 CC − [1, 30] 30.000 0.005

Q-MAD 29.037
Q-SUP 11.123 SG-ML 0.70 [1, 30] 1.861 0.235
AEB 25.288 SG-ML-BC − − 2.096 −
ADST 1.406

(B) US Male Hourly Wages (in US dollars)
Downsized KS 10.400 CC − [5, 15] 14.998 0.005

Q-MAD 10.000
Q-SUP 10.000 SG-ML 0.70 [5, 15] 9.524 0.140
AEB 13.500 SG-ML-BC − − 9.664 −
ADST 16.000

On the other hand, all five GPD-based methods detect the threshold in the US male
wage distribution at 10 or larger, and in particular, KS, Q-MAD and Q-SUP produce very
similar threshold estimates. SG-ML and SG-ML-BC also yield threshold estimates near
10, which is considerably close to the results from Q-MAD and Q-SUP. Once again, CC
may have failed to estimate the threshold, because its estimate lies almost on the boundary.
Moreover, the threshold estimate by ADST corresponds to the 99.5% empirical percentile;
in other words, this method suggests deviations from a GPD at all percentiles considered.

As the location of the threshold is unknown in each distribution, it is hard to judge
among all threshold estimators considered. Nonetheless, it is safe to say that SG-ML(-BC)
can serve as a good alternative to existing threshold detection methods.

6. Conclusion

It is widely recognised that a single model cannot describe the while range of a cost dis-
tribution well. Accordingly, it is of growing importance and interest to find the location
of a threshold at which two different models are spliced, whereas this estimation problem
is known to be notoriously difficult. This paper has explored a method of estimating the
threshold of a cost distribution nonparametrically. Development of ourmethod stems from
tailoring the existing techniques for change point detection in statistics to stylised facts of
cost distributions. The diagnostic function is the absolute difference of two kernel density
estimates, and the maximiser of the function over a prespecified interval is defined as the
threshold estimator. Because it is located in the right tail region, we propose to compute
two density estimates using the entire sample and shifted gamma kernels. Our proposed
estimator is shown to be super-consistent and asymptotically normal when suitably imple-
mented. The proof strategy is also new in that approximations to the incomplete gamma,
digamma and polygamma functions are utilised. Since the estimator tends to underesti-
mate the threshold location and its dominant bias term takes a simple form, we advocate
correcting its bias in a straightforward manner. It is confirmed in the Monte Carlo study
that as a result of the bias correction, the negative bias is substantially eliminated with no
additional price of spread. Several data-based methods of choosing the smoothing param-
eter are also assessed via simulations. Our proposal is finally applied to two kinds of real
world datasets. Judging from simulation results and real data examples, we recommend
SG-ML-BC for practical use.
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Notes

1. Many authors (e.g., Cooray and Ananda 2005; Scollnik and Sun 2012) additionally impose dif-
ferentiability of the pdf at the splicing point to make the entire density smooth and reduce
the number of parameters. This practice has computational advantage now that the splicing
point can be expressed as a function of other model parameters. However, such a restriction on
parameters results in less flexibility. From this viewpoint, Reynkens et al. (2017) first estimate
the splicing point and then compute estimates of remaining model parameters.

2. An alternative approach is proposed by Desmet et al. (2010), who transform kernel density
estimation into kernel regression estimation via prebinning and applying an existing method
of discontinuity detection for nonparametric regression curves. This approach has the disad-
vantage that prebinning substantially reduces the sample size which can be used for regression
estimation.

3. The reason why different algorithms are utilised for (i) and (ii) is as follows. While a numerical
optimisation routine substantially reduces computation time for (i), it often finds local extrema
and corner solutions because of a high degree of nonlinearity in CV criteria. A grid search can
circumvent these issues. In contrast, |Ĵ(x)| is concave on I0, and a numerical optimisation routine
helps expedite computation for (ii).
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Appendix

The Appendix provides technical proofs of theorems and propositions. To save space, we defer
proofs of lemmata to the Supplemental Material. Before proceeding, additional shorthand notation
is introduced, and a few useful formulae related to the gamma function are presented.

A.1 Additional notation

�(x) = d ln�(x)/dx = �(1)(x)/�(x) and �(m)(x) = dm�(x)/dxm signify the digamma and
polygamma functions, respectively. In addition, the following notation is adopted in the proofs:
R(a, z) = za exp(−z)/�(a + 1) for a, z> 0; K̇±

c (u) = ∂K±
x (u)/∂x|x=c; K̈±

c (u) = ∂2K±
x (u)/∂x2|x=c;...

K±
c (u) = ∂3K±

x (u)/∂x3|x=c; Hi = K̇−
t0 (Xi) − K̇+

t0 (Xi); and z± = (t0 ± �)/b.

A.2 Useful formulae on the gamma function

Stirling’s formula:

� (a + 1) = √
2πaa+1/2 exp (−a)

{
1 + 1

12a
+ O

(
a−2)} as a → ∞. (A1)

Recursive formula for the lower incomplete gamma function:

γ (a + 1, z) = aγ (a, z) − za exp (−z) for a, z > 0. (A2)

Recursive formula for the polygamma function:

�(m) (a + 1) = �(m) (a) + (−1)m m!
am+1 for a > 0 andm ∈ {0, 1, 2, . . .} . (A3)

A.3 Proof of Proposition 3.1

The proof requires the following lemmata.

Lemma A.1: As b → 0,

sup
x∈I0

∣∣∣∣� (x
b

+ 1
)

−
{
ln

(x
b

)
+ b

2x

}∣∣∣∣ = O
(
b2

)
,

sup
x∈I0

∣∣∣∣�(1)
(x
b

+ 1
)

−
(
b
x

− b2

2x2

)∣∣∣∣ = O
(
b3

)
, and

sup
x∈I0

∣∣∣�(m)
(x
b

+ 1
)∣∣∣ = O

(
bm

)
form ≥ 2.

Lemma A.2: Let C0 := 2max{t−3/2, t1/2} + t−1/2. Then, as n → ∞,

sup
(x,u)∈I0×R+

∣∣K̇±
x (u)

∣∣ ≤ b−3/2
√

2
π
C0.
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Lemma A.3 (Van der Vaart and Wellner 1996, Lemma 2.2.9): Let X1, . . . ,Xn be independent
random variables with bounded ranges [−M,M] and zero means. Then,

Pr

(∣∣∣∣∣
n∑

i=1
Xi

∣∣∣∣∣ > x

)
≤ 2 exp

{
− x2

2 (v + Mx/3)

}

for all x and v ≥ Var(
∑n

i=1 Xi).

A.3.1 Proof of Proposition 3.1
Proof of (5): Because

E
{
f̂± (x)

}
=

∫ ∞

0
K±
x (u) g (u) du + d0

∫ t0

0
K±
x (u) du,

it suffices to show that

sup
x∈I0

∣∣∣∣
∫ ∞

0
K±
x (u) g (u) du −

{
g (x) ± g(1) (x) �

}∣∣∣∣ = O (b) . (A4)

Observe that
∫ ∞
0 K±

x (u)g(u) du = E{g(X±)} forX± d= G(a± + 1, b). A second-order Taylor expan-
sion of g(X±) around X± = x yields

E
{
g
(
X±)} = g (x) + g(1) (x) E

(
X± − x

) + 1
2
E
{
g(2) (x̄±) (

X± − x
)2}

for some x̄± on the line segment joining X± and x. Notice that |E{g(2)(x̄±)(X± − x)2}| ≤
supx∈R+ |g(2)(x)|E(X± − x)2, where supx∈R+ |g(2)(x)| < ∞ byAssumption 3.2(ii). Furthermore, by
the property of gamma random variables and Assumption 3.3, E(X± − x) = ±� + b and E(X± −
x)2 = xb + �2 ± 3�b + 2b2 = {x + o(1)}b. Then, (A4) immediately follows.

Proof of (6): This part can be established by a minor modification of the proof of Theorem 2 in
Funke andHirukawa (2025). However, we present the proof for this part in full in order for this paper
to be self-contained. For ease of exposition, let an := √

ln n/(nb1/2), ζ±
in (x) := (1/n)[K±

x (Xi) −
E{K±

x (Xi)}], Nn := n1+εb−3/2 for a sufficiently small ε > 0, and |I0| := t − t. Then, the proof takes
the following two steps.

(1) Split the interval I0 into Nn equally-spaced grids to create Nn sub-intervals with length
N−1
n |I0|, and replace the supremum with a maximisation over finite Nn sub-intervals.

(2) Employ Lemma A.3 (Bernstein’s inequality) to bound the remainder term.

Step 1
Let Ij, j = 1, . . . ,Nn, be the jth sub-interval. Also let xj be the right-most point in Ij with x0 ≡ t

and xNn ≡ t. Suppose that the design point x falls into Ij. By the mean-value theorem, Lemma A.2
and Assumption 3.3,∣∣∣K±

x (u) − K±
xj (u)

∣∣∣ ≤ sup
(x,u)∈I0×R+

∣∣K̇±
x (u)

∣∣ sup
x∈Ij

∣∣x − xj
∣∣

≤ O
(
b−3/2)O (

N−1
n

) = O
{
n−(1+ε)

}
≤ O (an) .

It follows from Cr-inequality that

max
1≤j≤Nn

sup
x∈Ij

∣∣∣∣∣
n∑
i=1

ζ±
in (x) −

n∑
i=1

ζ±
in

(
xj
)∣∣∣∣∣ = O (an) . (A5)
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Step 2
Before employing Bernstein’s inequality in Lemma A.3, we must determine two boundsM and

v. First, it holds that for a given x > �(> 0),

K±
x (u) ≤ b−1/2 (x ± �)−1/2 {1 + o (1)}√

2π
. (A6)

This can be confirmed by recognising that K±
x (u) is maximised at u = x ± � and employing (A1).

Then, by (A6),

sup
(x,u)∈I0×R+

∣∣K±
x (u)

∣∣ ≤ b−1/2

√
2
π t

,

and thus, by Cr-inequality,

∣∣ζ±
in (x)

∣∣ ≤ 2

√
2
π t

n−1b−1/2 = 2

√
2
π t

a2n
ln n

=: M.

Second, Assumption 3.2(i) implies that there is some constantC ∈ (0,∞) so that supx∈R+ f (x) ≤
C. Then,

Var

{ n∑
i=1

ζ±
in (x)

}
=

n∑
i=1

Var
{
ζ±
in (x)

}

=
n∑
i=1

E
{
ζ±
in (x)

}2

≤
n∑

i=1
E
{
1
n
K±
x (Xi)

}2

≤ C
n

∫ ∞

0

{
K±
x (u)

}2 du.

Also let

A± (x) := b−1�
(
2a± + 1

)
22a±+1�2

(
a± + 1

) . (A7)

Observe that∫ ∞

0

{
K±
x (u)

}2 du = A± (x)
∫ ∞

0

u2a±
exp {−u/ (b/2)}

(b/2)2a±+1 �
(
2a± + 1

) du = A± (x) ,

because the integrand in the middle term is the pdf of G(2a± + 1, b/2). Using (A1), (x ± �)−1/2 =
x−1/2{1 + o(1)} and o(1) ≤ 1 for a sufficiently large n gives

A± (x) = b−1/2 (x ± �)−1/2 {1 + o (1)}
2
√

π
≤ b−1/2

√
π t

uniformly on I0. In sum,

Var

{ n∑
i=1

ζ±
in (x)

}
≤ C√

π t
n−1b−1/2 = C√

π t
a2n
ln n

=: v.

Lemma A.3 establishes that for suchM and v and an arbitrarily chosen K > 0,

Pr

⎧⎨
⎩

∣∣∣∣∣
n∑

i=1
ζ±
in (x)

∣∣∣∣∣ > K

√
C√
π t

an

⎫⎬
⎭ ≤ 2 exp

⎧⎪⎪⎨
⎪⎪⎩− K2 ln n

2
(
1 + 2

3

√
2
π t Kan/

√
C√
π t

)
⎫⎪⎪⎬
⎪⎪⎭ .
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It follows from an = o(1) that (2/3)
√
2/(π t)Kan/

√
C/

√
π t ≤ 1 holds for a sufficiently large n.

Accordingly,

Pr

⎧⎨
⎩

∣∣∣∣∣
n∑
i=1

ζ±
in (x)

∣∣∣∣∣ > K

√
C√
π t

an

⎫⎬
⎭ ≤ 2 exp

{
− K2 ln n
2 (1 + 1)

}
= 2n− K2

4 .

In the end,

Pr

⎧⎨
⎩ max

1≤j≤Nn

∣∣∣∣∣
n∑
i=1

ζ±
in

(
xj
)∣∣∣∣∣ > K

√
C√
π t

an

⎫⎬
⎭

≤
Nn∑
i=1

max
1≤j≤Nn

Pr

⎧⎨
⎩

∣∣∣∣∣
n∑

i=1
ζ±
in

(
xj
)∣∣∣∣∣ > K

√
C√
π t

an

⎫⎬
⎭

≤ Nn · max
1≤j≤Nn

Pr

⎧⎨
⎩

∣∣∣∣∣
n∑
i=1

ζ±
in

(
xj
)∣∣∣∣∣ > K

√
C√
π t

an

⎫⎬
⎭

= O
(
Nnn− K2

4

)
.

Moreover, (4) implies that

b−3/2 = O

⎧⎨
⎩n

1
1−κ

(
b

κ
2

ln n

) 1
1−κ

⎫⎬
⎭ ≤ O

(
n

1
1−κ

)
,

where the last inequality holds because bκ/2/ ln n is convergent. Then, picking K =
2
√
2(1 + ε) + 1/(1 − κ) yields Nnn−K2/4 = O{n−(1+ε)} so that

∞∑
n=1

Pr

⎧⎨
⎩ max

1≤j≤Nn

∣∣∣∣∣
n∑
i=1

ζ±
in

(
xj
)∣∣∣∣∣ > K

√
C√
π t

an

⎫⎬
⎭ ≤

∞∑
n=1

O
(

1
n1+ε

)
< ∞.

Therefore, by the Borel-Cantelli lemma,

max
1≤j≤Nn

∣∣∣∣∣
n∑

i=1
ζ±
in

(
xj
)∣∣∣∣∣ = O (an) a.s.. (A8)

It follows from (A5) and (A8) that

sup
x∈I0

∣∣∣f̂± (x) − E
{
f̂± (x)

}∣∣∣
≤ max

1≤j≤Nn

∣∣∣∣∣
n∑

i=1
ζ±
in

(
xj
)∣∣∣∣∣ + max

1≤j≤Nn
sup
x∈Ij

∣∣∣∣∣
n∑

i=1
ζ±
in (x) −

n∑
i=1

ζ±
in

(
xj
)∣∣∣∣∣

= O (an) a.s..

This completes the proof. �

A.4 Proof of Proposition 3.2

Proof of (i): Dividing both sides of (A2) by �(a± + 1) and using �(a± + 1) = a±�(a±), we have

P
(
a± + 1, z0

) = P
(
a±, z0

) − R
(
a±, z0

)
.
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Then, J(x) can be rewritten as

J (x) = {
P
(
a−, z0

) − P
(
a+, z0

)} − {
R
(
a−, z0

) − R
(
a+, z0

)}
. (A9)

Let y± solve the equation z0 = a± + √
a±y±. Then,

y± = z0 − a±
√
a± = t0 − (x ± �)√

b (x ± �)
.

Now Equation (1) of Pagurova (1965) is applied to P(a±, z0), where this equation can be viewed as
the Edgeworth expansion for a gamma cdf. In fact,

P
(
a±, z0

) = P
(
a±, a± + √

a±y±)
= �

(
y±) − 1

3
√
a± φ(2) (y±) + Ra± , (A10)

where �(·) is the cdf of N(0, 1). Also observe that φ(j)(x) =: (−1)jHj(x)φ(x), where the Hj(x)
are Hermite polynomials (i.e. H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, . . .). The
remainder term Ra± in (A10) is (1/a±) times higher-order derivatives of φ(x) evaluated at y±. It
follows from (A9) and (A10) that

J (x) = {
�

(
y−) − �

(
y+)} − 1

3

{
φ(2) (y−)

√
a− − φ(2) (y+)

√
a+

}

+ (Ra− − Ra+) − {
R
(
a−, z0

) − R
(
a+, z0

)}
.

Part (i) is established if all the followings are demonstrated:

sup
x∈I0

∣∣∣∣{� (
y−) − �

(
y+)} − Q (x)

(
�

b1/2

)∣∣∣∣ = O
(

�3

b3/2

)
; (A11)

sup
x∈I0

∣∣∣∣∣φ
(2) (y−)
√
a− − φ(2) (y+)

√
a+

∣∣∣∣∣ = O
(

�3

b3/2

)
; (A12)

sup
x∈I0

|Ra− − Ra+| = O
(

�3

b3/2

)
; and (A13)

sup
x∈I0

∣∣R (
a−, z0

) − R
(
a+, z0

)∣∣ = O
(

�3

b3/2

)
. (A14)

Now, a third-order Taylor expansion of �(y±) around � = 0 yields

�
(
y±)
= �

(
t0 − x√

bx

)
∓

(
t0 + x
2x3/2

)
φ

(
t0 − x√

bx

)(
�

b1/2

)

+ 1
2

{(
t0 + x
4x3

)
φ(1)

(
t0 − x√

bx

)(
�2

b

)

+
(
3t0 + x
4x5/2

)
φ

(
t0 − x√

bx

)(
�2

b1/2

)}
+ O

(
�3

b3/2

)
, (A15)

where the O(�3/b3/2) rate is uniform on I0. Observing that the terms involving odd orders of �
survive after taking the difference between �(y−) and �(y+) and recognising that the O(�/b1/2)
term can be rewritten as ∓(1/2)Q(x)(�/b1/2) establish (A11).

For (A12), notice that

1√
a± = b1/2√

x

{
1 ∓ �

2x
+ O

(
�2)} , (A16)
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where the O(�2) rate is uniform on I0. Moreover, a second-order Taylor expansion of
φ(2)(y±) around � = 0 yields

φ(2) (y±) = φ(2)
(
t0 − x√

bx

)
∓

(
t0 + x
2x3/2

)
φ(3)

(
t0 − x√

bx

)(
�

b1/2

)
+ O

(
�2

b

)
,

where the O(�2/b) rate is again uniform on I0. By (3),

sup
x∈I0

∣∣∣∣∣φ
(2) (y−)
√
a− − φ(2) (y+)

√
a+

∣∣∣∣∣ ≤ O
(
b1/2

)
O

(
�

b1/2

)
= O (�) = o

(
�3

b3/2

)
≤ O

(
�3

b3/2

)
,

and thus (A12) is also shown. By a similar argument, jointly with 1/a± = O(b) uniformly on I0,

sup
x∈I0

|Ra− − Ra+| ≤ O (b)O
(

�

b1/2

)
= O

(
�b1/2

) = o
(

�3

b3/2

)
≤ O

(
�3

b3/2

)
,

which yields (A13).
Finally, using (A1) yields

R
(
a±, z0

) = za
±

0 exp (−z0)
�

(
a± + 1

)
=

{
1 + O

(
1/a±)

√
2π

}
1√
a±

{( z0
a±

)a±
exp

(
a± − z0

)}
, (A17)

where {1 + O(1/a±)}/√2π = O(1) uniformly on I0. In addition,

( z0
a±

)a±
exp

(
a± − z0

) =: exp
{
a± (

ln ρ± + 1 − ρ±)}
for ρ± := z0/a± > 0. It follows from ln ρ± + 1 − ρ± ≤ 0 that exp{a±(ln ρ± + 1 − ρ±)} ≤ 1 ≤
O(1). Then, by (A16),

sup
x∈I0

∣∣R (
a−, z0

) − R
(
a+, z0

)∣∣ ≤ O
(
�b1/2

) = o
(

�3

b3/2

)
≤ O

(
�3

b3/2

)
,

and thus (A14) is also proven.

Proof of (ii): Notice that

Q(1) (x) = q (x)
2bx7/2

φ

(
x − t0√

bx

)
, (A18)

where q(x) := −bx(x + 3t0) − (x − t0)(x + t0)2. Heuristically, q(x) ≈ −(x − t0)(x + t0)2 for b ≈
0, and we can see that Q(x) is maximised at x ≈ t0. To be more precise, the maximiser of Q(x) is
given by the solution of q(x) = 0 or −bx(x + 3t0) = (x − t0)(x + t0)2. It is not hard to see that for
a sufficiently small b> 0, the latter has a unique solution on R+.

Let t∗ be the solution. Our argument so far suggests that t∗ ≈ t0 for a sufficiently small b> 0.
Now we even conjecture that t∗ = t0 + cb for some |c| < ∞. To verify this conjecture, consider that
0 = q(t∗) = −b{(t0 + cb)(4t0 + cb) + c(2t0 + cb)2}. Because b> 0, c solves (t0 + cb)(4t0 + cb) +
c(2t0 + cb)2 = 0. This equation can be further rewritten as b(c + 1)(c + 2t0/b)2 = −t0c. Observe
that the left- and right-hand sides are cubic and downward sloping linear functions of c, respectively.
For a sufficiently small b> 0,−2t0/b < −1 holds, and in this case we can recognise that the equation
has a unique solution c ∈ (−1, 0). This completes the proof. �
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A.5 Proof of Theorem 3.1

Because |t̂ − t0| ≤ |t̂ − t∗| + |t∗ − t0| and we have already known in Proposition 3.2(ii) that |t∗ −
t0| ≤ b, it suffices to demonstrate that∣∣t̂ − t∗

∣∣ = O (cn) a.s.. (A19)

The proof for (A19) closely follows the one for Theorem 1 of Chu and Cheng (1996). We keep
using the same notation as in the proof of (6) in Proposition 3.1. In addition, define ϒ := {x : x ∈
I0, |x − t∗| > cn|I0|}. Also let w be an element of En := {x0, x1, . . . , xNn} that is closest to t∗, i.e.∣∣w − t∗

∣∣ = min
0≤j≤Nn

∣∣xj − t∗
∣∣ ⇔ w = argmin

s∈En
∣∣s − t∗

∣∣ .
To show (A19), we need to prove that Pr{̂t ∈ ϒ} = 0. However, the set {supx∈ϒ |Ĵ(x)| ≥ |Ĵ(w)|}

is larger than the set {̂t ∈ ϒ}, and thus Pr{̂t ∈ ϒ} ≤ Pr{supx∈ϒ |Ĵ(x)| ≥ |Ĵ(w)|} is the case. In what
follows, we establish that

Pr
{
sup
x∈ϒ

∣∣∣Ĵ (x)∣∣∣ ≥
∣∣∣Ĵ (w)

∣∣∣} = 0. (A20)

Let x∗ := arg supx∈ϒ |E{̂J(x)}|. Using (7) and Proposition 3.2 and invoking that� = o(�3/b3/2),
we have∣∣∣E {

Ĵ (w)
}∣∣∣ − sup

x∈ϒ

∣∣∣E {
Ĵ (x)

}∣∣∣ = |d0|
{
Q (w) − Q

(
x∗)}(

�

b1/2

)
+ O

(
�3

b3/2

)
. (A21)

For a sufficiently large n, w is closer to t∗ than x∗. Hence, Q(w) − Q(x∗) > 0 is the case. By the
mean value theorem, Q(w) − Q(x∗) = Q(1)(�)(w − x∗) also holds, where � := λx∗ + (1 − λ)w
for λ(= λn) ∈ (0, 1). Combining these, we may write Q(w) − Q(x∗) = |Q(1)(�)||w − x∗|.

Below the lower bound of |Q(1)(�)||w − x∗| is obtained. Before proceeding, the following
bounds are found to be useful:∣∣w − t∗

∣∣ ≤ N−1
n |I0| = n−(1+ε)b3/2 |I0| ; (A22)∣∣x∗ − t∗

∣∣ ≥ cn |I0| ; (A23)

t0 − t∗ ∈ (0, b) ; and (A24)∣∣x∗ − t0
∣∣ ≤ ηb1/2 |I0| for some constant η > 0. (A25)

While (A22) and (A23) follow from the definitions of w and x∗, respectively, (A24) is the
direct outcome of Proposition 3.2(ii). To obtain (A25), suppose that some point x′ ∈ I0 and
t0 are far apart in the sense that |x′ − t0| = O(b�) for some � ∈ [0, 1/2). For such x′, |x′ −
t0|/

√
bx′ = O(b�−1/2) diverges, and thus Q(x′) → 0 exponentially fast. Accordingly, |E{̂J(x′)}| =

O(�3/b3/2) = o(�/b1/2); in other words, such x′ cannot be x∗. Therefore, a sensible range for
x∗ must be the one given in (A25).

It follows from (A18) that |Q(1)(�)| = {|q(�)|/(2b� 7/2)}φ{(� − t0)/
√
b� }. The lower

bound of this quantity can be found as follows. By (A22), (A24) and (A25),

|� − t0| ≤ λ
∣∣x∗ − t0

∣∣ + (1 − λ) |w − t0|
≤ λ

∣∣x∗ − t0
∣∣ + (1 − λ)

(∣∣w − t∗
∣∣ + ∣∣t∗ − t0

∣∣)
≤ ληb1/2 |I0| + (1 − λ)

{
n−(1+ε)b3/2 |I0| + b

}

= b1/2 |I0|
[
λη + (1 − λ)

{
n−(1+ε)b + b1/2

|I0|
}]

.

Because n−(1+ε)b + b1/2/|I0| is convergent, we may put n−(1+ε)b + b1/2/|I0| ≤ η for a sufficiently
large n so that |� − t0| ≤ η|I0|b1/2. By� ∈ I0 = [t, t], we also have |� − t0|/

√
b� ≤ η|I0|/√t so
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that φ{(� − t0)/
√
b� } = φ{|� − t0|/

√
b� } ≥ φ(η|I0|/√t). Moreover,∣∣q (�)

∣∣ ≥ ∣∣(� − t0) (� + t0)2
∣∣ − |b� (� + 3t0)| = |� − t0| (� + t0)2 − b� (� + 3t0) .

Now by (A22)–(A24),

|� − t0| ≥ ∣∣� − t∗
∣∣ − ∣∣t0 − t∗

∣∣
≥ λ

∣∣x∗ − t∗
∣∣ − {

(1 − λ)
∣∣w − t∗

∣∣ + ∣∣t0 − t∗
∣∣}

≥ λcn |I0| −
{
(1 − λ) n−(1+ε)b3/2 |I0| + b

}
.

Invoke that |Q(1)(�)| = {Q(w) − Q(x∗)}/|w − x∗|. For a sufficiently large n, w ≈ t∗ is the case,
and Q(x) in the vicinity of w is nearly flat. If � were located near w, we would have |Q(1)(�)| ≈
|Q(1)(t∗)| = 0. In reality, |Q(1)(�)| is still positive (although it is close to zero); in short,λ ≈ 0would
contradict positivity of |Q(1)(�)|. On the other hand, concavity ofQ(x) in the neighbourhood of t∗
implies that to maintain positivity of |Q(1)(�)|, we must take� near x∗ or set λ far away from zero.
Therefore, we are allowed to take λ > 1/2 (and thus 1 − λ < 1/2) for a sufficiently large n so that

|� − t0| ≥ 1
2
cn |I0|

[
1 − b

cn

{
n−(1+ε)b1/2 |I0| + 2

|I0|
}]

.

It follows from (b/cn){n−(1+ε)b1/2|I0| + 2/|I0|} = o(1) that (b/cn){n−(1+ε)b1/2|I0| + 2/|I0|} ≤ 1/2
holds for a sufficiently large n, and thus |� − t0| ≥ (|I0|/4)cn. Using � ∈ I0 = [t, t] yields

∣∣q (�)
∣∣ ≥ |I0|

4
cn

(
t + t0

)2 − bt
(
t + 3t0

) = cn
4

{
|I0|

(
t + t0

)2 − 4
b
cn
t
(
t + 3t0

)}
.

Again by 4(b/cn)t(t + 3t0) = o(1), we may put 4(b/cn)t(t + 3t0) ≤ (1/2)|I0|(t + t0)2 for a suffi-
ciently large n. Therefore, |q(�)| ≥ (|I0|/8)(t + t0)2cn, and thus

∣∣∣Q(1) (�)
∣∣∣ ≥ |I0|

(
t + t0

)2
16t7/2

φ

(
η |I0|√

t

)( cn
b

)
. (A26)

For the lower bound of |w − x∗|, it follows from (A22) and (A23) that

∣∣w − x∗∣∣ ≥ ∣∣x∗ − t∗
∣∣ − ∣∣w − t∗

∣∣ ≥ cn |I0| − N−1
n |I0| = cn

{
1 − n−(1+ε) b

3/2

cn

}
|I0| .

The fact that n−(1+ε)b3/2/cn = o(1) implies that n−(1+ε)b3/2/cn ≤ 1/2 for a sufficiently large n.
Then, we have ∣∣w − x∗∣∣ ≥ |I0|

2
cn. (A27)

Substituting (A26) and (A27) into (A21) gives
∣∣∣E {

Ĵ (w)
}∣∣∣ − sup

x∈ϒ

∣∣∣E {
Ĵ (x)

}∣∣∣ ≥ 3L + O
(

�3

b3/2

)
,

where

L = Ln := |d0| |I0|2
(
t + t0

)2
96t7/2

φ

(
η |I0|√

t

)(
c2n�
b3/2

)
.

By this result and a straightforward calculation,

sup
x∈ϒ

∣∣∣Ĵ (x)
∣∣∣ −

∣∣∣Ĵ (w)
∣∣∣ ≤ 2 sup

x∈I0

∣∣∣Ĵ (x) − E
{
Ĵ (x)

}∣∣∣ − 3L + O
(

�3

b3/2

)
.
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However, by the definition of L and (3), each of
√
ln n/(nb1/2) and �3/b3/2 is of smaller order of

magnitude than c2n�/b3/2 = b−1/2+2δ1�, and thus

2

[
sup
x∈I0

∣∣∣Ĵ (x) − E
{
Ĵ (x)

}∣∣∣ − L

]
+

{
O

(
�3

b3/2

)
− L

}
< 0

with probability one. Therefore, Pr{supx∈ϒ |Ĵ(x)| < |Ĵ(w)|} = 1, and (A20) is established. This
completes the proof. �

A.6 Proof of Theorem 3.2

The proof requires the following lemmata.

Lemma A.4: For a, z, λ > 0 and m ∈ {0, 1, 2, . . .},
λm

γ (a + m + 1, z)
� (a + 1)

=: pmP (a, z) − rmR (a, z) ,

where pm+1 = λ(a + m + 1)pm, rm+1 = λ(a + m + 1)rm + (λz)m+1, and p0 = r0 = 1.

Lemma A.5: As n → ∞,

P
(
z±, z0

) = 1
2

∓ 1√
2π

√
t0

(
�

b1/2

)
+ O

(
�2

b1/2

)
, and

R
(
z±, z0

) = b1/2√
2π

√
t0

[
1 ∓ �

2t0
− 1

2t0

(
�2

b

)
+ O

{
max

(
b,

�3

b

)}]
.

Lemma A.6: As n → ∞,

E
{(

b1/2

�

)
Ĵ(1) (t0)

}
→ −

√
2
π

d0
t3/20

.

Lemma A.7: As n → ∞,

Var

⎧⎨
⎩

√
nb5/2

�2 Ĵ(1) (t0)

⎫⎬
⎭ → 3

2
√

π t5/20

{
f (t−0 ) + f (t+0 )

2

}
.

Lemma A.8: If |t̂ − t0| = op(b1/2), then, as n → ∞,(
b3/2

�

)
Ĵ(2) (ξ)

p→ −
√

2
π

d0
t3/20

for any ξ on the line segment joining t̂ and t0.

Lemma A.9: As n → ∞, E|Hi|3 = O(�3/b4).

A.6.1 Proof of Theorem 3.2
By a mean-value expansion of the first-order condition Ĵ(1)(t̂) = 0, we have

0 = Ĵ(1) (t0) + Ĵ(2)
(◦
t
) (

t̂ − t0
)

= E
{
Ĵ(1) (t0)

}
+

[
Ĵ(1) (t0) − E

{
Ĵ(1) (t0)

}]
+ Ĵ(2)

(◦
t
) (

t̂ − t0
)

(A28)
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for some
◦
t on the line segment joining t̂ and t0. Theorem 3.1 indicates that the condition for

Lemma A.8 is satisfied.
Rearranging (A28), we obtain

√
n

b1/2

⎡
⎢⎣t̂ − t0 −

⎧⎪⎨
⎪⎩−

E
(
Ĵ(1) (t0)

)
Ĵ(2)

(◦
t
)

⎫⎪⎬
⎪⎭

⎤
⎥⎦

= −
√

n
b1/2

⎡
⎢⎣ Ĵ(1) (t0) − E

{
Ĵ(1) (t0)

}
Ĵ(2)

(◦
t
)

⎤
⎥⎦ . (A29)

Then, by Lemmata A.6 and A.8, the leading bias term for t̂ becomes

−
E
{
Ĵ(1) (t0)

}
Ĵ(2)

(◦
t
) = −b + op (b) .

To demonstrate asymptotic normality of
√
n/b1/2(b3/2/�)[Ĵ(1)(t0) − E{̂J(1)(t0)}], we also check

Lyapunov’s condition. This quantity can be expressed as

n∑
i=1

Yi :=
n∑
i=1

√
b5/2

n�2 {Hi − E (Hi)} .

Then, by Cr-inequality, Jensen’s inequality (due to the convexity of y3 for y ≥ 0) and Lemma A.9,

E |Yi|3 ≤ 8
(
b5/2

n�2

)3/2

E |Hi|3 = O
(
n−3/2b−1/4) .

It also follows from Lemma A.7 that Var(Yi) = O(n−1). Therefore,∑n
i=1 E |Yi|3{∑n

i=1 Var (Yi)
}3/2 = O

(
1√
nb1/2

)
→ 0,

and Lyapunov’s condition is established.
Nowwe are allowed to employ a central limit theorem, in conjunction with LemmaA.7, to obtain√

n
b1/2

(
b3/2

�

)[
Ĵ(1) (t0) − E

{
Ĵ(1) (t0)

}]
d→ N

(
0,

3

2
√

π t5/20

{
f (t−0 ) + f (t+0 )

2

})
.

Then, it holds that for the right-hand side of (A29),

−
√

n
b1/2

⎡
⎢⎣

(
b3/2/�

) {
Ĵ(1) (t0) − E

(
Ĵ(1) (t0)

)}
(
b3/2/�

)
Ĵ(2)

(◦
t
)

⎤
⎥⎦ d→ N

(
0,

3
√

π t1/20
4d20

{
f (t−0 ) + f (t+0 )

2

})

by Lemma A.8. This completes the proof. �
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