Previous | Up | Next
Citations From References: 1 From Reviews: 0

MR3800980 62G07
Nagler, T. [Nagler, Thomas] (D-MUTU-DM)
Asymptotic analysis of the jittering kernel density estimator. (English summary)
Math. Methods Statist. 27 (2018), no. 1, 32-46.
This article is concerned with nonparametric multivariate density estimation for mixed data by a kernel method. Suppose that we are interested in estimating the unknown joint density f of (\mathbf{Z}, \mathbf{X}) using iid observations $\left\{\left(\mathbf{Z}_{i}, \mathbf{X}_{i}\right)\right\}_{i=1}^{n}$, where $\mathbf{Z} \in \mathbb{Z}^{p}$ and $\mathbf{X} \in \mathbb{R}^{q}$ are discrete and continuous components, respectively. A typical approach for estimating f nonparametrically is to construct a product kernel from different univariate kernel functions for \mathbf{Z} and \mathbf{X} [see, e.g., Q. Li and J. S. Racine, J. Multivariate Anal. 86 (2003), no. 2, 266-292; MR1997765]; to put it in another way, discrete and continuous components are treated separately.

In contrast, the main focus of this article is on jittering-adding noises to discrete components to make them continuous. Let $\mathbf{E} \in \mathbb{R}^{p}$ be a random draw from a certain class of continuous distributions that is independent of (\mathbf{Z}, \mathbf{X}). The jittering kernel density estimator is defined as

$$
\tilde{f}(\mathbf{z}, \mathbf{x})=\frac{1}{n h^{p} b^{q}} \sum_{i=1}^{n} \mathbb{K}\left(\frac{\mathbf{Z}_{i}+\mathbf{E}_{i}-\mathbf{z}}{h}\right) \mathbb{K}\left(\frac{\mathbf{X}_{i}-\mathbf{x}}{b}\right)
$$

where $\mathbb{K}(\mathbf{u})=\prod_{j=1}^{r} K\left(u_{j}\right)$ is the product kernel constructed from a univariate continuous $\underset{\sim}{\text { kernel }} K(\cdot)$, and $(h, b)=\left(h_{n}, b_{n}\right)$ are bandwidths. Then, the following properties of $\tilde{f}(\mathbf{z}, \mathbf{x})$ are explored:
(1) pointwise asymptotic normality;
(2) uniform strong consistency;
(3) relative asymptotic efficiency for the case of only one discrete variable (i.e., $\tilde{f}(\mathbf{z}, \mathbf{x})=\tilde{f}(z))$ relative to the sample frequency estimator $f_{n}(z)=$ $(1 / n) \sum_{i=1}^{n} \mathbf{1}\left(Z_{i}=z\right)$; and
(4) minimax-optimal rates.

A few comparisons with convergence properties of the density estimator by Li and Racine [op. cit.], denoted by $\widehat{f}_{L R}(\mathbf{z}, \mathbf{x})$, may be of interest. First, the leading bias term of $\tilde{f}(\mathbf{z}, \mathbf{x})$ depends only on b; i.e., smoothing the discrete component generates no bias. This is a sharp contrast to the fact that the dominant bias term of $\widehat{f}_{L R}(\mathbf{z}, \mathbf{x})$ includes both h and b (in the same notations). Second, $\operatorname{Var}\{\tilde{f}(\mathbf{z}, \mathbf{x})\}=O\left\{\left(n h^{p} b^{q}\right)^{-1}\right\}$, which appears to be slower than $\operatorname{Var}\left\{\widehat{f}_{L R}(\mathbf{z}, \mathbf{x})\right\}=O\left\{\left(n b^{q}\right)^{-1}\right\}$. However, the leading bias term of $\tilde{f}(\mathbf{z}, \mathbf{x})$ is free of h, and thus it is optimal to choose h as large as possible so that $\operatorname{Var}\{\tilde{f}(\mathbf{z}, \mathbf{x})\}=O\left\{\left(n b^{q}\right)^{-1}\right\}$ is the case. It can also be found that as long as a large value of h is taken, adding more discrete variables does not affect the convergence rate of $\tilde{f}(\mathbf{z}, \mathbf{x})$.

Masayuki Hirukawa

