

Previous Up

Citations From References: 0 From Reviews: 0

MR3857826 62G05 62G08

Kroll, Martin (D-MNHM-NDM)

Non-parametric Poisson regression from independent and weakly dependent observations by model selection. (English summary) J. Statist. Plann. Inference **199** (2019), 249–270.

This article studies the problem of estimating a nonparametric Poisson regression model in which an integer-valued response Y is the realization of a Poisson random variable with an unknown parameter $\lambda(X)$ depending on a covariate X. The n observations of the covariate X are assumed to be strictly stationary and either independent or weakly dependent. For the latter, β -mixing (or absolute regularity) is imposed.

Special attention is paid to the adaptive estimation in which the estimators of λ are fully data-driven and thus free of structural assumptions on λ , and orthogonal projection estimation is examined throughout. Let \mathcal{M}_n be a finite collection of models. For a given model $m \in \mathcal{M}_n$, let λ_m be the orthogonal projection of λ , and denote the estimator for λ_m by $\hat{\lambda}_m$. Because each $\hat{\lambda}_m$ depends on the model m, the optimal model \hat{m} is chosen from the set $\{\hat{\lambda}_m\}_{m \in \mathcal{M}_n}$ via the penalized contrast criterion

$$\widehat{m} = \operatorname*{arg\,min}_{m \in \mathcal{M}_n} \left\{ \gamma_n \left(\widehat{\lambda}_m \right) + \widehat{\mathrm{pen}}(m) \right\},\,$$

where γ_n is the contrast function and $\widehat{\text{pen}}$ can be obtained by replacing the unobservable upper bound of λ in the penalty term pen with its plug-in estimate.

It is demonstrated that for each of the cases of independent and weakly dependent observations, the optimal adaptive projection estimator $\widehat{\lambda}_{\widehat{m}}$ satisfies the oracle inequality

$$E\left\|\widehat{\lambda}_{\widehat{m}} - \lambda\right\|^{2} \lesssim \min_{m \in \mathcal{M}_{n}} \max\left\{\left\|\lambda - \lambda_{m}\right\|^{2}, \operatorname{pen}\left(m\right)\right\} + \frac{1}{n}$$

where the expression $a_n \leq b_n$ means that $a_n \leq Cb_n$ holds for all $n \in \mathbb{N}$ with some constant C independent of n, and $\|\lambda - \lambda_m\|^2$ corresponds to the squared bias term due to the orthogonal projection λ_m . Concentration inequalities for Poisson point processes play a key role in the proof for each case. Notice that the order of magnitude in pen is the variance convergence rate multiplied by an additional logarithmic factor. It follows that $\hat{\lambda}_{\widehat{m}}$ attains the minimax optimal rate up to the logarithmic factor regardless of whether independent or weakly dependent observations are used. Masayuki Hirukawa

© Copyright American Mathematical Society 2019