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In this article, two nonparametric tests of independence against a particular form of
dependence are proposed. The alternative considered here is a stochastically increasing
property (also known as positive regression dependence), which is defined as follows:
For a pair of positive random variables (X,Y ), Y is said to be stochastically increasing
in X if, for all y > 0, Pr(Y > y|X = x) is increasing in x > 0.

For a given y > 0, let δ(s, t; y) := Pr(Y > y|X = s)− Pr(Y > y|X = t) whenever
s≥ t > 0. The test statistics are built on the following measure of deviation:

∆(F,G) (y) := E {δ (X2, X1; y)|X2 ≥X1} ,

where F and G are marginal distribution functions of X and Y , respectively. Given the
conditional survival function G(y|x), ∆(F,G)(y) can be expressed as

∆(F,G) (y) =

∫
G (y|x) {2F (x)− 1} dF (x) .

The sup measure ∆∗
(F,G) := supy>0 ∆(F,G)(y) and the density-average measure

∆∗∗
(F,G) :=

∫
∆(F,G)(y) dG(y) are employed to gauge the deviation from independence.

Because these measures include a few unknown quantities, the corresponding test
statistics can be constructed by replacing the quantities with their consistent esti-
mates. Specifically, using n i.i.d. observations, {(Xi, Yi)}ni=1, G(y|x) can be estimated
nonparametrically by

Gn (y|x) :=

∑n
j=1 k {(x−Xj) /an} 1 (Yj > y)∑n

j=1 k {(x−Xj) /an}
,

where k(·) is a kernel function, an(> 0) is the sequence of bandwidths, and 1(·) is an
indicator function. By further replacing (F,G) with their empirical measures (Fn, Gn),
a natural estimator of ∆(F,G)(y) can be obtained as

∆(Fn,Gn) (y) :=
1

n2

∑
i,j,`

k {(Xi−Xj) /an} 1 (Yj > y) {2(1(Xi ≥X`))− 1}∑n
j=1 k {(Xi−Xj) /an}

.

In the end, the test statistics become

∆∗
(Fn,Gn)

:= sup
y>0

∆(Fn,Gn) (y) and ∆∗∗
(Fn,Gn)

:=

∫
∆(Fn,Gn) (y) dGn (y) .

In particular, ∆∗∗
(Fn,Gn)

can be simplified as

∆∗∗
(Fn,Gn)

=
1

n3

∑
i,j

k {(Xi−Xj) /an} (Sj − 1) (2Ri−n)∑n
j=1 k {(Xi−Xj) /an}

,

where Ri := Rank(Xi) =
∑n

`=1 1(Xi ≥X`) and Sj := Rank(Yj) =
∑n

h=1 1(Yj ≥ Yh).
Convergence properties of the test statistics ∆∗

(Fn,Gn)
and ∆∗∗

(Fn,Gn)
can be established
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by the following weak convergence of the empirical process {∆(Fn,Gn)(y), y > 0}:
√
nan

{
∆(Fn,Gn) (y)−∆(F,G) (y)

}
⇒

Q (y) := k
1/2
0

∫
{f (x)}−1/2 {2F (x)− 1}B {G (y|x)} dF (x)

in D(0,∞), where k0 =
∫
k2(u) du and B is a standard Brownian bridge on the unit

interval [0, 1]. This yields the limiting null distributions of ∆∗
(Fn,Gn)

and ∆∗∗
(Fn,Gn)

as

√
nan

{
∆∗

(Fn,Gn)
−∆∗

(F,G)

}
⇒ k

1/2
0 Γ sup

y>0
B {G (y)} , and

k
−1/2
0 Γ−1√nan

{
∆∗∗

(Fn,Gn)
−∆∗∗

(F,G)

}
⇒N

(
0,

1

12

)
,

where Γ :=
∫
{f(x)}−1/2{2F (x)− 1} dF (x). The null of independence is rejected if test

statistics take large values.
Observe that the above convergence results depend on unknown marginal distribu-

tions of X and Y . Then, bootstrapping is adopted in the Monte Carlo study. However,
the bootstrap algorithm does not look fully operational in the sense that it is subject to
prior knowledge of the joint distribution of (X,Y ). When implementing each test, we
may have to either (i) estimate the unknown quantities nonparametrically and rely on
its limiting null distribution or (ii) explore a nonparametric bootstrap test.
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