

Previous Up Next

Citations From References: 0 From Reviews: 0

MR4140779 62G10 62G20 62M10

Jiménez-Gamero, M. Dolores [Jiménez-Gamero, María Dolores] (E-SEVL-OR); Lee, Sangyeol (KR-SNU-S); Meintanis, Simos G. (GR-UATH-EC)

Goodness-of-fit tests for parametric specifications of conditionally

heteroscedastic models. (English summary)

TEST 29 (2020), no. 3, 682–703.

This article studies a goodness-of-fit test for the conditional variance of a strictly stationary, multiplicative error process $x_t = \sigma_t \varepsilon_t$, where the innovation ε_t is an i.i.d. process with zero mean and unit variance that is independent of σ_t . Given that \mathcal{I}_{t-1} is the information available at time t, the conditional variance of x_t can be expressed as $\sigma_t^2 = \mathbb{E}(x_t^2 | \mathcal{I}_{t-1})$. The null hypothesis considered in this article is

 $H_0: \sigma_t^2 = h_{\vartheta}(\Upsilon_{t,p,q}) \quad \text{for some } \vartheta \in \Theta \subseteq \mathbb{R}^v,$

where $\Upsilon_{t,p,q} = (x_{t-1}, \ldots, x_{t-p}, \log(\sigma_{t-1}^2), \ldots, \log(\sigma_{t-q}^2))'$, and $h_{\vartheta}(\cdot)$ is a specific function depending on a *v*-dimensional parameter ϑ . The parametric specification $h_{\vartheta}(\cdot)$ can cover a wide variety of GARCH models. After a suitable modification, this testing procedure can also be applied to autoregressive conditional duration models.

Observe that $\mathbb{E}(x_t^2|\mathbf{\Upsilon}_{t,p,q}) = \sigma_t^2(\boldsymbol{\vartheta})$ under H_0 . Let $\boldsymbol{\vartheta}_T$ be a consistent estimator of $\boldsymbol{\vartheta}$ (e.g., the quasimaximum likelihood estimator) using T observations. Also, given predicted values $\tilde{\sigma}_t(\boldsymbol{\vartheta}_T)$ based on some initial condition, denote standardized residuals as $\tilde{\varepsilon}_t = x_t/\tilde{\sigma}_t(\boldsymbol{\vartheta}_T)$. Then, the normalized integrated process

$$Q_{T,w} = (T-m) \int |S_T(\mathbf{u})|^2 w(\mathbf{u}) \, d\mathbf{u}$$

is considered as the test statistic, where

$$S_T(\mathbf{u}) = \frac{1}{T-m} \sum_{t=m+1}^T (\tilde{\varepsilon}_t^2 - 1) \exp(i\mathbf{u}' \tilde{\mathbf{\Upsilon}}_t),$$

 $m = \max\{p,q\}, \ i = \sqrt{-1}, \ \tilde{\mathbf{\Upsilon}}_t = (x_{t-1}, \ldots, x_{t-p}, \log\{\tilde{\sigma}_{t-1}^2(\hat{\boldsymbol{\vartheta}}_T)\}, \ldots, \log\{\tilde{\sigma}_{t-q}^2(\hat{\boldsymbol{\vartheta}}_T)\})',$ and $w(\mathbf{u})$ is some weight function. In practice, the Gaussian density is chosen as the weight function because of a theoretical requirement.

In essence, a large value of $Q_{T,w}$ leads to rejection of H_0 . However, the asymptotic null distribution of $Q_{T,w}$ depends on the unknown distribution of ε_t . Then, the weighted bootstrap (also known as the multipliers method) is applied to approximate the null distribution. Let ξ_{m+1}, \ldots, ξ_T be i.i.d. copies of a random variable ξ with zero mean and unit variance that are independent of x_1, \ldots, x_T . Then, as a fully operational counterpart of $Q_{T,w}$, consider

$$Q_{T,w}^* = \int |W_{1,T}^*(\mathbf{u}; \widehat{\boldsymbol{\vartheta}}_T)|^2 w(\mathbf{u}) \, d\mathbf{u},$$

where

$$\begin{split} W_{1,T}^*(\mathbf{u};\widehat{\boldsymbol{\vartheta}}_T) &= \frac{1}{\sqrt{T-m}} \sum_{t=m+1}^T \tilde{H}_t(\mathbf{u};\widehat{\boldsymbol{\vartheta}}_T)\xi_t, \\ \tilde{H}_t(\mathbf{u};\widehat{\boldsymbol{\vartheta}}_T) &= (\tilde{\varepsilon}_t^2 - 1)\{\cos(\mathbf{u}'\widetilde{\mathbf{\Upsilon}}_t) + \sin(\mathbf{u}'\widetilde{\mathbf{\Upsilon}}_t)\} - \tilde{G}(\mathbf{u};\widehat{\boldsymbol{\vartheta}}_T)'\widehat{L}_t, \\ \tilde{G}(\mathbf{u};\widehat{\boldsymbol{\vartheta}}_T) &= \frac{1}{T-m} \sum_{t=m+1}^T \tilde{A}_t(\widehat{\boldsymbol{\vartheta}}_T)\{\cos(\mathbf{u}'\widetilde{\mathbf{\Upsilon}}_t) + \sin(\mathbf{u}'\widetilde{\mathbf{\Upsilon}}_t)\}, \\ \tilde{A}_t(\vartheta) &= \frac{\partial}{\partial\vartheta} \log\{\tilde{\sigma}_t^2(\vartheta)\}, \\ \hat{L}_t &= (\tilde{\varepsilon}_t^2 - 1)\tilde{A}_t(\widehat{\boldsymbol{\vartheta}}_T)\widehat{J}^{-1}, \text{ and} \\ \hat{J} &= \frac{1}{T} \sum_{t=1}^T \tilde{A}_t(\widehat{\boldsymbol{\vartheta}}_T)\tilde{A}_t(\widehat{\boldsymbol{\vartheta}}_T)'. \end{split}$$

It is demonstrated that both $Q_{T,w}$ and $Q_{T,w}^*$ have the same limiting conditional distribution, given the observations. The weighted bootstrap *p*-value can be approximated by simulating bootstrap samples of $Q_{T,w}^*$ many times. Observe that it suffices to estimate the parameter ϑ only once in the weighted bootstrap. This is in sharp contrast to the residual-based bootstrap, which requires the parameter estimation for each resample. Masayuki Hirukawa

© Copyright American Mathematical Society 2021