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This article investigates statistical properties of a nonparametric cointegrating regres-
sion model with a latent regressor. Let (y:, z¢) be two nonstationary variables that are
linked according to the nonparametric regression model

yt:g(zt)+nta t:1,...,n,

where g¢(-) is an unknown function and 7, is a zero-mean stationary disturbance that
may be correlated with z;. Throughout it is assumed that the true regressor z; is
unobservable, whereas its proxy x; is available. Such circumstances arise when z; is
measured with error or given in filtered forms as in the mixed-data-sampling (MIDAS)
regression or Hodrick-Prescott (HP) filtering.

In this scenario, it is a common practice to use x; in place of z; to estimate g(x)

nonparametrically as
0y Shea v (G )k}
Yty Kz —x)/h}

where K (-) is a nonnegative kernel function and & is a bandwidth. To explore the limit
theory of g(z), observe that

" (o) = St 0)/h) | S o) K (e —)/h)
>y K{(zy — )/} >ty K{(ze — )/}

While the first term can be handled in a manner analogous to correctly specified cases,
the second term involves S, := > ;' ; g(z:)K{(z¢ — x)/h}, the limit theory of which
depends on the linkage between two nonstationary variables, (z¢, z¢), and n, and is new
in the literature.

To obtain a general result on the limit behavior of S, let a; be asymptotically
cointegrated with x; so that

+

At = YntTt + Wnt + Uy,

where ~,; is a sample-size-dependent coefficient with a limit vy (e.g., an estimated
coefficient), wy; is an asymptotically negligible misspecification error, and wu; is a
stationary disturbance. Also let & be the innovation for x; and d, := /Var(}_,_, &)
Then, it is demonstrated that for a class of continuous functions f(-), a given x and the
bandwidth satisfying h+ d,,/(nh) — 0 as n — oo,

2) %Zf(at)K (xt;x> S B{f(yox +w)}L2(1,0),

where Lz (t,x) is the continuous local time for a fractional Ornstein-Uhlenbeck process
Zy.

The limit behavior of g(z) can be obtained by applying (2) to the second term of (1).
Suppose that (x¢, z;) has the linkage

Tt = QntZt + Wit + Ug,
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where maxi<p<p |047_Lk1 —1] = 0 as n — oo, and z; (and thus z;) is correlated with ;.

Then, the first term of (1) is shown to be O,{(nh?)/4}, whereas reading f as g in (2)
yields

{Z?LéK ($t}:$) 75229(%).’( (%&}:35)}i){Lz(l,O),E{g(x—ul)}LZ(lj())}.

Therefore, applying the continuous mapping theorem to the second term of (1), we
finally have

§(x) = Op{(nh*)V*} + E{g(x — u1)} +0,(1) & Efg(z —u1)} =: g1 ().

The function g1 (z) is a weighted average of g locally around z with weights determined
by the stationary distribution of the measurement error w. Also observe that g(x)
is usually inconsistent because g(x) # g1(z) in general. However, when g is linear,
g(x) = ¢g1(z) holds and thus g(x) becomes consistent. This corresponds to the case in
which the true regressor z; is measured with a stationary error in a linear cointegrating
regression.
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