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Consider a nonparametric regression model y = f0(x) + ε, where (y,x) ∈ R×Rd, the
regression function f0 is left unspecified, and the regression error ε is sub-Gaussian with
mean zero. In this article, the problem of estimating derivatives of f0, denoted as ∂βf0
with ∂β = ∂β1

x1
· · · ∂βd

xd
for a multi-index β = (β1, . . . , βd), is studied.

As an estimator of ∂βf0, a plug-in kernel ridge regression (KRR) estimator is proposed.
The KRR estimator has a closed-form expression that depends on a Mercer kernel
K(·, ·), i.e., a continuous, symmetric, and positive definite bivariate function, and a
regularization parameter λ > 0.

Statistical properties of the KRR estimator are explored in a non-asymptotic frame-
work. First, two error bounds for the KRR estimator are derived under the L∞ norm,
where one is built on Mercer kernels with uniformly bounded eigenfunctions and the
other on general Mercer kernels. Second, when f0 belongs to a Hölder or Sobolev class
and a kernel K with polynomially decaying eigenvalues is employed, the KRR estima-
tor is shown to be near minimax optimal up to a logarithmic factor under the L2 norm.
An interesting feature in KRR is the plug-in property, i.e., the same choice of λ can at-
tain the minimax optimal rate, regardless of the order of the derivative to be estimated.
Other derivative estimators, such as local polynomial regression and smoothing spline
estimators, do not share this property.

Choices of the kernel K and the regularization parameter λ are discussed, and
the computational complexity of KRR, including the time to find the optimal λ, is
also mentioned. Finally, two Monte Carlo simulations are conducted. One of these is
intended to confirm the minimax optimal rate numerically; this type of design is seldom
seen in the related literature. Monte Carlo results indicate that the KRR estimator
using the Matérn kernel outperforms other existing methods and tends to achieve the
theoretical minimax rate in finite samples. Masayuki Hirukawa
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