
Results from MathSciNet: Mathematical Reviews on the Web
c© Copyright American Mathematical Society 2025

MR4695719 62M10 37M05 62H12 62H15 62P10 62P20

Stærk-Østergaard, Jacob (DK-CPNH) ; Rahbek, Anders (DK-CPNH-EC) ;
Ditlevsen, Susanne (DK-CPNH)

High-dimensional cointegration and Kuramoto inspired systems. (English.
English summary)

SIAM J. Appl. Dyn. Syst. 23 (2024), no. 1, 236–255.
In this article, the authors examine via simulations estimators of the coefficient matrix
and its rank in a linear high-dimensional cointegration system. This work can be viewed
as a natural extension of the authors’ previous simulation study in a low-dimensional
setup [J. Math. Biol. 75 (2017), no. 4, 845–883; MR3687222].

Here is the cointegrating system considered in the simulation study. Suppose that
a p(� 0)-dimensional I(1) process yn = (y1n, . . . , ypn)> ∈ Rp has r (< p) linear coin-
tegrating relations. When there is no deterministic term in yn, this relation can be
expressed as the following vector error correction model:

∆yn = Πyn−1 + εn,

where ∆yn = yn− yn−1, and the coefficient matrix Π ∈ Rp×p is of rank r. The white
noise process εn ∈ Rp is assumed to be Gaussian. Inspired by a linearized version of
Kuramoto systems, the authors further impose a special network structure on the
coefficient matrix Π. Let Π be block-diagonal so that Π =diag{Π1, . . . ,Πk}, where the

sub-matrix Πi ∈ Rpi×pi with
∑k

i=1 pi = p is symmetric and of rank ri = pi−1. It follows

that r = rank(Π) =
∑k

i=1 ri = p− k.
Estimating the above system takes two steps. First, the rank r is determined by

a sequential testing procedure based on the likelihood ratio statistic. Because the
asymptotic null distribution of the test statistic is nonstandard, the authors rely on a
bootstrapping technique to obtain the rank estimate r̂. Given r̂, in the second step, the
matrix Π is estimated. A few different estimators of Π are considered in the simulation
study, and some of them are indeed subject to restrictions of symmetry and low rank.

There are two important findings from the simulation study. First, the sequential
testing procedure tends to underestimate the rank r. However, graphical inspections
indicate that precise estimation of r is not crucially important, as long as the degree of
underestimation is relatively small. Second, given the rank estimate r̂ (which is slightly
smaller than the true r), the symmetrized version of the ordinary least squares estimator
of Π under a low rank approximation outperforms other competing estimators.
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