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This article is another work by the authors on kernel regression estimation when two
cross-sectional datasets—namely, the primary (or internal) and secondary (or external)
ones—are combined. The internal dataset typically consists of responses to detailed
scientific questions. While this dataset may include many additional covariates relative
to the external one, the cost of data collection is expensive. The external dataset is
less expensive to collect, and as a result its sample size is typically larger than that
of the internal one. However, this dataset may only contain crude information such as
summary statistics.

More concretely, suppose that the internal dataset includes (Y,U), where Y ∈ R is a
response and U ∈ Rp is a vector of covariates. Also suppose that the external dataset
contains (Y,X), where X ∈ Rq is a sub-vector of U with q < p. This setup is the same
as the one in Section 3 of [C.-S. Dai and J. Shao, Stat. Theory Relat. Fields 8 (2024),
no. 1, 51–68; MR4718776]. Although both this article and [op. cit.] investigate how
external information can improve efficiency in nonparametric kernel estimation for the
conditional expectation µ(u) = E(Y |U = u), there is a crucial difference. This article in
principle considers the case in which two datasets belong to the same population. In
contrast, [op. cit.] dealt with the case of heterogenous populations, i.e., the case in which
two datasets are drawn from different populations, arising from difference in collection
methods and/or time periods. Therefore, [op. cit.] can be viewed as a natural extension
of this article; indeed, the research extension in this direction is discussed in Section 2.5
of this article.

This article focuses on the local constant or Nadaraya-Watson (NW) regression es-
timation combining n internal observations {(Yi,Ui)}ni=1 and m external observations
{(Yj ,Xj)}mj=1. The proposed estimation method, called the constrained kernel (CK) re-
gression method, takes two steps. In the first step, the fitted values {µ̂i}ni=1 = {µ̂(Ui)}ni=1

can be obtained through a constrained optimization under the constraints implied by
summary information from the external dataset. In the second step, the CK estimator
at a given design point U = u can be computed as the NW estimator with responses
{Yi}ni=1 replaced by their fitted values {µ̂i}ni=1.

It is demonstrated that under some regularity conditions, the asymptotic mean in-
tegrated squared error (AMISE) of the CK estimator is smaller than that of the NW
estimator with no external information. Methods of choosing the bandwidth and con-
structing confidence intervals are also proposed as practical considerations. Simulation
results confirm improvement in the AMISE of the CK estimator. Masayuki Hirukawa
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