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This article explores convergence properties of the quasi-maximum likelihood estimator
(QMLE) for long-memory linear processes. The estimation theory starts from estab-
lishing that a long-memory one-sided linear process (Xt)t∈Z can be represented as a
long-memory AR(∞) process and vice versa. More precisely, based on this correspon-
dence, (Xt)t∈Z alternatively takes the form of

Xt =
∞∑
k=1

uk(θ)Xt−k +σεt,

where (εt)t∈Z is a centered independent random variable (or a strong white noise) with a
unit variance, θ = (γ, σ2)> ∈Θ is the set of model parameters on a compact parameter
space Θ ⊆ Rp−1 × (0,∞), and (un(θ))n∈N is a sequence of real numbers satisfying,
for any θ ∈ Θ, un(θ) = Lθ(n)n−d(θ)−1 and

∑∞
n=1 un(θ)p = 1 for some slowly varying

function Lθ(·) and the memory parameter d(θ) ∈ (0, 1/2). Throughout it is assumed
that (un(θ)) does not depend on σ2.

The AR(∞) representation of (εt)t∈Z allows for the Gaussian QML estimation of θ.

The QMLE for θ, denoted as θ̂n = (γ̂n, σ̂
2
n)> hereafter, is defined as

θ̂n = arg max
θ∈Θ

În(θ) := arg max
θ∈Θ

−1

2

n∑
t=1

(
log(σ2) +

(Xt− m̂t(θ))
2

σ2

)
,

where m̂t(θ) :=
∑t−1
k=1 uk(θ)Xt−k. Since (un(θ)) is independent of σ2, the QMLE reduces

to

γ̂n = arg min
γ

n∑
t=1

(
Xt−

t−1∑
k=1

uk(γ)Xt−k

)2

and

σ̂2
n =

1

n

n∑
t=1

(
Xt−

t−1∑
k=1

uk(γ̂n)Xt−k

)2

.

Observe that γ̂n is also a nonlinear least-squares estimator of γ.

It is demonstrated that under some regularity conditions, θ̂n converges almost
surely to θ and is asymptotically normal with the parametric rate of convergence.
Y. Boubacar Mäınassara, Y. Esstafa, and B. Saussereau [Stat. Inference Stoch. Process.
24 (2021), no. 3, 549–608; MR4321851] already established almost sure convergence and
asymptotic normality of the QMLE for FARIMA processes with a weak white noise.
Convergence results in this article can be viewed as a generalization of [op. cit.] to all
long-memory one-sided linear processes.

Moreover, the asymptotic distribution of the QMLE in this article is identical to
the one for the Whittle estimator by L. Giraitis and D. Surgailis [Probab. Theory
Related Fields 86 (1990), no. 1, 87–104; MR1061950], and thus these estimators are
first-order asymptotically equivalent. Monte Carlo simulations indicate that finite-
sample properties of these estimators have no substantial difference for the cases of
1000 or more observations, as their asymptotic theories predict, whereas the QMLE
performs better than the Whittle estimator for the case of 300 observations.
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