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A TWO-STAGE PLUG-IN
BANDWIDTH SELECTION AND
ITS IMPLEMENTATION FOR
COVARIANCE ESTIMATION

MASAYUKI HIRUKAWA
Northern Illinois University

The two most popular bandwidth choice rules for kernel HAC estimation have been
proposed by Andrews (1991) and Newey and West (1994). This paper suggests an
alternative approach that estimates an unknown quantity in the optimal bandwidth
for the HAC estimator (called normalized curvature) using a general class of kernels,
and derives the optimal bandwidth that minimizes the asymptotic mean squared error
of the estimator of normalized curvature. It is shown that the optimal bandwidth for
the kernel-smoothed normalized curvature estimator should diverge at a slower rate
than that of the HAC estimator using the same kernel. An implementation method
of the optimal bandwidth for the HAC estimator, which is analogous to the one for
probability density estimation by Sheather and Jones (1991), is also developed. The
finite sample performance of the new bandwidth choice rule is assessed through
Monte Carlo simulations.

1. INTRODUCTION

Over the last two decades considerable attention has been paid to heteroskedas-
ticity and autocorrelation consistent (HAC) estimation for the long-run variance
(LRV) matrix of random vector processes that may exhibit serial dependence and
conditional heteroskedasticity of unknown form. This paper focuses on a stan-
dard, kernel-smoothing approach to HAC estimation and prescribes a suitable
choice of bandwidth for the HAC estimator.

The bandwidth choice for a prespecified kernel has been considered by
Andrews (1991) and Newey and West (1994). While both of these papers derive
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the bandwidth that minimizes the asymptotic mean squared error (AMSE) of the
HAC estimator, they differ in their approach to estimating an unknown quan-
tity in the AMSE-optimal bandwidth. This unknown quantity is the ratio of the
spectral density of the innovation process and its generalized derivative, evalu-
ated at zero frequency, which is referred to as normalized curvature hereinafter.
Andrews (1991) estimates the normalized curvature by simply fitting an AR(1)
model. His approach is analogous to Silverman’s “rule of thumb” for probability
density estimation (Silverman, 1986, Sect. 3.4.2). A potential problem is that, in
general, the data-dependent/automatic bandwidth is not consistent for the AMSE-
optimal bandwidth unless the reference model provides a correct specification of
the process. Hence, this approach may perform poorly when the process is not
well approximated by an AR(1) model. In contrast, in order to avoid the issue of
misspecification of the process, Newey and West (1994) estimate the normalized
curvature nonparametrically using the truncated kernel. However, the use of the
truncated kernel prevents them from providing an optimal bandwidth for the nor-
malized curvature estimator. As a result, they implement the bandwidth for the
normalized curvature estimator in an ad hoc manner.

This paper suggests an alternative approach that adapts the “reliable” Sheather
and Jones (1991) bandwidth choice rule for probability density estimation to HAC
estimation. The proposed method is motivated by the parallel setting of proba-
bility and spectral density estimation: using the fact that their AMSEs have some
common structure, the aim is to establish an analog to the bandwidth choice rule
by Sheather and Jones (1991), which has been appraised as the most reliable
among all existing methods by Jones, Marron, and Sheather (1996). Similarly
to the bandwidth choice of Sheather and Jones (1991) that builds on two-stage
density estimation (Jones and Sheather, 1991), the approach in this paper sequen-
tially estimates normalized curvature (first-stage) and LRV (second-stage) using
a general class of kernels, where the kernels in the two parts are possibly dif-
ferent. For this reason, the paper calls the proposed approach two-stage plug-in
bandwidth selection. The AMSE-optimal bandwidth for the normalized curvature
estimator is derived, and it is used to implement the AMSE-optimal bandwidth
for the HAC estimator with an algorithm analogous to the one by Sheather and
Jones (1991).

In a related context, Politis (2003) and Politis and White (2004) propose to es-
timate normalized curvature nonparametrically using the flat-top kernel for prob-
ability and spectral density estimation and for the block choice problem in the
moving block bootstrap. While they argue that the flat-top kernel for normalized
curvature estimation appears to be theoretically very appealing, such an infinite-
order kernel is not considered in this paper. Also, although an optimal kernel
choice for normalized curvature estimation (or even an optimal combination of
kernels for first- and second-stage estimation) is beyond the scope of this paper,
this presents an interesting challenge for future research.

The remainder of the paper is organized as follows: Section 2 develops the
theory of two-stage plug-in bandwidth selection and the implementation method
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of the optimal bandwidth with theoretical justifications. Section 3 reports the re-
sults of two Monte Carlo experiments. Section 4 summarizes the main results
of the paper. All assumptions are given in Appendix A and proofs are given in
Appendix B.

This paper adopts the following notational conventions: [x] denotes the integer
part of x ; ‖A‖ signifies the Euclidean norm of matrix A, i.e., ‖A‖ ={

tr(A′ A)
}1/2;

vec(A) denotes the column-by-column vectorization function of matrix A; ⊗ is
used to represent the tensor (or Kronecker) product; and c(> 0) denotes a generic
constant, the quantity of which varies from statement to statement. The expression
‘XT ∼ YT ’ is used whenever XT /YT → 1 as T → ∞. Lastly, define 00 ≡ 1 by
convention.

2. TWO-STAGE PLUG-IN BANDWIDTH SELECTION

2.1. Optimal Bandwidth for Normalized Curvature Estimation

To illustrate the main ideas, consider LRV estimation in the generalized method of
moments (GMM) framework (Hansen, 1982). Suppose that an economic theory
implies a set of moment conditions E{g(zt ,θ0)} ≡ E(gt ) = 0, where {zt }∞t=−∞ is
a stationary, strongly mixing process, θ ∈ � ⊆Rp is a parameter vector of interest
with true value θ0, and g(z,θ) ∈ Rs (p ≤ s) is a known measurable vector-valued
function in z, ∀θ ∈ �. Define the LRV of {gt } as

� = lim
T →∞

1

T
E

{(
T

∑
t=1

gt

)(
T

∑
t=1

g′
t

)}
=

∞
∑

j=−∞
E(gt g

′
t− j ) =

∞
∑

j=−∞
�g( j).

When {gt } exhibits serial dependence and conditional heteroskedasticity of un-
known form, the inverse of a HAC estimator of � consistently estimates the opti-
mal weighting matrix that is required for efficient GMM estimation. The standard
HAC estimator of � takes the form of weighted autocovariances

�̂ =
T −1

∑
j=−(T −1)

k

(
j

ST

)
�̂g( j) =

T −1

∑
j=−(T −1)

k

(
j

ST

)(
1

T

min{T + j,T }
∑

t=max{1,1+ j}
ĝt ĝ

′
t− j

)
,

where k(·) is a kernel function, ST ∈ R+ is a nonstochastic bandwidth sequence,
ĝt = g(zt , θ̂ ), and θ̂ is the first-step GMM estimator. Likewise, we denote the
pseudo-estimator of � as

�̃ =
T −1

∑
j=−(T −1)

k

(
j

ST

)
�̃g( j) =

T −1

∑
j=−(T −1)

k

(
j

ST

)(
1

T

min{T + j,T }
∑

t=max{1,1+ j}
gt g

′
t− j

)
,

which has the same form as �̂ but is based on the unobservable process {gt } rather
than

{
ĝt
}

.
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Consider first the AMSE-optimal bandwidth S∗
T for the pseudo-estimator �̃.

Following Newey and West (1994),1 define the mean squared error (MSE) of �̃
as

MSE(�̃; �) = E
{

w′
T (�̃−�)wT

}2
, (1)

where wT is an s × 1 (possibly random) weighting vector that converges in
probability, at a suitable rate, to a constant vector w. Also let s(n) = ∑∞

j=−∞ | j |n
w′�g( j)w for n = 0,q ∈ (0,∞), where q is the characteristic exponent of a
kernel k(x) (Parzen, 1957) that satisfies kq ≡ limx→0 {1− k(x)}/|x |q ∈ (0,∞).
Then, if s(q) �= 0, (1) is approximated by

MSE(�̃; �) = k2
q

(
s(q)

)2

S2q
T

+ ST

T

{
2
(

s(0)
)2 ∫ ∞

−∞
k2(x)dx

}
+o

(
S−2q

T + ST

T

)
.

(2)

The optimal bandwidth that minimizes (2) is

S∗
T = (γT )1/(2q+1) =

⎧⎨
⎩ qk2

q

(
R(q)

)2

∫ ∞
−∞ k2(x)dx

⎫⎬
⎭

1/(2q+1)

T 1/(2q+1), (3)

where R(q) = s(q)/s(0) is the only unknown quantity in this formula called nor-
malized curvature.

Following Jones and Sheather (1991), we estimate the normalized curvature
R(q) using a kernel l(·) (possibly different from k(·)) that has the characteristic
exponent r ∈ (0,∞) satisfying lr ≡ limx→0 {1− l(x)}/|x |r ∈ (0,∞). Hereinafter,
the kernels l(·) and k(·) are called the first- and second-stage kernels, respectively.
Also let �h( j) be the j th autocovariance of the scalar process {ht } = {

w′gt
}

,
where w is the probability limit of the weighting vector in (1). Then �h( j) =
w′�g( j)w = w′E

(
gt g′

t− j

)
w and s(n) = ∑∞

j=−∞ | j |n�h( j). Also, let bT ∈ R+
be a nonstochastic bandwidth sequence for the first-stage kernel, and let �̃h( j) =
T −1 ∑min{T + j,T }

t=max{1,1+ j} ht ht− j . Then, the pseudo-estimator of R(q) is written as

R̃(q)(bT ) ≡ s̃(q)

s̃(0)
≡ ∑T −1

j=−(T −1) l( j/bT )| j |q �̃h( j)

∑T −1
j=−(T −1) l( j/bT )�̃h( j)

. (4)

Now we derive the AMSE-optimal bandwidth for R̃(q)(bT ).2 To approximate the
MSE of R̃(q)(bT ), it is convenient to apply the idea of the delta method. Let δ =(
1/s(0),−s(q)/(s(0))2

)′
and hT = (

s̃(q) − s(q), s̃(0) − s(0)
)′

. Taking the first-order

Taylor expansion of R̃(q)(bT ) around
(
s̃(q), s̃(0)

)′ = (
s(q),s(0)

)′
gives R̃(q)(bT ) =
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R(q) +δ′hT +‖hT ‖op(1). Then, the asymptotic bias (ABias) and the asymptotic
variance (AVar) of R̃(q)(bT ) become

ABias(R̃(q)(bT )) = δ′
(

E
(
s̃(q)

)− s(q)

E
(
s̃(0)

)− s(0)

)
,

AVar(R̃(q)(bT )) = δ′
(

Var(s̃(q)) Cov(s̃(q), s̃(0))

Cov(s̃(q), s̃(0)) Var(s̃(0))

)
δ.

Based on the assumptions given in Appendix A, the following lemmas give the
approximations to the bias and variance terms of hT .

LEMMA 1. If Assumptions A1, A3, and A4 hold, then

lim
T →∞br

T

{
E(s̃(q))− s(q)

}= −lr s(q+r),

lim
T →∞br

T

{
E(s̃(0))− s(0)

}= −lr s(r).

LEMMA 2. If Assumptions A1, A3, and A4 hold, then

lim
T →∞

T

b2q+1
T

Var(s̃(q)) = 2
(

s(0)
)2 ∫ ∞

−∞
|x |2q l2 (x)dx,

lim
T →∞

T

bT
Var(s̃(0)) = 2

(
s(0)

)2 ∫ ∞
−∞

l2 (x)dx,

lim
T →∞

T

bq+1
T

Cov(s̃(q), s̃(0)) = 2
(

s(0)
)2 ∫ ∞

−∞
|x |q l2(x)dx.

The two lemmas demonstrate that while the asymptotic biases of the spectral
density and its generalized derivative estimators are of the same order, the asymp-
totic variance of the derivative estimator dominates in order of magnitude. Theo-
rem 1 on the AMSE of R̃(q)(bT ) and the optimal first-stage bandwidth b∗

T follows
directly from these lemmas, and thus the proof is omitted.

THEOREM 1. If Assumptions A1, A3, and A4 hold and s(q)s(r) − s(0)s(q+r) �=
0, then the MSE of R̃(q)(bT ) is approximated by

MSE(R̃(q)(bT ); R(q)) = l2
r C2(q,r)

b2r
T

+ b2q+1
T

T

{
2
∫ ∞
−∞

|x |2q l2(x)dx

}

+o

(
b−2r

T + b2q+1
T

T

)
, (5)
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where C(q,r) = {
s(q)s(r) − s(0)s(q+r)

}
/
(
s(0)

)2
. The optimal bandwidth that

minimizes (5) is

b∗
T = (βT )1/(2q+2r+1)

=
{

rl2
r C2(q,r)

(2q +1)
∫ ∞
−∞ |x |2q l2(x)dx

}1/(2q+2r+1)

T 1/(2q+2r+1). (6)

At the optimum,

MSE(R̃(q)(b∗
T ); R(q))

∼ T −2r/(2q+2r+1)

{
β−2r/(2q+2r+1)l2

r C2(q,r)

+2β(2q+1)/(2q+2r+1)
∫ ∞
−∞

|x |2ql2(x)dx

}
.

Practitioners may wish to employ the same kernel twice to estimate normalized
curvature and LRV. The following corollary refers to the special case in which
the same kernel is employed in both stages. This corollary is also valid when two
distinct kernels that have the same characteristic exponent are employed (e.g.,
when the Parzen and quadratic spectral (QS) kernels are employed in the first
and the second stages, respectively). It is worth mentioning that the Bartlett and
Parzen kernels can be employed twice, whereas the QS kernel cannot, because∫ ∞
−∞ |x |4k2

QS(x)dx = ∞ (see Table 1 in Section 2.2) and the AVar in (5) is not
well defined.

COROLLARY 1. Suppose that the kernels employed in the first and second
stages have the same characteristic exponent, i.e., r = q. If Assumptions A1, A3,
and A4 hold and (s(q))2 −s(0)s(2q) �= 0, then the MSE of R̃(q)(bT ) is approximated
by

MSE(R̃(q)(bT ); R(q)) = l2
qC2(q)

b2q
T

+ b2q+1
T

T

{
2
∫ ∞
−∞

|x |2q l2(x)dx

}

+o

(
b−2q

T + b2q+1
T

T

)
, (7)

where C(q) ≡ C(q,q) = {(
s(q)

)2 − s(0)s(2q)
}/(

s(0)
)2

. The optimal bandwidth
that minimizes (7) is

b∗
T = (βT )1/(4q+1) =

{
ql2

qC2(q)

(2q +1)
∫ ∞
−∞ |x |2q l2(x)dx

}1/(4q+1)

T 1/(4q+1).
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At the optimum,

MSE(R̃(q)(b∗
T ); R(q))

∼ T −2q/(4q+1)

{
β−2q/(4q+1)l2

qC2(q)+2β(2q+1)/(4q+1)
∫ ∞
−∞

|x |2ql2(x)dx

}
.

Theorem 1 shows that the optimal bandwidth (6) depends on yet another un-
known quantity C(q,r); the next section discusses the implementation method
of the optimal bandwidth, including the estimation of this unknown quantity.
Corollary 1 demonstrates that if the same kernel is employed in both stages,
the optimal divergence rate of the first-stage bandwidth is b∗

T = O(T 1/5) with
MSE(R̃(1)(b∗

T ); R(1)) = O(T −2/5) for q = 1 (Bartlett), and b∗
T = O(T 1/9) with

MSE(R̃(2)(b∗
T ); R(2)) = O(T −4/9) for q = 2 (Parzen). Thus, the divergence rate

of b∗
T is slower than that of the optimal bandwidth for the HAC estimator S∗

T using
the same kernel.

Next, we focus on the HAC estimator �̂ that is based on the observable process
{ĝt }. Accordingly, the normalized curvature estimator should be based on

{
ĝt
}

.

A random weighting vector wT may need to be considered. Then, let ŝ(n)
T =

∑T −1
j=−(T −1) l( j/bT )| j |n�̂h,T ( j) for n = 0,q, where �̂h,T ( j) = T −1 ∑min{T + j,T }

t=max{1,1+ j}
ĥT,t ĥT,t− j is the j th sample autocovariance of the process

{
ĥT,t

}
= {

w′
T ĝt

}
.

Also, let R̂(q)
T (bT ) = ŝ(q)

T /ŝ(0)
T . Furthermore, let ŝ(n) and R̂(q)(bT ) denote the cor-

responding counterparts to a constant weighting vector case. Following Andrews
(1991), the AMSE criterion is also modified in two respects. First, the normal-
ized (or scale-adjusted) version of MSE is introduced so that its dominating term
becomes O(1). Using the scale factor T 2r/(2q+2r+1), the normalized MSE of
R̂(q)

T (bT ) can be expressed as

MSE
(

R̂(q)
T (bT ); R(q),T 2r/(2q+2r+1)

)
= T 2r/(2q+2r+1)MSE

(
R̂(q)

T (bT ); R(q)
)
.

(8)

Hereinafter, the MSE refers to (8), unless otherwise stated. Second, if θ̂ has an
infinite second moment, its use may dominate the normalized MSE criterion, even
though the effect of replacing θ0 with θ̂ in constructing R̂(q)

T (bT ) is at most op(1).

Then, the MSE is truncated by the scalar m > 0. The truncated MSE of R̂(q)
T (bT )

with the scale factor T 2r/(2q+2r+1) is

MSEm

(
R̂(q)

T (bT ); R(q),T 2r/(2q+2r+1)
)

= E

{
min

(
T 2r/(2q+2r+1)

∣∣∣R̂(q)
T (bT )− R(q)

∣∣∣2 ,m

)}
.
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In the rest of the paper, the truncated MSE with arbitrarily large truncation point

lim
m→∞ lim

T →∞MSEm(R̂(q)
T (bT ); R(q),T 2r/(2q+2r+1))

is used as the criterion of optimality. The next theorem shows that the normal-
ized MSE of R̂(q)

T (bT ) is asymptotically equivalent to the normalized MSE of
R̃(q)(bT ).

THEOREM 2. If Assumptions A1 and A3 – A6 hold and b2q+2r+1
T /T → β ∈

(0,∞), then

(a) T r/(2q+2r+1)
{

R̂(q)
T (bT )− R̃(q)(bT )

}
p→ 0.

(b) limm→∞ limT →∞ MSEm

(
R̂(q)

T (bT ); R(q),T 2r/(2q+2r+1)
)

= limm→∞ limT →∞ MSEm

(
R̃(q)(bT ); R(q),T 2r/(2q+2r+1)

)
= limT →∞ MSE

(
R̃(q)(bT ); R(q),T 2r/(2q+2r+1)

)
.

2.2. Implementation of Optimal Bandwidth for HAC Estimation

Following Sheather and Jones (1991), we obtain the optimal bandwidth for the
HAC estimator S∗

T by numerically solving the fixed-point problem. We refer to
this implementation method as the solve-the-equation plug-in (SP) rule.3 The SP
bandwidth estimator of S∗

T may be derived by solving (3) for T , yielding

T =
{∫ ∞

−∞ k2(x)dx

qk2
q

(
R(q)

)2

}(
S∗

T

)2q+1
, (9)

and then substituting (9) into (6) to get an expression for b∗
T as a function of S∗

T :

b∗
T = b∗

T

(
S∗

T

)=
{

α2(q,r)rl2
r
∫ ∞
−∞ k2(x)dx

q(2q+1)k2
q
∫ ∞
−∞ |x |2ql2(x)dx

}1/(2q+2r+1)

(S∗
T )(2q+1)/(2q+2r+1),

(10)

where α(q,r) = C(q,r)/R(q) = s(r)/s(0) − s(q+r)/s(q). By (3) and (4), the band-
width estimator ŜT is given by the root of the system of nonlinear equations (10)
and

S∗
T =

⎧⎪⎨
⎪⎩

qk2
q

(
R̂(q)

T

(
b∗

T

(
S∗

T

)))2

∫ ∞
−∞ k2(x)dx

⎫⎪⎬
⎪⎭

1/(2q+1)

T 1/(2q+1). (11)

In case of multiple roots, the SP bandwidth estimator is defined formally as
follows:4
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TABLE 1. Characteristic numbers of kernels most popularly applied

Kernel q kq
∫∞−∞ k2(x)dx

∫∞−∞ |x |2k2(x)dx
∫∞−∞ |x |4k2(x)dx

Bartlett 1 1 2/3 1/15 2/105
Parzen 2 6 151/280 491/20160 929/295680
Quadratic spectral 2 18π2/125 1 125/72π2 ∞

DEFINITION. The SP bandwidth estimator ŜT is defined as the largest root
that solves the system of equations (10) and (11).

When the same kernel is employed to estimate normalized curvature and LRV
so that l(x) = k(x) and r = q, many common factors are canceled out, and ŜT is
derived by the simplified system

S∗
T =

⎧⎪⎨
⎪⎩

qk2
q

(
R̂(q)

T

(
b∗

T

(
S∗

T

)))2

∫ ∞
−∞ k2(x)dx

⎫⎪⎬
⎪⎭

1/(2q+1)

T 1/(2q+1),

b∗
T

(
S∗

T

) =
{

α2(q)
∫ ∞
−∞ k2(x)dx

(2q +1)
∫ ∞
−∞ |x |2qk2(x)dx

}1/(4q+1) (
S∗

T

)(2q+1)/(4q+1)
,

where α(q) = α(q,q) = s(q)/s(0)−s(2q)/s(q).5 For convenience, Table 1 displays
the characteristic numbers of popular kernels that are required to calculate the
optimal bandwidths b∗

T and S∗
T .

The only remaining problem is to determine how to deal with the unknown
quantity α(q). Since �̂ and R̂(q)(bT ) are T q/(2q+1)- and T q/(4q+1)-consistent
at the optimum, a proxy of α(q) with a parametric convergence rate suffices for
the consistency of the HAC estimator. Park and Marron (1990) and Sheather and
Jones (1991) argue that the influence of fitting a parametric model to α(q) at this
point appears to be less crucial than fitting it directly to R(q) as in Andrews (1991).
Then, fitting {ht } to a reference AR(1) model ht = φht−1 + εt is considered. A
proxy of α(q) is obtained by substituting the least squares estimate of the AR
coefficient φ̂L S into s(n), n = 0,q,2q. The formulas of the proxy α̂(q) for q = 1,2
for the AR(1) model are

α̂(q) =
⎧⎨
⎩
(
φ̂2

L S +1
)

/
(
φ̂2

L S −1
)

for q = 1

−
(
φ̂2

L S +8φ̂L S +1
)

/
(
φ̂L S −1

)2
for q = 2

.

2.3. Properties of Automatic Bandwidth

This section provides a theoretical justification for the automatic two-stage plug-
in bandwidth selection. Let ξ̂ and ξ be the parameter estimator of the model fitted
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to the process {ht }, and its probability limit, respectively. In line with the para-
metric specification, the first- and second-stage bandwidths are rewritten as bξT

and SξT . Also let b̂T =
(
β̂T

)1/(2q+2r+1)
and ŜT = (

γ̂T
)1/(2q+1) be the corre-

sponding automatic bandwidths with ξ̂ plugged in. The next two theorems show
that using the automatic two-stage plug-in bandwidth, we can consistently esti-
mate the normalized curvature and LRV, even when the fitted reference model is
misspecified.

THEOREM 3. If Assumptions A1 and A3–A7 hold and b2q+2r+1
ξT /T → βξ =

rl2
r C2

ξ (q,r)/
{
(2q +1)

∫ ∞
−∞ |x |2ql2(x)dx

}
with

∣∣Cξ (q,r)
∣∣ ∈ (0,∞), then

(a) T r/(2q+2r+1)
{

R̂(q)
T (b̂T )− R̃(q)(bξT )

}
p→ 0.

(b) limm→∞ limT →∞ MSEm(R̂(q)
T (b̂T ); R(q)

ξ ,T 2r/(2q+2r+1))

= limm→∞ limT →∞ MSEm(R̃(q)(bξT ); R(q)
ξ ,T 2r/(2q+2r+1))

= limT →∞ MSE(R̃(q)(bξT ); R(q)
ξ ,T 2r/(2q+2r+1)).

THEOREM 4. If Assumptions A1–A7 hold and S2q+1
ξT

/
T → γξ = qk2

q

(
R(q)

ξ

)2/
∫ ∞
−∞ k2(x)dx with

∣∣∣R(q)
ξ

∣∣∣ ∈ (0,∞), then

(a) T q/(2q+1)
(
w′

T �̂wT −w′�̃w
)

p→ 0.

(b) limm→∞ limT →∞ MSEm(�̂; �,T 2q/(2q+1))

= limm→∞ limT →∞ MSEm(�̃; �,T 2q/(2q+1))

= limT →∞ MSE(�̃; �,T 2q/(2q+1)).

From a practical point of view, it is interesting to know what happens to the
automatic two-stage plug-in bandwidth if the process {gt } is serially uncorrelated.
The next lemma shows that even in the absence of serial dependence in {gt }, the
consistency results still hold.

LEMMA 3. Suppose that �g( j) = 0,∀ j �= 0. If Assumptions A1–A7 hold, then

R̂(q)(b̂T )
p→ R(q)

ξ and �̂
p→ �.

Lemma 3 does not consider a random weighting scheme; for the consistency
of R̂(q)(b̂T ) and �̂, Assumption A6(b) should be replaced by the fairly stringent

condition T 1/2 (wT −w)
p→ 0.
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3. MONTE CARLO RESULTS

3.1. Experiment A: Accuracy of LRV Estimates

This experiment investigates the accuracy of LRV estimates using the SP band-
width estimator. The data generating processes (DGPs) are univariate ARMA(1,1)
and MA(2) models. These models are often used for Monte Carlo experiments in
time series analysis. The parameter settings are given below. In all experiments,
the sample size and the number of replications are 128 and 2,000, respectively.

ARMA(1,1): xt = ρxt−1 + εt +ψεt−1, εt
iid
∼ N (0,1), ρ,ψ ∈ {0,±.5,±.9} ,

ρ +ψ �= 0.

MA(2): xt = εt +ψ1εt−1 +ψ2εt−2, εt
iid
∼ N (0,1),

(ψ1,ψ2) = (−1.9, .95) , (−1.3, .5) , (−1.0, .2) , (.67, .33),

(0,−.9) , (0, .9), (−1.0, .9).

LRV estimates are calculated by the following nine estimators: (i) the QS
estimator with AR(1) referenced by Andrews (1991) (QS-AR); (ii) the Bartlett
estimator by Newey and West (1994) with the bandwidth for the normalized cur-
vature estimator set equal to

[
4(T/100)2/9] (BT-NW); (iii) the Bartlett estima-

tor with AR(1) reference (BT-AR); (iv) the Bartlett two-stage plug-in estimator,
where C(1) in b∗

T is estimated by AR(1) reference (BT-2P); (v) the Bartlett SP
estimator (BT-SP); (vi) the Parzen estimator with AR(1) reference (PZ-AR); (vii)
the Parzen two-stage plug-in estimator, where C (2) in b∗

T is estimated by AR(1)
reference (PZ-2P); (viii) the Parzen SP estimator (PZ-SP); and (xi) the truncated
estimator with AR(1) reference suggested by Andrews (1991, fn. 5, p. 834) (TR-
AR). Estimators (i)–(ii) are widely applied in empirical work, while (iii)–(iv) and
(vi)–(vii) are calculated as the benchmarks for two corresponding SP estimators.
Unlike the other estimators, estimator (xi) does not necessarily yield nonnegative
LRV estimates in finite samples. In case of a negative estimate, the bandwidth is
shortened until the resulting estimate becomes positive. The root mean squared
error (RMSE) is chosen as the performance criterion, whereas bias is reported for
convenience. To avoid obtaining extraordinarily large RMSEs, the least squares
estimate of the AR(1) coefficient φ̂ is adjusted to be less than .95 in modulus.

Tables 2 and 3 present the Monte Carlo results for ARMA(1,1) and MA(2)
models, respectively. The RMSEs and the biases (in parentheses) of LRV esti-
mates are reported in the first and second rows of a given DGP. For convenience,
� (the true value of LRV) is also provided. The main findings can be summarized
as follows:

• So long as the AR(1) reference correctly specifies the underlying process,
QS-AR performs best. However, for DGPs with MA terms (MA(2) mod-
els, in particular) the performance of QS-AR tends to be dominated by SP
estimators.
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• Since the SP estimators are designed to limit the influence of the AR(1)
reference, they do not perform well for AR(1) models. Once MA terms
are introduced, they appear reliable in the sense that they often substantially
reduce RMSEs, compared with their corresponding AR(1) reference-based
and 2P estimators.

• BT-SP performs best in the presence of moderate positive serial dependence.
Even in the presence of negative serial dependence, it often outperforms
QS-AR, while the latter still exhibits advantages for the DGPs with domi-
nating AR coefficients such as ARMA(1,1) with (ρ,ψ) = (−.9, .5). BT-SP
tends to improve its RMSE mainly by reducing the variance, and as a result
it possesses a large bias even in the case in which it has a smaller RMSE
than QS-AR; see ARMA(1,1) with (ρ,ψ) = (0, .9), (.5, .5) and MA(2) with
(ψ1,ψ2) = (.67, .33), for example. The issue of large bias is remarkable
particularly for highly persistent DGPs.

• PZ-SP performs best in the presence of negative serial dependence. How-
ever, in the presence of positive serial dependence, it often has a large RMSE
and tends to be outperformed by QS-AR.

• Because of its way of estimating normalized curvature, BT-NW is
expected to work well for MA models. It indeed performs best for some
MA(2) models, but its overall performance does not exceed QS-AR or SP
estimators.

• Due to the issue of negative estimates in the presence of strong negative
serial dependence, TR-AR performs extremely poorly for such DGPs. On
the other hand, it sometimes performs best with respect to both RMSE and
bias for the DGPs with positive serial dependence.

The results indicate that although no dominant estimator is found, SP estimators
can yield more accurate LRV estimates for a wide variety of DGPs that cannot be
well approximated by AR(1) models. Therefore, the next experiment focuses
only on SP estimators.

3.2. Experiment B: Size Properties of Test Statistic

Although the SP rule is primarily motivated by improved LRV estimation, it is
also of interest whether the SP bandwidth estimator can be applied as a useful
tool for inference. Then, following West (1997), this experiment investigates the
size properties of a test statistic based on the linear regression yt = θ1 + θ2x2t +
θ3x3t + θ4x4t + θ5x5t +ut ≡ x′

tθ +ut , x1t ≡ 1, t = 1, . . . ,T . Without loss of gen-
erality the true parameter value θ is set equal to zero. The parameter is estimated
by OLS, and thus the asymptotic covariance matrix of the OLS estimator θ̂ is
calculated as

V̂ ≡
(

1

T

T

∑
t=1

xt x′
t

)−1

(estimate of �)

(
1

T

T

∑
t=1

xt x′
t

)−1

.
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The test statistic of interest is the Wald statistic of the first slope coefficient

T θ̂2
2 /V̂22

d→ χ2
1 under H0 : θ2 = 0. In all experiments, the sample size and the

number of replications are 128 and 2,000, respectively. The regressors follow in-
dependent AR(1) processes with a common AR parameter φ, i.e., xit = φ xit−1 +
eit , i = 2, . . . ,5, where φ = .5 or .9. The variance of the i.i.d. normal random
variable {eit } is chosen so that {xit } has a unit variance. The error term {ut } in-
dependently follows one of the time series models used in Experiment A or the
AR(2) model ut = 1.6ut−1 − .9ut−2 +vt . An important difference between the er-
ror term and the regressors is that since the innovation in each DGP of {ut } follows

vt
iid∼ N (0,1), the variance of {ut } varies across models. The Wald statistics are

calculated based on five estimators, namely, QS-AR, BT-NW, BT-SP, PZ-SP, and
TR-AR. To check whether the size properties can be improved by prewhitening
(Andrews and Monahan, 1992), both nonprewhitened and prewhitened versions
are investigated for all estimators except TR-AR. The procedure of prewhitening
follows Andrews and Monahan (1992), with the eigenvalues of the fitted VAR(1)
coefficient matrix adjusted to be less than .97 in modulus. The weighting matrix
for QS-AR and TR-AR is a diagonal that assigns zero to the element correspond-
ing to the cross-product of the intercept and the error term and one otherwise, as
suggested in Andrews (1991). The same rule applies to the weighting vector for
the other estimators.

Tables 4 (φ = .5) and 5 (φ = .9) report finite sample rejection frequencies at
the 5% nominal size. The main findings can be summarized as follows:

• Table 4 shows that the performance of each of the three nonprewhitened
estimators (QS-AR, BT-SP and PZ-SP) is similar and satisfactory in general.
Although overrejections are observed in the presence of positive serial de-
pendence (and they are sometimes considerable for BT-SP), they are sub-
stantially reduced by prewhitening. The size properties of the three
prewhitened estimators are comparable.

• Table 5 indicates that QS-AR sometimes yields an erratic test statistic. As
reported in West (1997), it often rejects the null too infrequently in the pres-
ence of strong negative serial dependence, and it appears that prewhiten-
ing does not improve the size properties; see ARMA(1,1) with (ρ,ψ) =
(0,−.9), (.5,−.9) and MA(2) with (ψ1,ψ2) = (0,−.9). Moreover, there are
cases in which prewhitening makes the performance of PZ-SP worse; see
ARMA(1,1) with (ρ,ψ) = (0,−.9), (0,−.5) and MA(2) with (ψ1,ψ2) =
(−1.9, .95), (−1.3, .5), (−1.0, .2). In contrast, BT-SP tends to be less
sensitive to prewhitening for the same DGPs. It could be the case that
the second-order spectral density derivative estimator (and thus second-order
normalized curvature estimator) appears to be more sensitive to prewhiten-
ing than the first-order one.

• Overall nonprewhitened BT-NW tends to exhibit overrejections of the null,
and prewhitening does not necessarily help to reduce them substantially.
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• Again, as reported in West (1997), TR-AR often yields a test statistic that is
too small in the presence of negative serial dependence. Its performance in
the presence of positive serial dependence is in general better than
nonprewhitened QS-AR but worse than prewhitened QS-AR, BT-SP, and
PZ-SP.

• Table 5 indicates that there are cases in which prewhitening does not work
well for inference. For MA(2) with (ψ1,ψ2) = (0, .9), prewhitening wors-
ens the size properties of QS-AR and BT-SP. For MA(2) with (ψ1,ψ2) =
(−1.0, .9) and AR(2) with (ρ1,ρ2) = (1.6,−.9), the nonprewhitened Wald
statistic based on BT-SP shows satisfactory performance. Prewhitening wors-
ens the size properties of the Bartlett-based estimator in the MA(2) case,
and it makes the QS- and Bartlett-based estimators underreject in the AR(2)
case. The spectral densities of the three DGPs have a peak or trough at a
nonzero frequency. A lesson that can be drawn from this experience is that
prewhitening may adversely affect the performance of test statistics when
DGPs have such nasty spectral densities.

4. CONCLUSION

This paper develops a new method for bandwidth selection in HAC estimation.
The proposed two-stage plug-in bandwidth selection is inspired by a well-known
bandwidth choice rule in the literature of probability density estimation. The key
idea is to estimate normalized curvature using a general class of kernels and then
derive the AMSE-optimal bandwidth for the normalized curvature estimator. It
is demonstrated that the optimal bandwidth should diverge at a slower rate than
that of the HAC estimator using the same kernel. The SP rule, an implementa-
tion method for the AMSE-optimal bandwidth selection for the HAC estimator,
is also developed. The Monte Carlo results indicate that for a variety of DGPs,
the HAC estimator based on the SP rule can estimate LRV more accurately than
the QS estimator by Andrews (1991) or the Bartlett estimator by Newey and West
(1994). The test statistic constructed from the SP-HAC variance estimator has
size properties that are comparable with the QS-based test statistic, and better in
general than the test statistic based on the Bartlett estimator.

NOTES

1. In the approximation to the MSE of the HAC estimator, it is convenient to reduce the problem
to a scalar one using some weighting vector, as in Newey and West (1994).

2. Deriving only the range of divergence rates of bT for the consistency of the HAC estimator is
not sufficient for constructing an analog to the Sheather and Jones (1991) rule.

3. The “solve-the-equation” approach originally comes from Park and Marron (1990).
4. The following definition comes from the suggestion in Park and Marron (1990). In line with this

definition, a recommended root search algorithm is the grid search starting from some large positive
number. GAUSS codes for SP bandwidth estimators using the Bartlett and Parzen kernels are available
on the author’s web page.
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5. The rest of this section and Section 3 (Monte Carlo Results) exclusively consider the case in
which the same kernel is employed twice.
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APPENDIX A: Assumptions

All the assumptions that establish the theorems are given below. Assumption A1 and A2
refer to the properties of the first- and second-stage kernels. Although these appear restric-
tive, every K1 class kernel (Andrews, 1991) with bounded support and a finite character-
istic exponent greater than 1/2 (including the Bartlett and Parzen kernels) satisfies these
conditions. Note that infinite-order kernels such as the truncated and flat-top kernels do not
satisfy Assumption A1 or A2. The conditions

∫∞
0 |x |2q l̄(x)dx < ∞ and

∫∞
0 k̄(x)dx < ∞

in Assumptions A1(a) and A2(a) ensure that certain Riemann-type sums defined in terms
of kernels l(·) and k(·) converge to their integral representation counterparts; see Jansson
(2002, p. 1451) for discussion. Assumptions A4(a) and A4(b) are the same as Assumption
2 in Newey and West (1994). Assumption A4(c) is also standard for spectral density esti-
mation. As discussed in Andrews (1991), Assumption A6(a) implies that the right-hand
side of (8) is L1+δ-bounded for some δ > 0. Without this assumption, it would be L1-
bounded, which would not suffice to establish the first-order equivalences of MSEs in The-
orems 2, 3, and 4. Assumption A6(b) is required only when a random weighting scheme
is applied.
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Assumption A1. The first-stage kernel l(·) satisfies the following conditions:

(a) l : R→ [−1,1], l(0) = 1, l(x) = l(−x),∀x ∈ R, l(·) is continuous at 0 and almost
everywhere, the characteristic exponent r ∈ (1/2,∞), for a given characteristic ex-
ponent of the second-stage kernel q, supx≥0 |x |q |l(x)| < ∞ and

∫∞
0 |x |2q l̄(x)dx <

∞ where l̄(x) = supy≥x |l(y)|.
(b) |l(x)− l(y)| ≤ c|x − y| for some c, ∀x, y ∈ R.

(c) For a given characteristic exponent of the second-stage kernel q, |l(x)| ≤ c|x |−b1

for some c and for some b1 > q +1+ (q +2)/{2(q + r)}.
(d) l(x) has [r ] + 1 continuous, bounded derivatives on

[
0, x̄1

]
for some x̄1 > 0, with

the derivatives at x = 0 evaluated as x → 0+.

Assumption A2. The second-stage kernel k(·) satisfies the following conditions:

(a) k :R→ [−1,1], k(0) = 1, k(x) = k(−x),∀x ∈R, k(·) is continuous at 0 and almost

everywhere, the characteristic exponent q ∈
((

−1+√
5
)

/4,∞
)

, and
∫∞

0 k̄(x)dx<

∞ where k̄(x) = supy≥x |k(y)|.
(b) |k(x)− k(y)| ≤ c|x − y| for some c,∀x, y ∈ R.

(c) For a given characteristic exponent of the first-stage kernel r , |k(x)| ≤ c|x |−b2

for some c and for some b2 > 1 + (2q + 2r + 1)/{q(2r −1)−1/2}, provided that
q(2r −1) > 1/2.

(d) k(x) has [q]+1 continuous, bounded derivatives on
[
0, x̄2

]
for some x̄2 > 0, with

the derivatives at x = 0 evaluated as x → 0+.

Assumption A3.

(a) The first-stage bandwidth bT satisfies 1
/

bT + bmax{1,r}
T

/
T + b2q+1

T

/
T → 0 as

T → ∞.

(b) The second-stage bandwidth ST satisfies 1
/

ST + Smax{1,q}
T

/
T → 0 as T → ∞.

Assumption A4.

(a) g(z,θ) is twice continuously differentiable with respect to θ in a neighborhood N0
of θ0 with probability 1.

(b) Let gt (θ) ≡ g(zt ,θ), gtθ (θ) ≡ ∂g(zt ,θ)′/∂θ , and gitθθ (θ) ≡ ∂2gi (zt ,θ)/
∂θ∂θ ′, where gi (·, ·) is the i th component of g(·, ·). Then, there exist a mea-
surable function ϕ(z) and some constant K > 0 such that supθ∈N0

‖gt (θ)‖
< ϕ(z), supθ∈N0

‖gtθ (θ)‖ < ϕ(z), supθ∈N0
‖gitθθ (θ)‖ < ϕ(z), i = 1, . . . ,s, and

E{ϕ2(z)} < K .

(c) Let vt ≡
(
gt (θ0)′,vec(gtθ (θ0)−E(gtθ (θ0)))′

)′=(
g′

t ,vec(gtθ (θ0)−E(gtθ (θ0)))′
)′.

Also let �v( j) and κv,abcd (·, ·, ·) be the j th-order autocovariance of the process
{vt } and the fourth-order cumulant of (va,t ,vb,t+ j ,vc,t+ j+l ,vd,t+ j+l+n), where
vi,t is the i th element of vt . Then, {vt } is a zero-mean, fourth-order stationary
sequence that satisfies ∑∞

j=−∞ | j |q+max{1,r} ‖�v( j)‖ < ∞ and ∑∞
j=−∞ ∑∞

l=−∞
∑∞

n=−∞
∣∣κv,abcd ( j, l,n)

∣∣ < ∞,∀a,b,c,d ≤ s + ps.

Assumption A5. T 1/2
(
θ̂ − θ0

)
= Op(1).
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Assumption A6.

(a) The process {gt } is eighth-order stationary with ∑∞
j1=−∞ ·· ·∑∞

j7 =−∞ |κg,a1...a8
( j1, . . . , j7)| < ∞,∀a1, . . . ,a8 ≤ s, where κg,a1...a8( j1, . . . , j7) is the cumulant of(
ga1,0,ga2, j1 , . . . ,ga8, j7

)
and gi,t is the i th element of gt .

(b) The random weighting vector wT satisfies either T q/(2q+1) (wT −w)
p→ 0 for

r ≤ q(2q +1), or T r/(2q+2r+1) (wT −w)
p→ 0 for r > q(2q +1).

Assumption A7. T 1/2
(
ξ̂ − ξ

)
= Op(1).

APPENDIX B: Proofs

Proof of Lemma 1. The proof closely follows that of Theorem 10 in Chapter V of

Hannan (1970). Using E
(
�̃h( j)

)
= (1−| j |/T )�h( j), j ∈ {0,±1, . . . ,±(T −1)}, gives

br
T

{
E
(

s̃(q)
)

− s(q)
}

= br
T

T −1

∑
j=−(T −1)

{
l

(
j

bT

)
−1

}
| j |q�h( j)−br

T

T −1

∑
j=−(T −1)

l

(
j

bT

)
| j |q | j |

T
�h( j)

−br
T

∞
∑

| j |≥T
| j |q �h( j)

≡ B1 − B2 − B3.

Now,

B1 = −
T −1

∑
j=−(T −1)

{
1− l( j/bT )

| j/bT |r
}

| j |q+r �h( j) → −lr
∞
∑

j=−∞
| j |q+r �h( j) = −lr s(q+r).

On the other hand,

|B2| ≤ br
T

T

T −1

∑
j=−(T −1)

∣∣∣∣l
(

j

bT

)∣∣∣∣ | j |q+1 |�h( j)|

≤
⎧⎨
⎩
(
br

T /T
)

∑∞
j=−∞ | j |q+r |�h( j)| → 0 for r ≥ 1(

br
T /T

)
∑∞

j=−∞ | j |q+1 |�h( j)| → 0 for r < 1
.

Also by bT ≤ T for an arbitrarily large T ,

|B3| ≤ 2
∞
∑

j=T
| j |q+r |�h( j)| → 0,

which establishes the first approximation.
Assumption A4(c) implies that ∑∞

j=−∞ | j |max{1,r} |�h( j)| < ∞. Then the second
approximation is immediately established if this condition is used for the term corre-
sponding to B2. n
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Proof of Lemma 2. The proof closely follows that of Theorem 9 in Chapter V of
Hannan (1970). The result in Hannan (1970, p. 313) gives

TCov
(
�̃h(i), �̃h( j)

)

=
∞
∑

u=−∞
{�h(u)�h(u + i− j)+�h(u + i)�h(u− j)+κh(i,u,u + j)}ϕT (u, i, j),

(B.1)

where κh(·, ·, ·) is the fourth-order cumulant generated by the process {ht }, and ϕT (u, i, j)
is defined for i ≥ j by

ϕT (u, i, j) =

⎧⎪⎪⎨
⎪⎪⎩

0 if u ≤ −T + i ; 1− (i −u)/T if − T + i ≤ u ≤ 0;
1− i/T if 0 ≤ u ≤ i − j ; 1− ( j +u)/T if i − j ≤ u ≤ T − j ;
0 if T − j ≤ u.

Hence,

T

b2q+1
T

Var(s̃(q))

= 1

bT

T −1

∑
i=−(T −1)

T −1

∑
j=−(T −1)

∣∣∣∣ i

bT

∣∣∣∣q
∣∣∣∣ j

bT

∣∣∣∣q l

(
i

bT

)
l

(
j

bT

) ∞
∑

u=−∞
�h(u)�h(u + i − j)ϕT (u, i, j)

+ 1

bT

T −1

∑
i=−(T −1)

T −1

∑
j=−(T −1)

∣∣∣∣ i

bT

∣∣∣∣q
∣∣∣∣ j

bT

∣∣∣∣q l

(
i

bT

)
l

(
j

bT

) ∞
∑

u=−∞
�h(u + i)�h(u − j)ϕT (u, i, j)

+ 1

bT

T −1

∑
i=−(T −1)

T −1

∑
j=−(T −1)

∣∣∣∣ i

bT

∣∣∣∣q
∣∣∣∣ j

bT

∣∣∣∣q l

(
i

bT

)
l

(
j

bT

) ∞
∑

u=−∞
κh(i,u,u + j)ϕT (u, i, j)

≡ V1 + V2 + V3.

Let v ≡ i − j . Then, V1 can be rewritten as

V1 =
2(T −1)

∑
v=−2(T −1)

∞
∑

u=−∞
�h(u)�h(u + v)

×
{

1

bT
∑
j

ϕT (u, j + v, j)

∣∣∣∣ j

bT

∣∣∣∣q l

(
j

bT

)∣∣∣∣ j + v

bT

∣∣∣∣q l

(
j + v

bT

)}
,

where the summation over j runs only for {j : | j | ≤ T −1, | j + v| ≤ T −1}. Picking trim-

ming functions mT = O
(

b1−ε
T

)
for some ε ∈ (0,1) and MT = O

(
b1+η

T

)
for some

η ∈ (0,ε/(2q +1)), we can show that

V1 ∼
{

∑
|u|≤mT

�h(u)

}2{
1

bT
∑

| j |≤MT

∣∣∣∣ j

bT

∣∣∣∣2q
l2
(

j

bT

)}
→

(
s(0)

)2∫ ∞
−∞

|x |2ql2 (x)dx<∞.



TWO-STAGE PLUG-IN BANDWIDTH SELECTION 733

(A detailed argument is available on the author’s web page.) Similarly, we have V2 →(
s(0)

)2 ∫∞−∞ |x |2ql2 (x) dx. Lastly, by Assumptions A1(a) and A4(c),

|V3| ≤ 1

bT

(
sup
x≥0

|x |q |l(x)|
)2 ∞

∑
i=−∞

∞
∑

u=−∞

∞
∑

v=−∞
|κh(i,u,v)| → 0,

which establishes the first approximation. The second approximation is a standard result
of spectral density estimation. The third approximation can be shown by recognizing that∫∞−∞ |x |q l2(x)dx < ∞ by Assumption A1(a). n

Proof of Theorem 2.
Part (a): On the right-hand side of

T r/(2q+2r+1)
{

R̂(q)
T (bT )− R̃(q)(bT )

}

= T r/(2q+2r+1)
{

R̂(q)
T (bT )− R̂(q)(bT )

}
+ T r/(2q+2r+1)

{
R̂(q)(bT )− R̃(q)(bT )

}
,

the first term is op(1) by Assumption A6(b). Hence, we need to show that the second

term is op(1). Taking the first-order Taylor expansion of R̂(q)(bT ) around
(
ŝ
(

q
)
, ŝ(0)

)′ =(
s̃(q), s̃(0)

)′ gives R̂(q)(bT)= R̃(q)(bT )+ δ̃′
T ĥT +‖ĥT ‖op(1), where δ̃T =(

1/s̃(0),−s̃(q)/(
s̃(0)

)2)′ and ĥT = (
ŝ(q) − s̃(q), ŝ(0) − s̃(0)

)′. Then we only need to show that

T r/(2q+2r+1)
{

ŝ(n) − s̃(n)
} p→ 0, n = 0,q. (B.2)

Taking the second-order Taylor expansion of ĥt = w′ ĝt = w′g
(
zt , θ̂

)
around θ̂ = θ0

gives

ĥt = ht + ∂ht

∂θ ′
∣∣∣∣
θ=θ0

(
θ̂ − θ0

)
+ 1

2

(
θ̂ − θ0

)′ ∂2ht

∂θ∂θ ′

∣∣∣∣∣
θ=θ̄

(
θ̂ − θ0

)

≡ ht +htθ

(
θ̂ − θ0

)
+ 1

2

(
θ̂ − θ0

)′
h̄tθθ

(
θ̂ − θ0

)
for some θ̄ joining θ̂ and θ0. Then,

ĥt ĥt− j

= ht ht− j +{
ht− j (htθ −E(htθ ))+ht

(
ht− jθ −E(htθ )

)}(
θ̂ − θ0

)
+ (

ht− j +ht
)

×E(htθ )
(
θ̂ − θ0

)
+
(
θ̂ − θ0

)′(
h′

tθ ht− jθ + 1

2
ht− j h̄tθθ + 1

2
ht h̄t− jθθ

)(
θ̂ − θ0

)

+ 1

2

{
htθ

(
θ̂ − θ0

)((
θ̂ − θ0

)′
h̄t− jθθ

(
θ̂ − θ0

))
+ht− jθ

(
θ̂ − θ0

)

×
((

θ̂ − θ0

)′
h̄tθθ

(
θ̂ − θ0

))}
+ 1

4

{(
θ̂ − θ0

)′
h̄tθθ

(
θ̂ − θ0

)}

×
{(

θ̂ − θ0

)′
h̄t− jθθ

(
θ̂ − θ0

)}
.
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Hence, we can rewrite T r/(2q+2r+1)
{

ŝ(n) − s̃(n)
}

≡ ∑6
i=1 Di , where

D1 = T r/(2q+2r+1)0n
{
�̂h(0)− �̃h(0)

}
,

D2 = 2T r/(2q+2r+1)
T −1

∑
j=1

l

(
j

bT

)
jn

×
{

1

T

T

∑
t= j+1

(
ht− j (htθ −E(htθ ))+ht

(
ht− jθ −E(htθ )

))}(
θ̂ − θ0

)
,

D3 = 2T r/(2q+2r+1)
T −1

∑
j=1

l

(
j

bT

)
jn

{
1

T

T

∑
t= j+1

(
ht− j +ht

)}
E(htθ )

(
θ̂ − θ0

)
,

D4 = 2T r/(2q+2r+1)
(
θ̂ − θ0

)′ T −1

∑
j=1

l

(
j

bT

)
jn

×
{

1

T

T

∑
t= j+1

(
h′

tθ ht− jθ + 1

2
ht− j h̄tθθ + 1

2
ht h̄t− jθθ

)}(
θ̂ − θ0

)
,

D5 = 2T r/(2q+2r+1)
(

1

2

)T −1

∑
j=1

l

(
j

bT

)
jn

×
{

1

T

T

∑
t= j+1

htθ

(
θ̂ − θ0

)((
θ̂ − θ0

)′
h̄t− jθθ

(
θ̂ − θ0

))

+ht− jθ

(
θ̂− θ0

)((
θ̂ − θ0

)′
h̄tθθ

(
θ̂ − θ0

))}(
θ̂ − θ0

)
,

D6 = 2T r/(2q+2r+1)
(

1

4

)T −1

∑
j=1

l

(
j

bT

)
jn

{
1

T

T

∑
t= j+1

((
θ̂ − θ0

)′
h̄tθθ

(
θ̂ − θ0

))

×
((

θ̂ − θ0

)′
h̄t− jθθ

(
θ̂ − θ0

))}
.

D1 = op(1) is obvious. Since

D2 = T −(2q+1)/2(2q+2r+1)2
T −1

∑
j=1

l

(
j

bT

)
jn

×
{

1

T

T

∑
t= j+1

(
ht− j (htθ −E(htθ ))+ht

(
ht− jθ −E(htθ )

))}{
T 1/2

(
θ̂ − θ0

)}

≡ T −(2q+1)/{2(2q+2r+1)} R2

{
T 1/2(θ̂ − θ0

)}
,
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we only need to show that R2 = Op(1) to establish D2 = op(1). R2 is further rewritten as

R2 = 2
T −1

∑
j=1

l

(
j

bT

)
jn

{
1

T

T

∑
t= j+1

ht− j (htθ −E(htθ ))

}

+2
T −1

∑
j=1

l

(
j

bT

)
jn

{
1

T

T

∑
t= j+1

ht
(
ht− jθ −E(htθ )

)}

≡ 2R21 +2R22.

Since E
{

ht− j (htθ −E(htθ ))
}

and E
{

ht
(
ht− jθ −E(htθ )

)}
are autocovariances, the

same arguments apply as in the proofs of Lemmas 1 and 2. Then, R21 and R22 can be
shown to converge in mean square and thus in probability to R∗

21 ≡ ∑∞
j=1 jnE

{
ht− j (htθ −

E(htθ ))
}

and R∗
22 ≡ ∑∞

j=1 jnE
{

ht
(
ht− jθ −E (htθ )

)}
, respectively, where R∗

21 and R∗
22

are both bounded by Assumption A4(c). Hence, R2 = Op(1).
D3 can be rewritten as

D3 = T −(2q+1)/(2(2q+2r+1))

{
2

T −1

∑
j=1

l

(
j

bT

)
jn

(
1

T

T

∑
t= j+1

(
ht− j +ht

))}
E(htθ )

×
{

T 1/2
(
θ̂ − θ0

)}

≡ T −(2q+1)/{2(2q+2r+1)} R3

{
E(htθ )T 1/2

(
θ̂ − θ0

)}
.

To establish D3 = op(1), we only need to show that R3 = op(1). We can see, for example,
that

2
T −1

∑
j=1

l

(
j

bT

)
jn

(
1

T

T

∑
t= j+1

ht

)
= op(1)+2

T −1

∑
j=1

l

(
j

bT

)
jn

(
1

T

T

∑
t=1

ht

)

= Op

(
T −1/2

T −1

∑
j=1

l

(
j

bT

)
jn

)
,

where

2

bq+1
T

∣∣∣∣∣
T −1

∑
j=1

l

(
j

bT

)
jn

∣∣∣∣∣ ≤ 1

bT

T −1

∑
j=−(T −1)

∣∣∣∣l
(

j

bT

)∣∣∣∣
∣∣∣∣ j

bT

∣∣∣∣q →
∫ ∞
−∞

|x |q |l(x)|dx < ∞

by Assumption A1(a). It follows from bT = O
(

T 1/(2q+2r+1)
)

and r > 1/2 that R3 =
Op

(
T −1/2bq+1

T

)
= op(1). A similar argument can also establish that each of D4, D5,

and D6 is at most op(1). Therefore, (B.2) is shown.
Part (b): The proof directly follows the proof of Theorem 1(c) in Andrews (1991). n

Proof of Theorem 3.
Part (a): By Assumption A6(b) we only need to show that T r/(2q+2r+1){R̂(q)(b̂T ) −

R̃(q)(bξT )} p→ 0. Taking the first-order Taylor expansion of R̂(q)(b̂T ) around
(
ŝ(q)

(
b̂T

)
,
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ŝ(0)
(
b̂T

)) = (
s̃(q)(bξT ), s̃(0)(bξT )

)′ gives R̂(q)(b̂T ) = R̃(q)(bξT ) + δ̃δδ
′
ξT ĥξT + ‖ĥξT ‖

×op(1), where δ̃δδξT =
(

1/s̃(0)(bξT ),−s̃(q)(bξT )/
(

s̃(0)(bξT )
)2

)′
and ĥξT = (

ŝ(q)
(
b̂T

)−
s̃(q)(bξT ), ŝ(0)

(
b̂T

)− s̃(0)(bξT )
)′. Then, we need to demonstrate that

T r/(2q+2r+1)
{

ŝ(n)
(

b̂T

)
− s̃(n)(bξT )

} p→ 0, n = 0,q. (B.3)

Observe that

T r/(2q+2r+1)
{

ŝ(n)
(

b̂T

)
− s̃(n)(bξT )

}

= T r/(2q+2r+1)
T −1

∑
j=−(T −1)

{
l

(
j

b̂T

)
− l

(
j

bξT

)}
| j |n

{
�̃h( j)−E

(
�̃h( j)

)}

+ T r/(2q+2r+1)
T −1

∑
j=−(T −1)

{
l

(
j

b̂T

)
− l

(
j

bξT

)}
| j |nE

(
�̃h( j)

)

+ T r/(2q+2r+1)
T −1

∑
j=−(T −1)

l

(
j

b̂T

)
| j |n

{
�̂h( j)− �̃h( j)

}

≡ H1 + H2 + H3.

First, we establish H1 = op(1). By Assumption A1(c) we can pick some η ∈ (
1 + 1/{

2
(
b1 − q − 1

)}
,2 + (

r − 2
)
/
(
q + 2

))
. For such η, let an integer m1 be m1 ≡

[
bη
ξT

]
.

Then,

H1 = 2T r/(2q+2r+1)
m1

∑
j=1

{
l

(
j

b̂T

)
− l

(
j

bξT

)}
jn

{
�̃h( j)−E

(
�̃h( j)

)}

+2T r/(2q+2r+1)
T −1

∑
j=m1+1

l

(
j

b̂T

)
jn

{
�̃h( j)−E

(
�̃h( j)

)}

−2T r/(2q+2r+1)
T −1

∑
j=m1+1

l

(
j

bξT

)
jn

{
�̃h( j)−E

(
�̃h( j)

)}

≡ 2H11 +2H12 −2H13.

By Assumption A1(b),

|H11| ≤ cT r/(2q+2r+1)
m1

∑
j=1

∣∣∣∣∣∣∣
j(

β̂T
)1/(2q+2r+1)

− j(
βξ T

)1/(2q+2r+1)

∣∣∣∣∣∣∣ jq

×
∣∣∣�̃h( j)−E

(
�̃h( j)

)∣∣∣
= cT 1/2

∣∣∣∣(Ĉ2(q,r)
)1/(2q+2r+1) −

(
C2

ξ (q,r)
)1/(2q+2r+1)

∣∣∣∣
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×
(

Ĉ2(q,r)C2
ξ (q,r)

)−1/(2q+2r+1)
T (r−1)/(2q+2r+1)−1

×
m1

∑
j=1

jq+1
{

T 1/2
∣∣∣�̃h( j)−E

(
�̃h( j)

)∣∣∣} .

Now, T 1/2
∣∣∣∣(Ĉ2(q,r)

)1/(2q+2r+1) −
(

C2
ξ (q,r)

)1/(2q+2r+1)
∣∣∣∣ = Op(1) and Ĉ2(q,r)

p→
C2

ξ (q,r) ∈ (0,∞) by Assumption A7 and the delta method. By (B.1), |ϕT (·, ·, ·)| ≤ 1,
and Assumption A4(c), we can find a constant M (which depends on neither j nor T )
such that Var

(
T 1/2�̃h( j)

) ≤ M . (As a referee points out, the upper bound M can be
made to decrease with j under certain conditions. While decaying the upper bound is
beyond the scope of our analysis at this moment, it would immediately open a road to
refining the results here and obtaining better conditions.). It follows from ∑m1

j=1 jq+1 =
O(T η(q+2)/(2q+2r+1)) and η < 2 + (r −2)/(q +2) that T (r−1)/(2q+2r+1)−1 ∑m1

j=1

jq+1 = o(1), and as a result we have H11 = op(1) by Markov’s inequality. Next, by
Assumption A1(c),

|H12| ≤ cT r/(2q+2r+1)
T −1

∑
j=m1+1

⎛
⎜⎝ j(

β̂T
)1/(2q+2r+1)

⎞
⎟⎠

−b1

jq
∣∣∣�̃h( j)−E

(
�̃h( j)

)∣∣∣

= c
(

Ĉ2(q,r)
)b1/(2q+2r+1)

T (r+b1)/(2q+2r+1)−1/2

×
T −1

∑
j=m1+1

jq−b1
{

T 1/2
∣∣∣�̃h( j)−E

(
�̃h( j)

)∣∣∣} .

Obviously, H12 = op(1) if H ′
12 ≡ T (r+b1)/(2q+2r+1)−1/2 ∑T −1

j=m1+1 jq−b1
{
T 1/2

∣∣�̃h( j)−
E
(
�̃h( j)

)∣∣}=op(1). Assumption A1(c) implies that b1 −q > 1, and thus ∑T −1
j=m1+1 jq−b1

= O
(
T η(q+1−b1)/(2q+2r+1)

)
. It follows from η > 1 + 1/{2(b1 −q −1)} that

T (r+b1)/(2q+2r+1)−1/2 ∑T −1
j=m1+1 jq−b1 = o(1). Then, H ′

12 = op(1) follows from

Var
(
T 1/2�̃h( j)

) ≤ M and Markov’s inequality. Using a similar argument, we have
H13 = op(1), which establishes H1 = op(1).

Next, we demonstrate that H2 = op(1). Let x̂ j ≡ j/
(
β̂T

)1/(2q+2r+1). By Assumption
A1(d) and the definition of the characteristic exponent, for 0 ≤ x̂ j ≤ x̄1 the Taylor-
series expansion of l(x̂ j ) around x̂ j = 0 gives

l(x̂ j ) = 1+ l(1)(0)x̂ j +·· ·+ l([r ])(0)

[r ]!
x̂ [r ]

j + l([r ]+1)(x̄ j )

([r ]+1)!
x̂ [r ]+1

j

= 1+ l([r ])(0)

[r ]!
x̂ [r ]

j + l([r ]+1)(x̄ j )

([r ]+1)!
x̂ [r ]+1

j

for some x̄ j joining 0 and x̂ j . Similarly, let xξ j ≡ j/
(
βξ T

)1/(2q+2r+1). Then, for 0 ≤
xξ j ≤ x̄1,
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l(xξ j ) = 1+ l([r ])(0)

[r ]!
x [r ]
ξ j + l([r ]+1)(x̄ξ j )

([r ]+1)!
x [r ]+1
ξ j

for some x̄ξ j joining 0 and xξ j . Hence,

l(x̂ j )−l(xξ j ) = l([r ])(0)

[r ]!

(
x̂ [r ]

j − x [r ]
ξ j

)
+ l([r ]+1)(x̄ j )

([r ]+1)!
x̂ [r ]+1

j − l([r ]+1)(x̄ξ j )

([r ]+1)!
x [r ]+1
ξ j . (B.4)

Note that this expansion is valid for j ≤ J ≡ min
{

T − 1,
[
x̄1

(
β̂T

)1/(2q+2r+1)
]
,[

x̄1
(
βξ T

)1/(2q+2r+1)
]}

. For such J , H2 can be rewritten as

H2 = 2T r/(2q+2r+1)
J

∑
j=1

{
l

(
j

b̂T

)
− l

(
j

bξT

)}
jnE

(
�̃h( j)

)

+2T r/(2q+2r+1)
T −1

∑
j=J+1

l

(
j

b̂T

)
jnE

(
�̃h( j)

)

−2T r/(2q+2r+1)
T −1

∑
j=J+1

l

(
j

bξT

)
jnE

(
�̃h( j)

)

≡ 2H21 +2H22 −2H23.

Using (B.4), we can rewrite H21 as

H21 = T r/(2q+2r+1)
J

∑
j=1

l([r ])(0)

[r ]!

⎧⎨
⎩
(

j(
β̂T

)1/(2q+2r+1)

)[r ]

−
(

j(
βξ T

)1/(2q+2r+1)

)[r ]
⎫⎬
⎭

× jnE
(
�̃h( j)

)+ T r/(2q+2r+1)
J

∑
j=1

l([r ]+1)(x̄ j )

([r ]+1)!

(
j

(β̂T )1/(2q+2r+1)

)[r ]+1

× jnE
(
�̃h( j)

)− T r/(2q+2r+1)
J

∑
j=1

l([r ]+1)(x̄ξ j )

([r ]+1)!

×
(

j(
βξ T

)1/(2q+2r+1)

)[r ]+1

jnE
(
�̃h( j)

)

≡ H211 + H212 − H213.

If [r ] < r , then l([r ])(0) = 0 by the definition of the characteristic exponent, which trivially

yields H211 = op(1). If [r ] = r , then by
∣∣∣l(r)(0)

∣∣∣ < ∞ and
∣∣∣E(

�̃h( j)
)∣∣∣ ≤ |�h( j)|, it is
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easy to see that

|H211| ≤ c√
T

{
T 1/2

∣∣∣∣(Ĉ2(q,r)
)r/(2q+2r+1) −

(
C2

ξ (q,r)
)r/(2q+2r+1)

∣∣∣∣
}

×
(

Ĉ2(q,r)C2
ξ (q,r)

)−r/(2q+2r+1) J

∑
j=1

jq+r |�h( j)|

= Op(T −1/2) = op(1).

Next, H212 is bounded by

|H212| ≤ c
(

Ĉ2(q,r)
)−([r ]+1)/(2q+2r+1)

T (r−[r ]−1)/(2q+2r+1)
J

∑
j=1

j [r ]+q+1 |�h( j)|

≡ c
(

Ĉ2(q,r)
)−([r ]+1)/(2q+2r+1)

H ′
212.

We see that H212 = op(1) if H ′
212 = o (1). By ∑∞

j=1 jq+r |�h( j)| < ∞, we can pick some

δ > 1 such that |�h( j)| ≤ cj−(q+r+1+δ) ⇒ j [r ]+q+1 |�h( j)| ≤ cj [r ]−r−δ , where r −
[r ] ∈ [0,1) ⇒ [r ] − r − δ < −1. Then, ∑J

j=1 j [r ]+q+1 |�h( j)| < ∞ ⇒ H ′
212 =

O
(

T (r−[r ]−1)/(2q+2r+1)
)

= o(1). Similarly, we have H213 = op(1), and thus H21 =
op (1) is established. On the other hand, by Assumption A1(c),

|H22| ≤ cT r/(2q+2r+1)
T −1

∑
j=J+1

(
j(

β̂T
)1/(2q+2r+1)

)−b1

jq
∣∣∣E(

�̃h( j)
)∣∣∣

≤ c
(

Ĉ2(q,r)
)b1/(2q+2r+1)

T (r+b1)/(2q+2r+1)
T −1

∑
j=J+1

jq−b1
∣∣∣�̃h( j)

∣∣∣

≡ c
(

Ĉ2(q,r)
)b1/(2q+2r+1)

H ′
22.

Clearly, H22 = op(1) if H ′
22 = o (1). However, by ∑∞

j=1 jq+r |�h( j)| < ∞ we can pick

some δ > 0 such that |�h( j)| ≤ cj−(q+r+1+δ), for which ∑T −1
j=J+1 jq−b1 |�h( j)| =

O
(

T −(b1+r+δ)/(2q+2r+1)
)

⇒ H ′
22 = O

(
T −δ/(2q+2r+1)

)
= o(1). Using a similar ar-

gument, we have H23 = op(1), which establishes H2 = op (1).
Lastly, we show that H3 = op(1). Applying the same expansion as in the proof of

Theorem 2(a) yields H3 ≡ ∑6
i=1 D̂i , where D̂i is obtained by replacing bT in Di with b̂T .

Similarly, Dξ i can be obtained by replacing bT in Di with bξT . D̂1 = op(1) is obvious.
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D̂2 can be written as D̂2 ≡ Dξ2 +2D̃2, where

D̃2 = T r/(2q+2r+1)
T −1

∑
j=1

{
l

(
j

b̂T

)
− l

(
j

bξT

)}

× jn

{
1

T

T

∑
t= j+1

(
ht− j (htθ −E(htθ ))+ht

(
ht− jθ −E(htθ )

))}(
θ̂ − θ0

)
.

Dξ2 = op(1) is shown in the proof of Theorem 2(a). Since T −1 ∑T
t= j+1 ht− j (htθ −

E(htθ )) and T −1 ∑T
t= j+1 ht

(
ht− jθ −E(htθ )

)
are both sample autocovariances, the ar-

gument that has established H1 = op(1) and H2 = op(1) applies. Hence,

T r/(2q+2r+1)
T −1

∑
j=1

{
l

(
j

b̂T

)
− l

(
j

bξT

)}

× jn

{
1

T

T

∑
t= j+1

(
ht− j (htθ −E(htθ ))+ht

(
ht− jθ −E(htθ )

))} = op(1).

By T 1/2
(
θ̂ − θ0

)
= Op(1), we have D̃2 = op(1), and thus D̂2 = op(1). Next, consider

D̂3 = 2T r/(2q+2r+1)
T −1

∑
j=1

l

(
j

b̂T

)
jn

(
1

T

T

∑
t= j+1

ht− j

)
E(htθ )

(
θ̂ − θ0

)

+2T r/(2q+2r+1)
T −1

∑
j=1

l

(
j

b̂T

)
jn

(
1

T

T

∑
t= j+1

ht

)
E(htθ )

(
θ̂ − θ0

)

≡ 2D̂31 +2D̂32.

Pick an integer n1 =
[
T 1/(2q+2r+1)

]
. Then, by |l(·)| ≤ 1 and Assumption A1(c),

∣∣∣D̂31

∣∣∣ ≤ ‖E (htθ )‖T 1/2
∥∥∥θ̂ − θ0

∥∥∥T r/(2q+2r+1)−1
T −1

∑
j=1

∣∣∣∣l
(

j

b̂T

)∣∣∣∣ jq

(
1√
T

∣∣∣∣∣
T

∑
t= j+1

ht− j

∣∣∣∣∣
)

≤ ‖E (htθ )‖T 1/2
∥∥∥θ̂ − θ0

∥∥∥
{

T r/(2q+2r+1)−1
n1

∑
j=1

jq

(
1√
T

∣∣∣∣∣
T

∑
t= j+1

ht− j

∣∣∣∣∣
)

+ cT r/(2q+2r+1)−1
T −1

∑
j=n1+1

(
j

(β̂T )1/(2q+2r+1)

)−b1

jq

(
1√
T

∣∣∣∣∣
T

∑
t= j+1

ht− j

∣∣∣∣∣
)}

≤ ‖E (htθ )‖T 1/2
∥∥∥θ̂ − θ0

∥∥∥
{

T r/(2q+2r+1)−1
n1

∑
j=1

jq

(
1√
T

∣∣∣∣∣
T

∑
t= j+1

ht− j

∣∣∣∣∣
)
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+ c
(

Ĉ2(q,r)
)b1

T (r+b1)/(2q+2r+1)−1
T −1

∑
j=n1+1

jq−b1

(
1√
T

∣∣∣∣∣
T

∑
t= j+1

ht− j

∣∣∣∣∣
)}

≡ ‖E (htθ )‖T 1/2
∥∥∥θ̂ − θ0

∥∥∥{D̂311 + c
(

Ĉ2(q,r)
)b1

D̂312

}
.

To show that D̂31 = op(1), we need to demonstrate that each of D̂311 and D̂312 is op(1).

Observe that T r/(2q+2r+1)−1 ∑n1
j=1 jq =O

(
T −(q+r)/(2q+2r+1)

)
= o(1). It follows from

b1 −q > 1 that T (r+b1)/(2q+2r+1)−1 ∑T −1
j=n1+1 jq−b1 = O

(
T −(q+r)/(2q+2r+1)

)
= o(1).

Since E
{

T −1/2
∣∣∣∑T

t= j+1 ht− j

∣∣∣}2 ≤ ∑∞
j=−∞ |�h ( j)| < ∞, we have D̂311 = op(1) and

D̂312 = op(1). Similarly, D̂32 = op (1), and thus D̂3 = op(1). A similar argument can
also establish that each of D̂4, D̂5, and D̂6 is at most op(1). Therefore, H3 = op(1), and
thus (B.3) is shown.

Part (b): This is immediately established by applying the same argument as in the proof
of Theorem 2(b). In particular, for the first equality, the references should be changed from
Theorems 1 and 2(a) to Theorem 3(a). n

Proof of Theorem 4.
Part (a): By Assumption A6(b) we only need to show that T q/(2q+1)(w′�̂w −w′�̃w)

p→ 0. Observe that

T q/(2q+1)
(
w′�̂w −w′�̃w

)
= T q/(2q+1)

T −1

∑
j=−(T −1)

{
k

(
j

ŜT

)
− k

(
j

SξT

)}{
�̃h( j)−E

(
�̃h( j)

)}

+ T q/(2q+1)
T −1

∑
j=−(T −1)

{
k

(
j

ŜT

)
− k

(
j

SξT

)}
E
(
�̃h( j)

)

+ T q/(2q+1)
T −1

∑
j=−(T −1)

k

(
j

ŜT

){
�̂h( j)− �̃h( j)

}

≡ A1 + A2 + A3.

Since A2 = op(1) and A3 = op(1) have been already shown as Lemmas A7 and A8 in
Newey and West (1994), we only need to show that A1 = op(1).

By Assumption A2(c), we can pick some ζ such that ζ ∈ (1 + 1/{2(b2 − 1)},3/4 +
{r(2q +1)}/{2(2q +2r +1)}). For such ζ , let an integer m2 be m2 =

[
Sς
ξT

]
. Then,

A1 = 2T q/(2q+1)
m2

∑
j=1

{
k

(
j

ŜT

)
− k

(
j

SξT

)}{
�̃h( j)−E

(
�̃h( j)

)}

+2T q/(2q+1)
T −1

∑
j=m2+1

k

(
j

ŜT

){
�̃h( j)−E

(
�̃h( j)

)}

−2T q/(2q+1)
T −1

∑
j=m2+1

k

(
j

SξT

){
�̃h( j)−E

(
�̃h( j)

)}

≡ 2A11 +2A12 −2A13.
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Using Assumption A2(b),

|A11| ≤ cT q/(2q+1)
m2

∑
j=1

∣∣∣∣∣ j(
γ̂ T

)1/(2q+1)
− j(

γξ T
)1/(2q+1)

∣∣∣∣∣
∣∣∣�̃h( j)−E

(
�̃h( j)

)∣∣∣

≤ cT r/(2q+2r+1)

∣∣∣∣∣
{(

R̂(q)(b̂T )
)2

}1/(2q+1)

−
{(

R(q)
ξ

)2
}1/(2q+1)

∣∣∣∣∣
×
{(

R̂(q)(b̂T )
)2(

R(q)
ξ

)2
}−1/(2q+1)

T (q−1)/(2q+1)−r/(2q+2r+1)−1/2

×
m2

∑
j=1

j
{

T 1/2
∣∣∣�̃h( j)−E

(
�̃h( j)

)∣∣∣} .

Now, T r/(2q+2r+1)

∣∣∣∣∣
{(

R̂(q)(b̂T )
)2
}1/(2q+1) −

{(
R(q)

ξ

)2
}1/(2q+1)

∣∣∣∣∣ = Op(1) and

(
R̂(q)(b̂T )

)2 p→
(

R(q)
ξ

)2 ∈ (0,∞) by Theorem 3 and the delta method. It follows from

∑m2
j=1 j = O(T 2ς/(2q+1)) and ς < 3/4 + {r(2q +1)}/{2(2q +2r +1)} that

T (q−1)/(2q+1)−r/(2q+2r+1)−1/2 ∑m2
j=1 j = o(1). Then, by Var

(
T 1/2�̃h( j)

)
≤ M and

Markov’s inequality, A11 = op(1). Next, by Assumption A2(c),

|A12| ≤ cT q/(2q+1)
T −1

∑
j=m2+1

(
j(

γ̂ T
)1/(2q+1)

)−b2 ∣∣∣�̃h( j)−E
(
�̃h( j)

)∣∣∣

= cγ̂ b2/(2q+1)T (q+b2)/(2q+1)−1/2
T −1

∑
j=m2+1

j−b2
{

T 1/2
∣∣∣�̃h( j)−E

(
�̃h( j)

)∣∣∣} .

By ∑T −1
j=m2+1 j−b2 =O

(
T ς(1−b2)/(2q+1)

)
and ς>1+1/{2(b2 −1)}, T (q+b2)/(2q+1)−1/2

× ∑T −1
j=m2+1 j−b2 = o(1). Then, by Var

(
T 1/2�̃h( j)

)
≤ M , Markov’s inequality, and(

R̂(q)(b̂T )
)2 p→

(
R(q)

ξ

)2 ∈ (0,∞) ⇒ γ̂
p→ γξ ∈ (0,∞), we have A12 = op(1). Using a

similar argument, we have A13 = op(1), which establishes A1 = op(1).
Part (b): This part has been already shown in Theorem 3(c) in Andrews (1991). To see

this, recognize that (1) can be rewritten as MSE(�̃; �) = E{vec(�̃−�)′
(
wT w′

T ⊗ wT w′
T

)
vec(�̃−�)}; in other words, MSE(�̃; �,T 2q/(2q+1)) always can be expressed as equation
(3.5) in Andrews (1991), where the weighting matrix is WT = (wT w′

T ) ⊗
(wT w′

T ). n

Proof of Lemma 3. Since {ht } = {
w′gt

}
is serially uncorrelated, we have s(q)

ξ =
s(q+r)
ξ = 0, so that Cξ (q,r) = R(q)

ξ = 0. Then, Ĉ(q,r) = Cξ (q,r) + Op(T −1/2) =
Op(T −1/2). The estimator of the first-stage optimal bandwidth becomes b̂T = c

{Ĉ2(q,r)T }1/(2q+2r+1)=Op(1). Now, consider T 1/2 R̂(q)(b̂T )=T 1/2ŝ(q)(b̂T)/ŝ(0)(b̂T).
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Because E
(
�̃h( j)

)
= (1−| j |/T )�h( j) = 0,∀ j �= 0, the numerator becomes

T 1/2ŝ(q)(b̂T ) = 2T 1/2
T −1

∑
j=1

l

(
j

b̂T

)
jq

{
�̃h( j)−E

(
�̃h( j)

)}

+2T 1/2
T −1

∑
j=1

l

(
j

b̂T

)
jq

{
�̂h( j)− �̃h( j)

}
. (B.5)

Observe that the first term of (B.5) is Op(1) by Var
(

T 1/2�̃h( j)
)

≤ M , Markov’s inequal-

ity, and
∣∣∣∑T −1

j=1 l( j/b̂T ) jq
∣∣∣ ≤ c ∑T −1

j=1 jq−b1 b̂b1
T = Op(1). The second term of (B.5) can

be rewritten as ∑6
i=2 D̈i , where D̈i is obtained by replacing

(
T 1/(2q+2r+1),bT

)
in Di

(see the proof of Theorem 2(a)) with
(

T 1/2, b̂T

)
and setting n = q. By this expansion

and ∑T −1
j=1 l( j/b̂T ) jq = Op(1), we can immediately see that this term is at most Op(1).

Hence, T 1/2ŝ(q)(b̂T ) = Op(1). It follows that

ŝ(0)(b̂T ) = �̂h(0)+2
T −1

∑
j=1

l

(
j

b̂T

)
�̂h( j) = �h(0)+ Op(T −1/2). (B.6)

Therefore, T 1/2 R̂(q)(b̂T ) = Op(1), or R̂(q)(b̂T )
p→ R(q)

ξ (= 0). As a result, the estima-

tor of the second-stage optimal bandwidth becomes ŜT = c

{(
R̂(q)(b̂T )

)2
T

}1/(2q+1)

=
Op(1). Finally, replacing

(
l(·), b̂T

)
in (B.6) with

(
k(·), ŜT

)
and recognizing that �h(0) =

s(0) = w′�w, we can establish w′(�̂−�
)

w = op(1), or �̂
p→ �. n


