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Abstract. This paper proposes a fully modified version of the spectral matrix estimator
(and the long-run variance estimator as a special case) proposed originally by Xiao and
Linton [Journal of Time Series Analysis (2002) Vol. 23, pp. 215–250], and derives its
asymptotic results. A striking feature of the modified spectral matrix estimator is to
achieve the convergence rate of O(T�8/9) in the mean squared error (MSE), which is
usually achieved under the fourth-order spectral window. However, this estimator does
not sacrifice the positive definiteness of the resulting estimate for the rate improvement; it
is Hermitian and positive definite in finite samples by construction. The faster convergence
rate is established by a multiplicative bias correction of the crude spectral estimator under
the second-order spectral window. The approximations to some sensible definitions of the
MSE of the estimator and the bandwidths that minimize the asymptotic MSEs are also
derived. Monte Carlo results indicate that for a wide variety of processes the modified
spectral matrix estimator reduces the bias without inflating the variance and thus improves
the MSE, compared with the crude, bias-uncorrected estimator.

Keywords. Spectral density estimation; covariance estimation; kernel smoothing;
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1. INTRODUCTION

The aims of this paper are to propose a fully modified version of the spectral
matrix estimator (and the long-run variance estimator as a special case) proposed
originally by Xiao and Linton (2002; XL hereafter) and to derive its asymptotic
results. XL’s estimator is designed for general multivariate time-series models
whose autocorrelation structure is not necessarily parameterized. It is intended to
achieve an improvement in bias by an order of magnitude without increasing the
order of magnitude of the variance. Unlike the case with the fourth-order spectral
window, the rate improvement is achieved without sacrificing positive definiteness
of the resulting estimate; it is established by multiplying a bias correction term on
the crude nonparametric spectral estimate in the frequency domain. The
multiplicative bias correction (MBC) technique applied in XL reminds us of the
well-known prewhitening procedure, and thus the resulting estimator is called
the nonparametric prewhitened (NPW) spectral (or covariance) matrix estimator
hereafter. The same MBC technique has already been applied in nonparametric
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regression (Linton and Nielsen, 1994), probability density estimation (Jones et al.,
1995), and hazard estimation (Nielsen, 1998; Nielsen and Tanggaard, 2001); it
may therefore be viewed as their analogue in spectral density estimation.

There are two other classes of nonparametric density and regression estimators
that reduce bias by an order of magnitude while maintaining positive definiteness.
The first class, non-negative adaptation, was proposed originally by Terrell and
Scott (1980), and was generalized and reinterpreted as an MBC technique by
Koshkin (1988) and Jones and Foster (1993), respectively. The second class is a
subclass of the MBC estimators, but either the crude estimate or the bias
correction term belongs to a parametric class (e.g. see Hjort and Glad, 1995 and
Hjort and Jones, 1996 for density estimation, and Glad, 1998 for regression).
Nonetheless, NPW in XL is preferable in the context of spectral matrix
estimation. The idea behind the first class is the additive bias correction to the
logarithm of the density. Hence, we face difficulty in applying this technique to
spectral matrix estimation at nonzero frequency, because off-diagonal elements of
the matrix are complex-valued. The second class is subject to misspecification by
its parametric nature. In contrast, NPW is easily extended to the matrix context,
and is expected to be robust to misspecification.

However, several questions still remain in XL. First, although XL argue that �the
resulting spectral density estimator is guaranteed to be nonnegative definite� (lines
26–27, p. 217), the expressions (4) and (5) in XL do not necessarily lead to a non-
negative definite estimate. Second, whereas the approximation to the mean squared
error (MSE) of each of otherMBC estimators in the same class (Theorem in Linton
andNielsen, 1994; Theorem 1 in Jones et al., 1995; Theorem 2 in Nielsen, 1998; and
Theorem 3 in Nielsen and Tanggaard, 2001) involves the roughness of the kernel
obtainedby �twicing� (Stuetzle andMittal, 1979) in the variance term, the asymptotic
variance in Theorem 1 in XL does not have an exact �twiced� form of the spectral
window. Third, since the spectral matrix estimator is complex-valued in general, the
MSE in XL (p. 224) does not necessarily yield a non-negative squared bias or
variance term. In other words, some extra restriction should be imposed on the
weighting scheme for theMSE so that the resulting squared bias and variance terms
become non-negative for every frequency.

It is demonstrated that the spectral matrix estimator, given as a smoothed
periodogram inXL, is inconsistentwith the corresponding spectralmatrix estimator
as weighted autocovariances in the time domain. To ensure the positive definiteness
of the resulting estimate in finite samples, a modified definition of the NPW spectral
matrix estimator is proposed. A key feature of this estimator is the �sandwich form�
of the crude spectral matrix estimate and the bias correction term; by construction,
the estimator yields a Hermitian and positive-definite estimate in finite samples.
Some alternative weighting schemes for theMSE of the estimator are also proposed
to guarantee non-negativity of the squared bias and variance terms for every
frequency. For each definition of the MSE, the approximation to the MSE and the
bandwidth that minimizes the asymptotic mean squared error (AMSE) are derived.
It is demonstrated that the variance term in theMSE indeed involves the roughness
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of the �twiced� spectral window. When the second-order spectral window and the
AMSE-optimal bandwidth are employed, the NPW spectral matrix estimator has
the convergence rate ofO(T�8/9) in MSE, notO(T�4/5), where T is the sample size.
Although the spectral matrix estimator under the fourth-order spectral window can
also achieve the same convergence rate, the positive definiteness in the resulting
estimate is not guaranteed.Moreover, it is shown that when the underlying spectral
density has sufficient smoothness, NPW can be iterated further to obtain the rate of
convergence arbitrarily close to the parametric one,while the positive definiteness of
the resulting estimate is maintained.

Monte Carlo results indicate that for a wide variety of processes the NPW
estimator reduces the bias without inflating the variance and thus improves the
MSE, compared with the crude, bias-uncorrected estimator. It also appears to
capture the shape of the spectral density more accurately by removing spurious
peaks or troughs that the bias-uncorrected estimator might generate.

The remainder of this paper is organized as follows: Section 2 modifies the
definition of the NPW spectral matrix estimator; in Section 3 the asymptotic
results based on the modified estimator are explained; Section 4 displays Monte
Carlo results; Section 5 concludes; proofs are given in the Appendix.

2. MODIFIED NPW SPECTRAL MATRIX ESTIMATOR

Let xtf gTt¼12 Rd be a zero-mean stationary vector time series that has a positive-
definite spectral matrix. To estimate the long-run variance of fxtg defined by

X ¼ lim
T!1

1

T
E

XT
t¼1

xt

 ! XT
t¼1

xt

 !T
2
4

3
5;

we usually construct a weighted sum of sample autocovariances by applying a
kernel method

�X ¼
XT�1

l¼�ðT�1Þ
k

l
M

� �
ĈðlÞ ¼

XT�1

l¼�ðT�1Þ
k

l
M

� �
1

T

XminfTþl;Tg

t¼maxf1;1þlg
xtx

T
t�l

0
@

1
A; ð1Þ

where k(Æ) is a kernel (or a lag window), and M 2 Rþ is the bandwidth.
There is yet another expression of the covariance estimator that is

asymptotically equivalent to �X. Let fundamental frequencies be kj ¼ 2pj/T, j ¼
0,±1, . . . ,±[T/2], and the periodogram at the frequency kj be

Ixx kj
� �

¼ fx kj
� �

fx kj
� ��

;

where fx kj
� �

¼ 2pTð Þ�1=2RT
t¼1xte

�itkj is the finite Fourier transform of fxtg
evaluated at the frequency kj. Moreover, for
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K hð Þ ¼ 1

2p

Z 1

�1
k uð Þe�iuh du;

the spectral window corresponding to the kernel k(Æ), define the amplitude window
(Parzen, 1963) as

KM hð Þ ¼ M
X1
j¼�1

KðM hþ 2pjð ÞÞ:

Then, the long-run variance estimator based on a smoothed periodogram can be
expressed as

X̂ ¼ 4p2

T

X
kj2B 0ð Þ

KM kj
� �

Ixx kj
� �

; ð2Þ

where B(0) ¼ fkj|�p < kj < pg is the frequency band with width 2p centred at
zero frequency. As described in Parzen (1963),

KM hð Þ ¼ M
X1
j¼�1

KðM hþ 2pjð ÞÞ ’ MK Mhð Þ: ð3Þ

In particular, the approximation is replaced by the equality when the
spectral window K(h) is band-limited such that K(h) ¼ 0 for jhj � p. In
this case, let m ¼ 2[T/(2M)] þ 1 be the number of fundamental frequencies
in B(0) ¼ kjj�p/M < kj < p/M. Then, eqn (2) is rewritten as

X̂ ¼ 4p2M
T

X
kj2B 0ð Þ

K Mkj
� �

Ixx kj
� �

’ 4p2

m

X
kj2B 0ð Þ

K Mkj
� �

Ixx kj
� �

: ð4Þ

This estimator is a modified version of the expression (2) in XL, and is
asymptotically equivalent to eqn (1), as mentioned below; the original expression
does not establish this property.

Since X ¼ 2pfxx(0), eqn (2) gives the estimator of fxx(0) as

f̂xx 0ð Þ ¼ 2p
T

X
kj2B 0ð Þ

KM kj
� �

Ixx kj
� �

:

In general, using the frequency band centred at the frequency x, B(x) ¼
fkjjx � p < kj < x þ pg, we can estimate the spectral matrix of fxtg evaluated
at the frequency x 2 (�p, p) as
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f̂xx xð Þ ¼ 2p
T

X
kj2B xð Þ

KM kj � x
� �

Ixx kj
� �

: ð5Þ

The asymptotic equivalence of the smoothed periodogram estimator (5) and the
corresponding weighted covariance estimator

�fxx xð Þ ¼ 1

2p

XT�1

l¼�ðT�1Þ
k

l
M

� �
ĈðlÞe�ilx;

and hence the asymptotic equivalence of eqn (2) [or (4)] and (1), is well known; see
the expressions (2.4) and (2.5) in Robinson (1991), for example.

In applying the MBC technique in Linton and Nielsen (1994), Jones et al.
(1995), Nielsen (1998), and Nielsen and Tanggaard (2001) to eqn (5), consider that
the Ixx(kj) are Hermitian and positive definite by construction,1 so is f̂xx xð Þ if
K(h) � 0, 8h 2 R. Then, f̂xx xð Þ has positive eigenvalues k1, . . . , kd, and thus
f̂ 1=2
xx xð Þ is well defined by the unitary decomposition

f̂ 1=2
xx xð Þ ¼ UK1=2U �; ð6Þ

where K1=2 ¼ diagðk1=21 ; . . . ; k1=2d Þ is the diagonal matrix containing the square
roots of the eigenvalues, and U is the unitary matrix, i.e. UU� ¼ Id. Using eqn (6),
this paper proposes the modified NPW spectral matrix estimator of fxx(x) as

~fxx xð Þ ¼ f̂ 1=2
xx xð Þ~a xð Þf̂ 1=2

xx xð Þ

¼ f̂ 1=2
xx xð Þ

X
kj2B xð Þ

KM kj � x
� � 2p

T
f̂�1=2
xx kj

� �
Ixx kj
� �

f̂�1=2
xx kj

� �8<
:

9=
;f̂ 1=2

xx xð Þ; ð7Þ

where ~a xð Þ serves as the bias correction term. Similarly, the modified NPW
covariance matrix estimator becomes

~X ¼ X̂1=2~a 0ð ÞX̂1=2 ¼ X̂1=2
X

kj2B 0ð Þ
KM kj
� � 2p

T
f̂�1=2
xx kj

� �
Ixx kj
� �

f̂�1=2
xx kj

� �8<
:

9=
;X̂1=2: ð8Þ

The term �NPW� is derived from the fact that the MBC technique in eqns (7)
and (8) reminds us of the prewhitening procedure, because the transformed
periodograms f̂�1=2

xx kj
� �

Ixx kj
� �

f̂�1=2
xx kj

� �
are approximately constant.

The NPW estimators (7) and (8) are modified versions of the expressions (4)
and (5) in XL. A key feature is that ~a xð Þ and ~fxx xð Þ constitute a �sandwich form�.
Therefore, for a non-negative spectral window K(h), eqns (7) and (8) are
Hermitian and positive definite in finite samples: ~a xð Þ is Hermitian and positive
definite by recognizing that

f̂�1=2
xx kj

� �
Ixx kj
� �

f̂�1=2
xx kj

� �
¼ f̂�1=2

xx kj
� �

Ixx kj
� �

f̂�1=2
xx kj

� ��
;
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so is

~fxx xð Þ ¼ f̂ 1=2
xx xð Þ~a xð Þf̂ 1=2

xx xð Þ ¼ f̂ 1=2
xx xð Þ~a xð Þf̂ 1=2

xx xð Þ�:

Note that neither the expression (4) nor (5) in XL becomes Hermitian or positive
definite in finite samples, even if f̂xx xð Þ or X̂ is.

3. ASYMPTOTIC RESULTS

3.1. The main result

In this section, an approximation to the MSE of the NPW spectral matrix
estimator ~fxx xð Þ is derived, and it is demonstrated that the approximation is
compatible with corresponding approximations for analogous MBC estimators.
These results require three definitions of smoothness which were first introduced
by Parzen (1957) and are frequently applied in spectral density estimation.

Definition 1. For a kernel k(Æ) and a positive number r, the rth generalized
derivative of kernel k(Æ) at the origin is defined as

kr ¼ lim
x!0

1� k xð Þ
xj jr :

Definition 2. A kernel k(Æ) is said to have the characteristic exponent q if it has
the following properties.

kr
¼ 0 if r < q
2 ð0;1Þ if r ¼ q
¼ 1 if r > q

8<
: :

Definition 3. The rth generalized derivative of spectral density

f ðxÞ ¼ 1

2p

X1
j¼�1

CðjÞe�ijx

is defined as

f ðrÞðxÞ ¼ 1

2p

X1
j¼�1

jj jrCðjÞe�ijx:

It is known that if r is an even integer, the generalized derivative of the kernel at
the origin and the generalized derivative of the spectral density obey

kr ¼ � 1

r!
drkðxÞ
dxr

����
x¼0

; ð9Þ

and
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f ðrÞðxÞ ¼ �1ð Þr=2d
rf ðxÞ
dxr : ð10Þ

We consider second-order kernels exclusively to ensure the positive definiteness of
the resulting estimator; thus q ¼ 2 throughout.2 To establish the asymptotic
properties of ~fxx xð Þ, we make the following assumptions.

Assumption 1. The time series fxtg is fourth-order stationary with

X1
l¼�1

lj j4 CðlÞk k < 1

and

X1
j¼�1

X1
k¼�1

X1
l¼�1

ji1i2i3i4 j; k; lð Þj j < 1;

where ji1i2i3i4 (Æ,Æ,Æ) is the fourth-order cumulant of (xi1t, xi2tþj, xi3tþjþk, xi4tþjþkþl) and
xit is the ith element of xt.

Assumption 2. The spectral window K(h) is even and non-negative withR1
�1 KðhÞdh ¼ 1. In addition, the kernel k(x) satisfies jkðxÞj � �kðxÞ such thatR1
0

�k xð Þdx < 1, where �k xð Þ is even and monotonically decreasing on [0,1).

Assumption 3. The bandwidth M satisfies 1/M þ M4/T ! 0 as T ! 1.

These assumptions are standard in the literature of spectral density estimation;
indeed, they follow the assumptions made for Theorem 5.1 in Robinson (1991).
The condition R1

l¼�1jlj4kCðlÞk < 1 in Assumption 1 implies four uniformly
bounded derivatives of the spectral matrix for every frequency; without this
condition, the bias correction of the NPW estimator is not established. The
non-negativity of K(h) in Assumption 2 is required for the positive definiteness of
~fxx xð Þ. Because of the non-negativity, the condition

R1
�1 jKðhÞjdh < 1 in A2(0) of

Robinson (1991) is guaranteed. There are many examples of kernels that satisfy
Assumption 2: the Parzen, Quadratic Spectral, Bohman, and Gaussian kernels, to
name a few.

Under Assumptions 1, 2 and 3, ~fxx xð Þ has an asymptotic expansion

~fxx xð Þ ¼ fxx xð Þ þ ~B xð Þ þ ~V xð Þ þ Rþ op M�4 þ T
M

� ��1=2
 !

: ð11Þ

The detailed expressions of ~B xð Þ, ~V xð Þ and R and the derivation of eqn (11) are
given in the Appendix. Since the �kj(¼Ixx(kj) � fxx(kj)) are asymptotically
independent and have zero asymptotic mean, ~B xð Þ and ~V xð Þ constitute the
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leading bias and variance terms of ~fxx xð Þ, respectively. On the other hand,R is the
leading remainder part.

To define the MSE of ~fxx xð Þ, we must take extra care of the choice of the
weighting scheme. Since the spectral matrix estimator is complex-valued in
general, the MSE in XL (p. 224), which follows the definition in Andrews
(1991), does not necessarily yield a non-negative squared bias or variance term
for an arbitrarily chosen d 2 � d 2 real-valued positive semidefinite weighting
matrix W.3 It is clear that for each fixed x, (i) ABias 2 R or (ABias)2 2 Rþ,
and (ii) AVar 2 Rþ are the requirements for a sensible AMSE-optimal
bandwidth choice, where �ABias� and �AVar� are the leading bias and
variance terms in the MSE. Then, the following two alternative definitions
of the MSE are considered.

Definition 4.

MSE1
~fxx xð Þ; fxx xð Þ
� �

¼ E vec ~fxx xð Þ � fxx xð Þ
� �T

W xð Þvec ~fxx xð Þ � fxx xð Þ
� �n o

;

where W(x) ¼ diagfw1(x), . . . ,wd2(x)g and the weight assigned to (i, j) element of
~fxx xð Þ is such that

w j�1ð Þdþi xð Þ � 0 if i ¼ j
¼ 0 if i 6¼ j

�

for x 6¼ 0, and w(j�1)dþi(0) � 0, 8i, j ¼ 1, . . . , d for x ¼ 0.

Definition 5.

MSE2
~fxx xð Þ; fxx xð Þ
� �

¼ E vT ~fxx xð Þ � fxx xð Þ
� �

v
� �2

;

where v 2 Rd is some weighting vector.

The restriction on the weighting matrix W(x) for nonzero frequency in
Definition 4 is required to establish (ABias)2, AVar 2 Rþ. If the restriction is
relaxed so that the same non-negative weights are assigned to (i, j) and (j, i)
elements of ~fxx xð Þ (simply because they are complex conjugates), then
the resulting (ABias)2 is shown to be real-valued but not necessarily
non-negative, as discussed in the Appendix. In the case of zero frequency,
the weighting scheme nests the one under a natural choice of weighting matrix
Id2. On the other hand, Definition 5 is applied to the long-run variance
estimation in Newey and West (1994) and Hirukawa (2005), and has some
flexibility.

Theorems 1 and 2 find the asymptotic approximation to each definition of MSE
and the bandwidth that minimizes the corresponding AMSE.
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Theorem 1. Under Assumptions 1, 2 and 3, Definition 4 is approximated by

MSE1
~fxx xð Þ; fxx xð Þ
� �

’ k42 vec W xð Þð ÞTW xð Þvec W xð Þð Þ
M8

þM
T

Z 1

�1
t2k xð Þdx

� trW xð Þfxx xð Þ � fxx xð ÞTþ1 x ¼ 0ð ÞtrW 0ð ÞKddfxx 0ð Þ � fxx 0ð Þ
n o

; ð12Þ

where

W xð Þ ¼ f 1=2
xx xð ÞU00 xð Þf 1=2

xx xð Þ; U xð Þ ¼ f�1=2
xx xð Þf 00

xx xð Þf�1=2
xx xð Þ;

and

tk xð Þ ¼
Z 1

�1
TK hð Þeixh dh

is the kernel corresponding to TK(h) ¼ 2K(h) � K s K(h), the fourth-order spectral
window obtained by twicing (Stuetzle and Mittal, 1979). In this definition
(ABias)2 2 Rþ and AVar 2 Rþ are guaranteed. The bandwidth that minimizes
eqn (12) is

Mopt
1 xð Þ ¼ c1 xð ÞT 1=9

¼ 8k42 vec W xð Þð ÞTW xð Þvec W xð Þð ÞR1
�1 t2k xð Þdx trW xð Þfxx xð Þ � fxx xð ÞTþ1 x ¼ 0ð ÞtrW 0ð ÞKddfxx 0ð Þ � fxx 0ð Þ

	 

8<
:

9=
;

1=9

T 1=9:

At the optimum,

MSE
opt
1

~fxx xð Þ;fxx xð Þ
� �

’ T�8=9 c�8
1 xð Þk42vec W xð Þð ÞTW xð Þvec W xð Þð Þ

n
þc1 xð Þ

Z 1

�1
t2k xð Þdx trW xð Þfxx xð Þ�fxx xð ÞTþ1 x¼0ð ÞtrW 0ð ÞKddfxx 0ð Þ�fxx 0ð Þ

	 
�
:

Theorem 2. Under Assumptions 1, 2 and 3, Definition 5 is approximated by

MSE2
~fxx xð Þ; fxx xð Þ
� �

’
k42 vTW xð Þv
� �2

M8
þM

T
1þ 1 x ¼ 0ð Þð Þ vTfxx xð Þv

� �2Z 1

�1
t2k xð Þdx ð13Þ

for the same W(x) and tk(x) as in Theorem 1. In this definition ABias 2 R and
AVar 2 Rþ are guaranteed. The bandwidth that minimizes eqn (13) is
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Mopt
2 xð Þ ¼ c2 xð ÞT 1=9 ¼

8k42 vTW xð Þv
� �2

1þ 1 x ¼ 0ð Þð Þ vTfxx xð Þvð Þ2
R1
�1 t2k xð Þdx

( )1=9

T 1=9:

At the optimum,

MSEopt
2

~fxx xð Þ; fxx xð Þ
� �

’ T�8=9 c�8
2 xð Þk42 vTW xð Þv

� �2þc2 xð Þ 1þ 1 x ¼ 0ð Þð Þ vTfxx xð Þv
� �2Z 1

�1
t2k xð Þdx

� �
:

Each theorem demonstrates that although the second-order spectral window is
employed, the squared bias term is of order M�8, which is usually achieved under
the fourth-order spectral window. The variance term involves the roughness of the
�twiced� spectral window. These are compatible with the analogous results in
Linton and Nielsen (1994), Jones et al. (1995), Nielsen (1998), and Nielsen and
Tanggaard (2001). As mentioned in XL, the divergence rate of the optimal
bandwidth is O(T1/9) for each definition of the MSE. As a result, the convergence
rate of the MSE at the optimum is O(T�8/9), which is faster than O(T�4/5), the
rate usually achieved under the second-order kernel.4

In particular, two definitions of the MSE coincide in the scalar case, and the
AMSE is given by

MSE ~fxx xð Þ; fxx xð Þ
� �

’ k42
M8

fxx xð Þ f 00
xx

fxx
xð Þ

� �00� �2

þM
T

1þ 1 x ¼ 0ð Þð Þ
Z 1

�1
t2k xð Þdxf 2

xx xð Þ:

This AMSE takes the same form as of the expression (2.1) in Jones et al.
(1995). It is also natural to compare the theoretical performance of ~fxx xð Þ with
that of €fxx xð Þ, the spectral matrix estimator under the fourth-order spectral
window TK(Æ) (or the corresponding kernel tk(Æ)). The AMSEs of two
estimators have an identical variance term [i.e. AVar in eqn (12) or (13),
depending on the definition], whereas the squared bias term in the AMSE of
€fxx xð Þ is

k42 vec f 0000
xx xð Þ

� �T
W xð Þvec f 0000

xx xð Þ
� �

M8
for Definition 4; or

k42 vTf 0000
xx xð Þv

� �2
M8

for Definition 5,

ð14Þ

as shown in the Appendix. Hence, the two estimators differ only in the
dependence of the bias term on the spectral density and its derivatives. This result
is also consistent with the one in Jones et al. (1995).

Recognizing that X ¼ 2pfxx(0) gives Corollary 1 on the asymptotic results of
the long-run variance estimator ~X.
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Corollary 1. Under Assumptions 1, 2 and 3, the MSE of ~X is approximated by

MSE1
~X;X
� �

’ k42vec Wð ÞTW vec Wð Þ
M8

þM
T

Z 1

�1
t2k xð Þdx trW Id2 þ Kddð Þ X� Xð Þf g ð15Þ

for Definition 4, or

MSE2
~X;X
� �

’
k42 vTWv
� �2
M8

þ 2
M
T

vTXv
� �2Z 1

�1
t2k xð Þdx ð16Þ

for Definition 5, where W ¼ X1/2U00(0)X1/2 and W ¼ W(0). The bandwidth that
minimizes eqn (15) or (16) is Mopt

1 0ð Þ or Mopt
2 0ð Þ.

Unlike the case of nonzero frequency, there is no problem of complex-valued
elements in the squared bias or variance term for the case of zero frequency.
Hence, in reality, the AMSE (15) can be also interpreted as the one for
an arbitrarily chosen d 2 � d 2 real-valued positive semidefinite weighting matrix
W.

3.2. Iteration

It is of theoretical interest to see what happens if NPW is iteratively applied to
spectral matrix estimation. To answer this question, define n-times iterated NPW
spectral matrix estimator as

~fxx;n xð Þ ¼ ~f 1=2
xx;n�1 xð Þ~an xð Þ~f 1=2

xx;n�1 xð Þ

¼ ~f 1=2
xx;n�1 xð Þ

X
kj2B xð Þ

KM kj �x
� �2p

T
~f�1=2
xx;n�1 kj

� �
Ixx kj
� �

~f�1=2
xx;n�1 kj

� �8<
:

9=
;~f 1=2

xx;n�1 xð Þ;

where ~fxx;0 xð Þ ¼ f̂xx xð Þ. Clearly, ~fxx;n xð Þ is Hermitian and positive definite. To
derive the asymptotic expansion of ~fxx;n xð Þ, Assumptions 1 and 3 are modified as
follows:

Assumption 1
0
. The time series fxtg is fourth-order stationary with

X1
l¼�1

lj j2nþ2 CðlÞk k < 1 and
X1
j¼�1

X1
k¼�1

X1
l¼�1

ji1i2i3i4 j; k; lð Þj j < 1;

where n 2 N is the number of NPW iterations, and ji1i2i3i4 (Æ,Æ,Æ) is defined in
Assumption 1.
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Assumption 3
0
. For the same n defined in Assumption 10, the bandwidth M

satisfies 1/M þ M2nþ2/T ! 0 as T ! 1.

Theorem 3 finds the asymptotic expansion of the NPW spectral matrix
estimator after NPW is iterated further.

Theorem 3. Under Assumptions 10, 2 and 30, ~fxx;nðxÞ has an asymptotic
expansion

~fxx;n xð Þ ¼ fxx xð Þ þ ~Bn xð Þ þ ~Vn xð Þ þ op M� 2þ2nð Þ þ T
M

� ��1=2
 !

: ð17Þ

The leading bias term ~Bn xð Þ is approximated by

M2þ2n ~Bn xð Þ ’ �1ð Þnknþ1
2 Wn xð Þ;

where

Wn xð Þ ¼ f 1=2
xx xð ÞU00

n xð Þf 1=2
xx xð Þ;

Un xð Þ ¼ f�1=2
xx xð ÞWn�1 xð Þf�1=2

xx xð Þ; and W0 xð Þ ¼ f 00
xx xð Þ:

The leading variance term ~Vn xð Þ is approximated by

T
M

var vec ~Vn xð Þ
� �� �

’ 2p
R1
�1 K2

n hð Þdhfxx xð Þ � fxx xð ÞT for x 6¼ 0

2p
R1
�1 K2

n hð Þdh Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ for x ¼ 0

(

’
R1
�1 k2n xð Þdxfxx xð Þ � fxx xð ÞT for x 6¼ 0R1
�1 k2n xð Þdx Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ for x ¼ 0

(
;

where

Kn hð Þ ¼ K0 hð Þ þ Kn�1 hð Þ � K0 � Kn�1 hð Þ; K0 hð Þ ¼ K hð Þ; and

kn xð Þ ¼
Z 1

�1
Kn hð Þeixhdh:

Theorem 3 demonstrates that the NPW iteration reduces the order of
magnitude of the bias without inflating that of the variance. In the scalar case,
the approximation to the leading bias term becomes

M2þ2n ~Bn xð Þ ’ �1ð Þnknþ1
2 fxx xð Þ d2n

dx2n

f 00
xx

fxx
xð Þ

� �
:

In particular, for n ¼ 2,

M6 ~B2 xð Þ ’ k32fxx xð Þ f 00
xx

fxx
xð Þ

� �0000
;
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which takes the same form as of Theorem 4 in Nielsen and Tanggaard (2001).
Moreover, the spectral window Kn(h) is exactly the same as that Hössjer and
Ruppert (1995) arrived at while using their transformation bias-reducing
technique n times. The same form as K2(h) also appears in Theorem 4 in Nielsen
and Tanggaard (2001).

Propositions 1 and 2 are natural outcomes of Theorem 3. Since they are the
generalizations of Theorems 1 and 2, their proofs are omitted. Observe that after
NPW is iterated further, the resulting spectral matrix estimator achieves the
convergence rate arbitrarily close to the parametric one.

Proposition 1. Under Assumptions 10, 2 and 30, Definition 4 is approximated by

MSE1
~fxx;n xð Þ; fxx xð Þ
� �

’ k2nþ2
2 vec Wn xð Þð ÞTW xð Þvec Wn xð Þð Þ

M4nþ4
þM

T

Z 1

�1
k2n xð Þdx

� trW xð Þfxx xð Þ � fxx xð ÞTþ1 x ¼ 0ð ÞtrW 0ð ÞKddfxx 0ð Þ � fxx 0ð Þ
n o

: ð18Þ

In this definition (ABias)2 2 Rþ and AVar 2 Rþ are guaranteed. The bandwidth
that minimizes eqn (18) is

Mopt
1;n xð Þ ¼ c1;n xð ÞT

1

4nþ5

¼ 4nþ 4ð Þk2nþ2
2 vec Wn xð Þð ÞTW xð Þvec Wn xð Þð ÞR1

�1 k2n xð Þdx trW xð Þfxx xð Þ � fxx xð ÞTþ1 x ¼ 0ð ÞtrW 0ð ÞKddfxx 0ð Þ � fxx 0ð Þ
	 


8<
:

9=
;

1
4nþ5

T
1

4nþ5:

At the optimum,

MSEopt
1

~fxx;n xð Þ;fxx xð Þ
� �

’T�4nþ4
4nþ5 c� 4nþ4ð Þ

1;n xð Þk2nþ2
2 vec Wn xð Þð ÞTW xð Þvec Wn xð Þð Þ

n
þc1;n xð Þ

Z 1

�1
k2n xð Þdx trW xð Þfxx xð Þ�fxx xð ÞTþ1 x¼0ð ÞtrW 0ð ÞKddfxx 0ð Þ�fxx 0ð Þ

	 
�
:

Proposition 2. Under Assumptions 10, 2 and 30, Definition 5 is approximated by

MSE2
~fxx;n xð Þ; fxx xð Þ
� �

’
k2nþ2
2 vTWn xð Þv

� �2
M4nþ4

þM
T

1þ 1 x ¼ 0ð Þð Þ vTfxx xð Þv
� �2Z 1

�1
k2n xð Þdx: ð19Þ

In this definition ABias 2 R and AVar 2 Rþ are guaranteed. The bandwidth that
minimizes eqn (19) is
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Mopt
2;n xð Þ ¼ c2;n xð ÞT

1
4nþ5 ¼

4nþ 4ð Þk2nþ2
2 vTWn xð Þv

� �2
1þ 1 x ¼ 0ð Þð Þ vTfxx xð Þvð Þ2

R1
�1 k2n xð Þdx

( ) 1
4nþ5

T
1

4nþ5:

At the optimum,

MSEopt
2

~fxx;n xð Þ; fxx xð Þ
� �

’ T�4nþ4
4nþ5 c� 4nþ4ð Þ

2;n xð Þk2nþ2
2 vTWn xð Þv

� �2þc2;n xð Þ 1þ 1 x ¼ 0ð Þð Þ vTfxx xð Þv
� �2Z 1

�1
k2n xð Þdx

� �
:

4. MONTE CARLO RESULTS

4.1. Description of data-generating processes and estimators

In this section, small Monte Carlo experiments investigate the accuracy of the
estimate of the long-run variance X ¼ 2pfxx(0) by the NPW spectral matrix
estimator, in comparison with alternative spectral estimators. As the data-
generating processes (DGPs), the following univariate zero-mean ARMA(1,1),
MA(2) and AR(2) models are chosen.

ARMA(1,1):

xt ¼ qxt�1 þ �t þ w�t�1; �t �i:i:d:N 0; 1ð Þ;

q;wð Þ ¼ 0:8; 0ð Þ; 0:5; 0ð Þ; �0:5; 0ð Þ; �0:8; 0ð Þ; 0; 0:8ð Þ; 0; 0:5ð Þ; 0;�0:5ð Þ;

0;�0:8ð Þ; 0:5; 0:8ð Þ; 0:5; 0:5ð Þ; 0:5;�0:8ð Þ; 0:2; 0:2ð Þ; �0:2;�0:2ð Þ;

�0:5; 0:8ð Þ; �0:5;�0:5ð Þ; �0:5;�0:8ð Þ:

MA(2):

xt ¼ �t þ w1�t�1 þ w2�t�2; �t �i:i:d:N 0; 1ð Þ;

w1;w2ð Þ ¼ 0:67; 0:33ð Þ; �1:0; 0:2ð Þ; �1:9; 0:95ð Þ; �1:3; 0:5ð Þ;

�1:0; 0:9ð Þ; 0; 0:9ð Þ; 0;�0:9ð Þ:

AR(2):

xt ¼ q1xt�1 þ q2xt�2 þ �t; �t �i:i:d:N 0; 1ð Þ;

q1 ¼
0:4; 0:8; 1:2; 1:6 for x ¼ p=6
0:4; 0:8; 1:2 for x ¼ p=4

�
; q2 ¼

q1
q1 � 4 cos x

:
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The parameter settings of theARMA(1,1)model basically followXL. Thismodel
includes four pure AR(1) and four pure MA(1) models as special cases. However,
the spectral density of an ARMA(1,1) model over the frequency band [0, p] is
monotone. Then, MA(2) and AR(2) models are considered to evaluate the
performances of theNPWestimatorwhen the spectral density has a peakor a trough
at nonzero frequency. The parameter settings of the MA(2) and AR(2) models
depend on Hirukawa (2005) and Phillips et al. (2003), respectively. The spectral
densities for the MA(2) models over the frequency band [0, p] have the following
shapes: close to monotone decreasing (with a slight trough in high frequency part)
for (w1, w2) ¼ (0.67, 0.33);monotone increasing for (w1, w2) ¼ (�1.0, 0.2); close to
monotone increasing (with a slight trough in low frequency part) for (w1, w2) ¼
(�1.9, 0.95), (�1.3, 0.5); with a shallow trough near p/3 for (w1, w2) ¼ (�1.0, 0.9);
with an obvious trough near p/2 for (w1, w2) ¼ (0, 0.9); and with an obvious peak
near p/2 for (w1, w2) ¼ (0, �0.9). On the other hand, the spectral density of each
AR(2) model has a peak at the frequency x ¼ p/6 or p/4. In all experiments, the
sample size is 256, and the number of replications is 5,000.

As in XL, the long-run variance estimates are calculated by four spectral
estimators, namely: (i) the NPW estimator (NPW); (ii) the conventional, bias-
uncorrected estimator, defined as eqn (5) (BUC); (iii) the AR(1)-prewhitened
estimator in Andrews and Monahan (1992) (AM); and (iv) the trapezoidal lag-
window estimator in Politis and Romano (1995) (PR). A reasonable bandwidth
choice for each estimator is the key for meaningful comparison. From the
viewpoint of separating the issue of estimator quality from the bandwidth
selection problem, the �oracle� AMSE-optimal bandwidths are used for NPW and
BUC. In particular, the AMSE-optimal bandwidth of BUC is given by

Mopt
BUC xð Þ ¼ 4k22

1þ 1 x ¼ 0ð Þð Þ
R1
�1 k2 xð Þdx

f 00
xx

fxx
xð Þ

� �2
( )1=5

T 1=5

for univariate time series fxtg, and under this bandwidth BUC achieves the
convergence rate of O(T�4/5) in MSE.

AM is thought of as the best competitor to NPW in the literature of
econometrics. The estimation procedure of AM is as follows. First, an AR(1)
model xt ¼ /xt�1 þ gt is fitted to univariate time series fxtg, regardless of its true
DGP. Second, eqn (5) is estimated for the AR(1)-prewhitened process
ĝt ¼ xt � /̂xt�1, where /̂ is the least squares estimate of /. Finally, AM is given
by recolouring the AR(1)-prewhitened spectral density estimate f̂ĝĝ xð Þ so that

f̂AM xð Þ ¼ f̂ĝĝ xð Þ

1� /̂e�ix
��� ���2 :

(For more detailed implementation, see Andrews and Monahan, 1992.) AM
usually has the convergence rate of O(T�4/5) in MSE, but it achieves the
parametric rate of O(T�1) in MSE when the true DGP is an AR(1) model.
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For NPW, BUC and AM, the Gaussian kernel k(x) ¼ exp(�x2/2) is
employed. Since its corresponding spectral window K hð Þ ¼ expð�h2=2Þ=

ffiffiffiffiffiffi
2p

p

has unbounded support, the amplitude window is approximated by
KM(h) ’ MK(Mh) as in eqn (3). For convenience, some characteristic numbers
of the Gaussian kernel are given below.

k2 ¼
1

2
;

Z 1

�1
k2 xð Þdx ¼

ffiffiffi
p

p
;

Z 1

�1
t2k xð Þdx ¼

ffiffiffi
p

p
4� 4

ffiffiffi
2

pffiffiffi
3

p þ 1ffiffiffi
2

p
 !

:

On the other hand, PR is well known as a bias-corrected spectral density
estimator in the literature of statistical time series. It is expressed as a linear
combination of two spectral estimators under the Bartlett kernel

f̂PR xð Þ ¼ hþ 1ð Þf̂1 xð Þ � hf̂2 xð Þ;

where h ¼ M2/(M1 � M2) and M1 and M2(<M1) are the bandwidths for f̂1 xð Þ
and f̂2 xð Þ, respectively. Since f̂PR xð Þ is not necessarily non-negative, Politis and
Romano (1995) define PR as the clipped estimator

f̂þ
PR xð Þ ¼ max f̂PR xð Þ; 0

n o
:

PR has the convergence rate of O(logT/T) and O(T�1) in MSE for ARMA
models and m-dependent processes, respectively. However, unlike three other
estimators concerned, the issue of optimal bandwidth choice for PR is yet to be
fully solved. Then, the bandwidth choice follows XL. Based on the suggestion in
Politis and Romano (1995), set h ¼ 1 so that M1 ¼ 2M2. Let M2 take five values
such that M2 ¼ 4, 8, 12, 16, 20, and denote the corresponding PR estimators as
PR1, PR2, PR3, PR4 and PR5, respectively.

4.2. Simulation results

Tables I, II and III display the Monte Carlo results for ARMA(1,1), MA(2) and
AR(2) models, respectively. The root mean squared errors (RMSEs) of spectral
estimators are exhibited in the first row of a given DGP. The numbers in the
second row (in parenthesis) are the biases of the estimators. For convenience, the
true value of the long-run variance X is also provided.

The Monte Carlo results indicate superior finite sample performances of NPW
for a wide variety of DGPs. Moreover, the MBC technique in NPW does not lead
to inflations in variance, as opposed to alternative bias reduction techniques for
spectral estimation. For many DGPs in Table I, the RMSE of NPW is not only
smaller than that of BUC but also the smallest among all. In general, the bias of
NPW is smaller in magnitude than that of BUC. Table II demonstrates that these
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findings are robust to a wide variety of shapes of spectral densities: NPW indeed
achieves the smallest RMSE for all but one DGP. The RMSE and bias of BUC
are smaller for most of DGPs in Table III, whereas NPW achieves the smallest
RMSE for two extreme DGPs with (x, q1) ¼ (p/6, 1.6),(p/4, 1.2).

On the other hand, AM is subject to misspecification by fitting the AR(1) filter.
As far as the filter correctly specifies DGPs (i.e. for the first four DGPs in Table I),
AM performs best. In contrast, it performs quite poorly for all other DGPs: an
MA or extra AR term makes the AM estimate imprecise, and biased upwardly in
most cases. PR estimators (PR1 and PR2, in particular) appear to have a better
bias property for a wide variety of DGPs, whereas their RMSEs for a given DGP
are in general greater than that of NPW or BUC.5

For illustrative purposes, Figure 1 displays the plots of spectral density
estimates by NPW, BUC, AM and PR1 with true densities over the frequency
band (0, p]. The spectral densities for four selected DGPs have a variety of shapes:
(a) downward sloping; (b) upward sloping; (c) with a trough at nonzero

TABLE I

RMSEs and Biases of Long-Run Variance Estimates for ARMA(1,1) Models

q w X NPW BUC AM PR1 PR2 PR3 PR4 PR5

0.8 0.0 25.0000 10.6541 9.8213 9.8535 9.4755 9.3699 11.1310 12.6877 13.9998
(�5.0036) (�5.9529) (�0.5427) (�7.9805) (�4.4592) (�4.3080) (�5.0591) (�5.9867)

0.5 0.0 4.0000 1.0470 1.0022 0.9429 1.0578 1.5154 1.8578 2.1186 2.3129
(�0.3574) (�0.5312) (�0.0249) (�0.2768) (�0.3856) (�0.5637) (�0.7442) (�0.9152)

�0.5 0.0 0.4444 0.0745 0.0792 0.0543 0.1270 0.1755 0.2093 0.2355 0.2569
(�0.0269) (0.0359) (�0.0020) (�0.0091) (�0.0347) (�0.0519) (�0.0694) (�0.0877)

�0.8 0.0 0.3086 0.0661 0.0591 0.0384 0.1199 0.1233 0.1474 0.1675 0.1838
(�0.0451) (0.0290) (�0.0022) (0.0730) (0.0010) (�0.0279) (�0.0447) (�0.0577)

0.0 0.8 3.2400 0.4981 0.5664 1.5129 0.9098 1.2879 1.5356 1.7378 1.9041
(�0.2725) (�0.3016) (1.2093) (�0.1552) (�0.3022) (�0.4442) (�0.5839) (�0.7132)

0.0 0.5 2.2500 0.3389 0.3838 0.8794 0.6374 0.8870 1.0647 1.2006 1.3061
(�0.1663) (�0.1956) (0.6755) (�0.1071) (�0.2200) (�0.3219) (�0.4204) (�0.5093)

0.0 �0.5 0.2500 0.0626 0.0667 0.2086 0.0811 0.1002 0.1191 0.1349 0.1482
(0.0056) (0.0224) (0.1985) (�0.0088) (�0.0193) (�0.0308) (�0.0417) (�0.0519)

0.0 �0.8 0.0400 0.0196 0.0208 0.2954 0.0370 0.0260 0.0243 0.0248 0.0256
(0.0042) (0.0087) (0.2903) (0.0076) (0.0026) (0.0008) (�0.0012) (�0.0030)

0.5 0.8 12.9600 3.5759 3.4543 11.4281 3.5816 5.1719 6.2207 7.0000 7.6323
(�1.1764) (�1.7770) (9.2036) (�0.9033) (�1.1806) (�1.7245) (�2.2854) (�2.8324)

0.5 0.5 9.0000 2.4473 2.3709 6.9767 2.4537 3.4478 4.1760 4.7376 5.1720
(�0.8460) (�1.2583) (5.5619) (�0.6569) (�0.8650) (�1.2472) (�1.6302) (�2.0139)

0.5 �0.8 0.1600 0.0731 0.0748 0.5426 0.0930 0.0818 0.0868 0.0939 0.1008
(0.0104) (0.0283) (0.5325) (0.0375) (0.0038) (�0.0035) (�0.0105) (�0.0176)

0.2 0.2 2.2500 0.4278 0.4340 0.5945 0.6274 0.8794 1.0444 1.1798 1.2917
(�0.1351) (�0.2231) (0.3090) (�0.1119) (�0.2055) (�0.3028) (�0.4039) (�0.5018)

�0.2 �0.2 0.4444 0.0843 0.0879 0.0951 0.1311 0.1756 0.2076 0.2319 0.2527
(0.0467) (0.0335) (0.0686) (�0.0179) (�0.0380) (�0.0569) (�0.0761) (�0.0948)

�0.5 0.8 1.4400 0.1788 0.2185 0.4047 0.4088 0.5740 0.6885 0.7793 0.8535
(�0.0090) (�0.1705) (0.2891) (�0.0775) (�0.1375) (�0.1943) (�0.2553) (�0.3140)

�0.5 �0.5 0.1111 0.0281 0.0328 0.0940 0.0559 0.0493 0.0549 0.0611 0.0662
(0.0052) (0.0137) (0.0894) (0.0207) (�0.0049) (�0.0104) (�0.0155) (�0.0206)

�0.5 �0.8 0.0178 0.0137 0.0147 0.1307 0.0646 0.0276 0.0210 0.0184 0.0172
(0.0057) (0.0078) (0.1288) (0.0420) (0.0108) (0.0063) (0.0048) (0.0040)
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frequency; and (d) with a peak at nonzero frequency. Although each panel
presents the plots based on a typical realization for a given DGP with the sample
size 256, it provides a feeling about the general tendency of spectral density
estimates concerned. First, we see how NPW works. When BUC underestimates
(overestimates) the density, NPW corrects the estimate in an upward (a
downward) direction. The bias correction in a downward direction might be
somewhat excessive, whereas the one in an upward direction not.

Second, NPW appears to capture the shape of a spectral density more
accurately. Although BUC mistakenly estimates a peak in the low frequency part
of Panel (c), NPW draws the U-shape successfully. On the other hand, PR1 have a
tendency to generate a spurious peak or trough. Because of the AR(1) filter, the
density estimate by AM is in general misleading. In particular, AM tends to

TABLE II

RMSEs and Biases of Long-Run Variance Estimates for MA(2) Models

w1 w2 X NPW BUC AM PR1 PR2 PR3 PR4 PR5

0.67 0.33 4.0000 0.7364 0.8264 2.4292 1.1252 1.5973 1.9301 2.1819 2.4011
(�0.3368) (�0.4460) (1.9870) (�0.2094) (�0.3835) (�0.5660) (�0.7418) (�0.9026)

�1.0 0.2 0.0400 0.0176 0.0196 0.1865 0.0370 0.0261 0.0243 0.0247 0.0257
(0.0053) (0.0092) (0.1832) (0.0080) (0.0026) (0.0013) (�0.0010) (�0.0023)

�1.9 0.95 0.0025 0.0217 0.0215 0.1942 0.0753 0.0430 0.0339 0.0284 0.0258
(0.0116) (0.0117) (0.1911) (0.0445) (0.0265) (0.0213) (0.0184) (0.0169)

�1.3 0.5 0.0400 0.0168 0.0195 0.1031 0.0454 0.0298 0.0260 0.0254 0.0261
(0.0009) (0.0125) (0.1008) (0.0118) (0.0054) (0.0021) (�0.0002) (�0.0016)

�1.0 0.9 0.8100 0.2075 0.2148 0.3851 0.2203 0.3149 0.3807 0.4305 0.4715
(�0.1403) (�0.1180) (�0.3786) (�0.0372) (�0.0745) (�0.1107) (�0.1439) (�0.1768)

0.0 0.9 3.6100 0.7454 0.8292 1.7365 0.9858 1.4107 1.7048 1.9302 2.1089
(�0.4355) (�0.4635) (�1.6945) (�0.1855) (�0.3570) (�0.5476) (�0.7191) (�0.8629)

0.0 �0.9 0.0100 0.0190 0.0203 1.8074 0.0762 0.0447 0.0346 0.0300 0.0268
(0.0070) (0.0096) (1.7875) (0.0421) (0.0243) (0.0186) (0.0164) (0.0142)

TABLE III

RMSEs and Biases of Long-Run Variance Estimates for AR(2) Models

x q1 X NPW BUC AM PR1 PR2 PR3 PR4 PR5

p/6 0.4 1.8737 0.3775 0.2744 0.7601 0.5284 0.7386 0.8945 1.0055 1.0898
(0.0096) (�0.1032) (0.5990) (�0.0806) (�0.1581) (�0.2420) (�0.3163) (�0.3878)

0.8 3.9954 0.9546 0.7637 3.9515 1.1364 1.5597 1.8887 2.1482 2.3610
(0.0961) (0.0170) (3.5477) (�0.1223) (�0.3632) (�0.5574) (�0.7322) (�0.8925)

1.2 9.1821 3.0762 2.5160 20.1334 2.8737 3.8517 4.4723 5.0372 5.4579
(1.9532) (0.6436) (18.5009) (0.4995) (�0.9547) (�1.1338) (�1.5696) (�1.9573)

1.6 14.9857 5.3853 5.9783 28.8981 10.6293 8.8438 7.4061 8.3449 9.2074
(�1.7173) (3.0992) (24.9134) (8.2406) (�5.5838) (0.2788) (�2.3109) (�3.6329)

p/4 0.4 1.7100 0.3506 0.2881 0.8203 0.4941 0.6725 0.8089 0.9172 1.0005
(0.0371) (0.0278) (0.6945) (�0.0874) (�0.1613) (�0.2346) (�0.3029) (�0.3711)

0.8 2.8304 0.8380 0.6763 3.2403 0.8722 1.1185 1.3287 1.4884 1.6183
(0.5373) (0.2092) (3.0054) (�0.2454) (�0.2457) (�0.3794) (�0.5032) (�0.6211)

1.2 3.4690 1.0108 1.0967 4.4310 2.6045 1.4202 1.7487 1.8777 2.0734
(�0.2424) (0.5319) (4.0859) (�2.3419) (0.0685) (�0.5596) (�0.4373) (�0.6689)
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estimate the spectral density of such a DGP as in Panels (c) or (d) as of the one for
the white noise process!

5. CONCLUSION

This paper has modified the NPW spectral matrix estimator (and the long-run
variance estimator as a special case) proposed by XL, and derived its asymptotic
results. Because of its �sandwich form� of the crude spectral matrix estimate and
the bias correction term, the modified NPW estimator is shown to be Hermitian
and positive definite in finite samples. Some sensible definitions of the MSE of the
estimator are also proposed. For each definition, the approximation to the MSE
and the bandwidth that minimizes the asymptotic MSE are derived. It is
demonstrated that the variance term in the MSE indeed involves the roughness of
the �twiced� spectral window. The estimator establishes the convergence rate of
O(T�8/9) in MSE when best implemented under the second-order spectral
window. NPW can be iterated further to obtain better rates of convergence,
provided that the underlying spectral density has sufficient smoothness. Monte

(a) ARMA(1,1) with (  ,    ) = (0.0, 0.8) (b) ARMA(1, 1) with (  ,    ) = (0.0, –0.8)

(c) MA(2) with (    ,      ) = (0.0, 0.9) 21 (d) MA(2) with (    ,      ) = (0.0, –0.9)21
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Figure 1. Spectral density estimates for selected DGPs.
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Carlo results indicate that for a wide variety of DGPs the NPW estimator reduces
the bias without inflating the variance and thus improves the MSE, compared
with the bias-uncorrected estimator.

APPENDIX

A.1. MATHEMATICAL NOTATIONS

Notation Description

[x] Integer part of x 2 R
Re(x), Im(x) Real and imaginary parts of x 2 C
1(S) Indicator function that takes 1 if S is true
s Convolution
� Tensor (or Kronecker) product
� Conjugate transpose of a complex-valued matrix, i.e. A� ¼ �AT

jjAjj Euclidean norm of the matrix A, i.e. jjAjj ¼ [tr(A�A)]1/2

vec(A) Column by column vectorization function of the matrix A
Ip p-dimensional identity matrix.
Kdd d 2 � d 2 commutation matrix that transforms vec(A) into vec(AT),

i.e. Kdd ¼ Rd
i¼1R

d
j¼1eie

T
j � ejeTi , where ei is the ith elementary d-vector

f0 0(x) second-order derivative of a d � d spectral matrix f(x) ¼ ffij(x)gd�d,
i.e. f0 0(x) ¼ fd2fij(x)/dx2gd�d

f
0 0 0 0
(x) Fourth-order derivative of a d � d spectral matrix f(x) ¼ ffij(x)gd�d,

i.e. f
0 0 0 0
(x)¼fd4fij(x)/dx4gd�d

XT ’ YT XT ¼ YT þ op(YT)

A.2. DETAILED EXPRESSIONS OF ~B xð Þ, ~V xð Þ AND R IN EQN (11)

Let

wxkj ¼ KM kj � x
� � 2p

T

� �
and �kj ¼ Ixx kj

� �
� fxx kj

� �

for notational simplicity. In addition, observe that

kj ¼ xþ 2pj
T

; j ¼ 0;	1; . . . ;	N ¼ 	 N
2


 �� �

holds if kj 2 B(x). Then, ~B xð Þ and ~V xð Þ, the leading bias and variance terms of ~fxx xð Þ, are
given by

~B xð Þ ¼ B̂xf 1=2
xx xð Þ � f 1=2

xx xð Þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

1=2
xx xð Þ

þ f 1=2
xx xð ÞB̂x � f 1=2

xx xð Þ
X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
f 1=2
xx xð Þ;
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~V xð Þ ¼ f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ þ f 1=2

xx xð ÞV̂x þ V̂xf 1=2
xx xð Þ

� f 1=2
xx xð Þ

X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

fxx kj
� �

�f 1=2
xx kj
� �	 
�1

f 1=2
xx xð Þ

� f 1=2
xx xð Þ

X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

fxx kj
� �

�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

f 1=2
xx xð Þ;

where

B̂x ¼ �f 1=2
xx xð Þ � f 1=2

xx xð Þ; V̂x ¼ f̂ 1=2
xx xð Þ � �f 1=2

xx xð Þ; and �f 1=2
xx xð Þ ¼

X
j� Nj j

wxkj f
1=2
xx kj
� �

:

To save space, among all 206 terms in the remainder part R, only 12 leading terms are
described below:

B̂x

X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ

� f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ

þ f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂x

� f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ

þ B̂2
x � B̂x

X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
f 1=2
xx xð Þ

þ f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂2
kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ � f 1=2

xx xð Þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj B̂x

þ f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj f

1=2
xx xð Þ � B̂x

X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

1=2
xx xð Þ

þ f 1=2
xx xð Þ

X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ � f 1=2

xx xð Þ
X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
B̂x:

A.3. DERIVATION OF EQN (11)

The derivation of eqn (11) requires Lemmata 1 and 2.

Lemma 1. Let

B̂x ¼ �f 1=2
xx xð Þ � f 1=2

xx xð Þ;
V̂x ¼ f̂ 1=2

xx xð Þ � �f 1=2
xx xð Þ; and

�f 1=2
xx xð Þ ¼

X
j� Nj j

wxkj f
1=2
xx kj
� �

Then, under Assumptions 1, 2 and 3,
(a) B̂x

�� �� ¼ O M�2
� �

uniformly in x.
(b) V̂x
�� �� ¼ opð T=Mð Þ�1=2Þ uniformly in x.
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Proof of Lemma 1. The standard result on the bias term of the spectral density estimator
implies that

�fxx xð Þ � fxx xð Þ
�� �� ¼ O M�2

� �
uniformly in x, where

�fxx xð Þ ¼
X
j� Nj j

wxkj fxx kj
� �

:

Theorem 7.7.4 in Brillinger (1975, p. 265) also implies that there is a d > 0 such that

f̂xx xð Þ � �fxx xð Þ
�� �� ¼

X
j� Nj j

wxkj�kj

������
������ ¼ op

T
M

� ��1=2�d
 !

uniformly in x. Using an approximation such as

�f 1=2
xx xð Þ � f 1=2

xx xð Þ ’ �f 1=2
xx xð Þ þ f 1=2

xx xð Þ
	 
�1

�fxx xð Þ � fxx xð Þ
� �

ð20Þ

establishes the lemma. u

Lemma 2. The bias correction term ~aðxÞ in eqn (7) can be rewritten as

~a xð Þ ¼ a0 xð Þ þ aB xð Þ þ aV xð Þ þ R;

where

a0 xð Þ ¼ Id þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
;

aB xð Þ ¼ �
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
�
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj

þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj

�
X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�
X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂2
kj f

�1=2
xx kj

� �
�
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂2
kj f

�1=2
xx kj

� �
þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
þ
X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
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�
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂2
kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂2
kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
;

aV xð Þ ¼ �
X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

�kj
�f 1=2
xx kj
� �	 
�1

�
X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

fxx kj
� �

�f 1=2
xx kj
� �	 
�1

�
X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

�kj
�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

�
X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

fxx kj
� �

�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

þ
X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

�kj
�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

þ
X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

fxx kj
� �

�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

;

and R ¼ op(M
�4þ(T/M)�1/2).

Proof of Lemma 2. Rewrite ~a xð Þ as

~a xð Þ ¼ a0 xð Þ þ �a xð Þ � a0 xð Þf g þ ~a xð Þ � �a xð Þf g; ð21Þ

where

a0 xð Þ ¼
X
j� Nj j

wxkj f
�1=2
xx kj

� �
Ixx kj
� �

f�1=2
xx kj

� �
; ð22Þ

and

�a xð Þ ¼
X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

Ixx kj
� �

�f 1=2
xx kj
� �	 
�1

: ð23Þ

Three terms in eqn (21) are approximated separately as follows. First, eqn (3) and the
change of variable hj ¼ M(kj � x) yield the Riemann sum

X
j� Nj j

wxkj ’
X

kj2B xð Þ
K M kj � x

� �� � 2pM
T

¼
X

hj2 �1;1ð Þ
K hj
� �

Dhj ’
Z 1

�1
K hð Þdh ¼ 1: ð24Þ

Using eqn (24) and �kj ¼ Ixx(kj) � fxx(kj) in eqn (22) gives the expression of a0(x).
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Second, by a geometric series expansion,

�f 1=2
xx kj
� �	 
�1

¼ Id þ f�1=2
xx kj

� �
�f 1=2
xx kj
� �

� f 1=2
xx kj
� �	 
n o�1

f�1=2
xx kj

� �
¼ f�1=2

xx kj
� �

� f�1=2
xx kj

� �
�f 1=2
xx kj
� �

� f 1=2
xx kj
� �	 


f�1=2
xx kj

� �
þ f�1=2

xx kj
� �

�f 1=2
xx kj
� �

� f 1=2
xx kj
� �	 


f�1=2
xx kj

� �
�f 1=2
xx kj
� �

� f 1=2
xx kj
� �	 


f�1=2
xx kj

� �
þ O �f 1=2

xx kj
� �

� f 1=2
xx kj
� ��� ��3	 


;

where the order of the remainder term is O(M�6) ¼ op(M
�4) by Lemma 1(a). Substituting

this in eqn (23), expanding it, and using

B̂kj ¼ �f 1=2
xx kj
� �

� f 1=2
xx kj
� �

and �kj ¼ Ixx kj
� �

� fxx kj
� �

;

we see that the leading term is aB(x) and the remainder term is op(M
�4).

Lastly, by the same geometric series expansion as above,

f̂�1=2
xx kj

� �
¼ Id þ �f 1=2

xx kj
� �	 
�1

f̂ 1=2
xx kj
� �

� �f 1=2
xx kj
� �	 
� ��1

�f 1=2
xx kj
� �	 
�1

¼ �f 1=2
xx kj
� �	 
�1

� �f 1=2
xx kj
� �	 
�1

f̂ 1=2
xx kj
� �

� �f 1=2
xx kj
� �	 


�f 1=2
xx kj
� �	 
�1

þ O f̂ 1=2
xx kj
� �

� �f 1=2
xx kj
� ��� ��2	 


;

where the order of the remainder term is

op T=Mð Þ�1
	 


¼ op T=Mð Þ�1=2
	 


by Lemma 1(b). Substituting this to ~a xð Þ, expanding it, and using

V̂kj ¼ f̂ 1=2
xx kj
� �

� �f 1=2
xx kj
� �

and �kj ¼ Ixx kj
� �

� fxx kj
� �

;

we see that the leading term is aV(x) and the remainder term is op((T/M)�1/2). u

Derivation of eqn (11). It is easy to see that

f̂ 1=2
xx xð Þ ¼ f 1=2

xx xð Þ þ B̂x þ V̂x: ð25Þ

Substituting eqn (25) and Lemma 2 into eqn (7) and doing some tedious but
straightforward calculations establish the expansion to ~fxx xð Þ. u

A.4. PROOF OF THEOREM 1

The proofs of Theorems 1 and 2 require Lemmata 3–5.

Lemma 3. Under Assumptions 1, 2 and 3, the leading bias term of ~fxxðxÞ is approximated

by

M4 ~B xð Þ ’ �k22W xð Þ;
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where

W xð Þ ¼ f 1=2
xx xð ÞU00 xð Þf 1=2

xx xð Þ and U xð Þ ¼ f�1=2
xx xð Þf 00

xx xð Þf�1=2
xx xð Þ:

Proof of Lemma 3. The Riemann sum (24) implies that first two terms in M4 ~B xð Þ are
approximated by

M4 B̂xf 1=2
xx xð Þ � f 1=2

xx xð Þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

1=2
xx xð Þ

8<
:

9=
;

’ M2f 1=2
xx xð Þ

X
j� Nj j

wxkj f�1=2
xx xð ÞM2B̂x � f�1=2

xx kj
� �

M2B̂kj

	 

f 1=2
xx xð Þ: ð26Þ

Using the standard result on the bias term of the spectral density estimator and eqn (10),

M2 �fxx xð Þ � fxx xð Þ
� �

’ �k2f 2ð Þ
xx xð Þ ¼ k2f 00

xx xð Þ:

Then, by eqn (20), for a large T,

B̂x ¼ M2 �f 1=2
xx xð Þ � f 1=2

xx xð Þ
	 


’ M2 �fxx xð Þ � fxx xð Þ
� �

�f 1=2
xx xð Þ þ f 1=2

xx xð Þ
	 
�1

’ k2f 00
xx xð Þ 2f 1=2

xx xð Þ
	 
�1

¼ k2
2
f 00
xx xð Þf�1=2

xx xð Þ: ð27Þ

Substituting eqn (27) into (26) gives

M4 B̂xf 1=2
xx xð Þ � f 1=2

xx xð Þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

1=2
xx xð Þ

8<
:

9=
;

’ M2k2
2

f 1=2
xx xð Þ

�
X
j� Nj j

wxkj f�1=2
xx xð Þf 00

xx xð Þf�1=2
xx xð Þ � f�1=2

xx kj
� �

f 00
xx kj
� �

f�1=2
xx kj

� �n o
f 1=2
xx xð Þ: ð28Þ

Let

U kj
� �

¼ f�1=2
xx kj

� �
f 00
xx kj
� �

f�1=2
xx kj

� �
:

Since each element of the spectral matrix fxx(Æ) has four continuous derivatives,

U kj
� �

¼ U xð Þ þ U0 xð Þ kj � x
� �

þ 1

2
U00 xð Þ kj � x

� �2þo kj � x
�� ��2	 


: ð29Þ

By the symmetry of KM(Æ) about the origin,

X
j� Nj j

wxkj kj � x
� �

¼
X

kj2B xð Þ
KM kj � x
� � 2p

T
kj � x
� �

¼ 0: ð30Þ
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Substituting eqns (29) and (30) into (28), we have, by eqn (3) and the change of variable
hj ¼ M(kj � x),

M4 B̂xf 1=2
xx xð Þ � f 1=2

xx xð Þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

1=2
xx xð Þ

8<
:

9=
;

’ � k2
4
f 1=2
xx xð ÞU00 xð Þf 1=2

xx xð Þ
X

kj2B xð Þ
K M kj � x

� �� �
M kj � x
� �� �22pM

T

¼ � k2
4
f 1=2
xx xð ÞU00 xð Þf 1=2

xx xð Þ
X

hj2 �1;1ð Þ
h2j K hj

� �
Dhj

’ � k2
4
f 1=2
xx xð ÞU00 xð Þf 1=2

xx xð Þ
Z 1

�1
h2K hð Þdh

¼ � k22
2
f 1=2
xx xð ÞU00 xð Þf 1=2

xx xð Þ

¼ � k22
2
W xð Þ:

The next to last expression is established because

k xð Þ ¼
Z 1

�1
K hð Þeixh dh

and eqn (9) imply that Z 1

�1
h2K hð Þdh ¼ �k00 0ð Þ ¼ 2k2: ð31Þ

Similarly, final two terms in M4 ~B xð Þ are also approximated by �k22W xð Þ=2, which
completes the proof. u

Lemma 4. Under Assumptions 1, 2 and 3, the leading variance term of ~fxxðxÞ is

approximated by

T
M

var vec ~V xð Þ
� �� �

’ 2p
R1
�1 T 2

K hð Þdhfxx xð Þ � fxx xð ÞT for x 6¼ 0

2p
R1
�1 T 2

K hð Þdh Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ for x ¼ 0

(

’
R1
�1 t2k xð Þdxfxx xð Þ � fxx xð ÞT for x 6¼ 0R1
�1 t2k xð Þdx Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ for x ¼ 0

(
;

where TK(h) ¼ 2K(h)�K s K(h) is the fourth-order spectral window obtained by twicing
(Stuetzle and Mittal, 1979), and

tk xð Þ ¼
Z 1

�1
TK hð Þeixh dh

is the kernel corresponding to the spectral window TK(h).

Proof of Lemma 4. Using kj ’ x for a large T and the first-order Taylor expansion gives
�fxx kj
� �

’ fxx xð Þ and f̂xx kj
� �

’ fxx xð Þ. Then, by eqn (20), second and third terms in ~V xð Þ
are approximated by
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f 1=2
xx xð ÞV̂x þ V̂xf 1=2

xx xð Þ

¼ f 1=2
xx xð Þ f̂ 1=2

xx xð Þ � �f 1=2
xx xð Þ

	 

þ f̂ 1=2

xx xð Þ � �f 1=2
xx xð Þ

	 

f 1=2
xx xð Þ

’ f 1=2
xx xð Þ f̂ 1=2

xx xð Þ þ �f 1=2
xx kj
� �	 
�1

f̂xx xð Þ � �fxx xð Þ
	 


þ f̂xx xð Þ � �fxx xð Þ
	 


f̂ 1=2
xx xð Þ þ �f 1=2

xx xð Þ
	 
�1

f 1=2
xx xð Þ

’ f 1=2
xx xð Þ 2f 1=2

xx xð Þ
	 
�1X

j� Nj j
wxkj�kj þ

X
j� Nj j

wxkj�kj 2f 1=2
xx xð Þ

	 
�1

f 1=2
xx xð Þ

¼
X
j� Nj j

wxkj�kj :

Similarly, final two terms in ~V xð Þ are approximated by

f 1=2
xx xð Þ

X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

fxx kj
� �

�f 1=2
xx kj
� �	 
�1

f 1=2
xx xð Þ

þ f 1=2
xx xð Þ

X
j� Nj j

wxkj
�f 1=2
xx kj
� �	 
�1

fxx kj
� �

�f 1=2
xx kj
� �	 
�1

V̂kj �f 1=2
xx kj
� �	 
�1

f 1=2
xx xð Þ

’ f 1=2
xx xð Þ

X
l� Nj j

wxkl f
�1=2
xx klð ÞV̂kl f 1=2

xx xð Þ þ f 1=2
xx xð Þ

X
l� Nj j

wxkl V̂kl f
�1=2
xx klð Þf 1=2

xx xð Þ

’ f 1=2
xx xð Þ

X
l� Nj j

wxkl f
�1=2
xx klð Þ

X
j� Nj j

wklkj�kj f̂ 1=2
xx klð Þ þ �f 1=2

xx klð Þ
	 
�1

f 1=2
xx xð Þ

þ f 1=2
xx xð Þ

X
l� Nj j

wxkl f̂ 1=2
xx klð Þ þ �f 1=2

xx klð Þ
	 
�1X

j� Nj j
wklkj�kj f

�1=2
xx klð Þf 1=2

xx xð Þ

’ f 1=2
xx xð Þ

X
l� Nj j

wxkl f
�1=2
xx klð Þ

X
j� Nj j

wklkj�kj 2f 1=2
xx klð Þ

	 
�1

f 1=2
xx xð Þ

þ f 1=2
xx xð Þ

X
l� Nj j

wxkl 2f 1=2
xx klð Þ

	 
�1X
j� Nj j

wklkj�kj f
�1=2
xx klð Þf 1=2

xx xð Þ

¼
X
j� Nj j

X
l� Nj j

wxklwklkj f
1=2
xx xð Þf�1=2

xx klð Þ�kj f�1=2
xx klð Þf 1=2

xx xð Þ:

Then, ~V xð Þ is approximated by

~V xð Þ ’
X
j� Nj j

wxkj f
1=2
xx xð Þf�1=2

xx kj
� �

�kj f
�1=2
xx kj

� �
f 1=2
xx xð Þ þ

X
j� Nj j

wxkj�kj

�
X
j� Nj j

X
l� Nj j

wxklwklkj f
1=2
xx xð Þf�1=2

xx klð Þ�kj f�1=2
xx klð Þf 1=2

xx xð Þ:

Since kj ’ x and kl ’ x for a large T and the �kj are asymptotically independent with zero
asymptotic mean, we have

T
2pM

var vec ~V xð Þ
� �� �

’ T
2pM

X
j� Nj j

2wxkj �
X
l� Nj j

wxklwklkj

0
@

1
A

2

var vec �kj
� �� �

: ð32Þ

Using the standard result on the variance of the finite Fourier transform and kj ’ x for
a large T gives
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var vec �kj
� �� �

’ fxx xð Þ � fxx xð ÞT for x 6¼ 0
fxx 0ð Þ � fxx 0ð Þ for x ¼ 0

�
: ð33Þ

Also by eqn (3),

T
2pM

X
l� Nj j

wxklwklkj ’
X

kl2B kjð Þ
K M kl � xð Þð ÞK M kj � kl

� �� � 2pM
T

:

Consider the change of variable tl ¼ M(kj � kl). Then, by M(kl � x) ¼ M(kj � x) � tl,

X
kl2B kjð Þ

K M kl � xð Þð ÞK M kj � kl
� �� � 2pM

T

¼
X

tl2 �1;1ð Þ
K M kj � x

� �
� tl

� �
K tlð ÞDtl

’
Z 1

�1
K tð ÞK M kj � x

� �
� t

� �
dt

¼ K � K M kj � x
� �� �

:

Hence, again by the change of variable hj ¼ M(kj � x),

T
2pM

X
j� Nj j

2wxkj �
X
l� Nj j

wxklwklkj

0
@

1
A

2

’
X

kj2B xð Þ
2K M kj � x

� �� �
� K � K M kj � x

� �� �� �22pM
T

¼
X

hj2 �1;1ð Þ
2K hj
� �

� K � K hj
� �� �2

Dhj

’
Z 1

�1
2K hð Þ � K � K hð Þf g2dh

¼
Z 1

�1
T 2
K hð Þdh: ð34Þ

Substituting eqns (33) and (34) into (32) yields

T
2pM

var vec ~V xð Þ
� �� �

’
R1
�1 T 2

K hð Þdhfxx xð Þ � fxx xð ÞT for x 6¼ 0R1
�1 T 2

K hð Þdh Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ for x ¼ 0

�
;

and thus the first expression is established. Moreover, let tk(x) be the kernel corresponding
to the spectral window TK(h). Then,

tk xð Þ ¼
Z 1

�1
TK hð Þeixh dh;

and thus the second expression is established by Parseval’s relation. u

Lemma 5. Under Assumptions 1, 2 and 3, R ¼ op(M
�4 þ (T/M)�1/2).
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Proof of Lemma 5. Applying the same method as in the proof of Lemma 2 and using
Lemma 1(a) and (b), it can be shown that each of the following six paired terms is op(M

�4):

B̂x

X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ

� f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ;

f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂x

� f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ;

B̂2
x � B̂x

X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
f 1=2
xx xð Þ;

f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂2
kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ � f 1=2

xx xð Þ
X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj B̂x;

f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
B̂kj f

1=2
xx xð Þ � B̂x

X
j� Nj j

wxkj f
�1=2
xx kj

� �
B̂kj f

1=2
xx xð Þ;

f 1=2
xx xð Þ

X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
B̂kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ � f 1=2

xx xð Þ
X
j� Nj j

wxkj B̂kj f
�1=2
xx kj

� �
B̂x:

It is easy to see that all other 194 terms are either op(M
�4) or op((T/M)�1/2) (although they

are not given explicitly). Therefore, the lemma is established. u

Proof of Theorem 1. Theorem 4 of Chapter 12 in Magnus and Neudecker (1999; MN

hereafter), implies that

MSE1
~fxx xð Þ; fxx xð Þ
� �

¼ E vec ~fxx xð Þ � fxx xð Þ
� �� �T

W xð ÞE vec ~fxx xð Þ � fxx xð Þ
� �� �

þ trW xð Þvar vec ~fxx xð Þ � fxx xð Þ
� �� �

: ð35Þ

The proof is split into two cases, depending on the frequency.

For x 6¼ 0: By Lemmata 3 and 5, the squared bias term is approximated by

k42 vec W xð Þð ÞTW xð Þvec W xð Þð Þ
M8

¼ k42
M8

Xd
i¼1

w i�1ð Þdþi xð ÞW2
ii xð Þ: ð36Þ

Observe that

U xð Þ ¼ f�1=2
xx xð Þf 00 xð Þf�1=2

xx xð Þ ¼ f�1=2
xx xð Þf 00 xð Þf�1=2

xx xð Þ�

is Hermitian (and positive definite), so is

W xð Þ ¼ f 1=2
xx xð ÞU00 xð Þf 1=2

xx xð Þ ¼ f 1=2
xx xð ÞU00 xð Þf 1=2

xx xð Þ�:

Then, Wii(x) 2 R, 8i, and thus (ABias)2 2 Rþ.
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The reason why w(j�1)dþi(x) ¼ 0, 8i 6¼ j must be imposed is demonstrated as follows.
Suppose that the restriction on weights is relaxed so that

w j�1ð Þdþi xð Þ ¼ w i�1ð Þdþj xð Þ � 0; 8i 6¼ j:

Then, eqn (36) becomes

k42 vec W xð Þð ÞTW xð Þvec W xð Þð Þ
M8

¼ k42
M8

Xd
i¼1

w i�1ð Þdþi xð ÞW2
ii xð Þ þ

Xd
i¼1

Xd
j¼1

w j�1ð Þdþi xð Þ W2
ij xð Þ þW2

ji xð Þ
	 
( )

:

Since WjiðxÞ ¼ WijðxÞ, we can merely show that

W2
ij xð Þ þW2

ji xð Þ ¼ 2 Re2 Wij xð Þ
� �

� Im2 Wij xð Þ
� �� �

2 R:

As a result, the sign of (ABias)2 is not necessarily non-negative!

Lemmata 4 and 5 imply that the variance term is approximated by

M
T

Z 1

�1
t2k xð Þdx trW xð Þ fxx xð Þ � fxx xð ÞT

	 

: ð37Þ

The trace part is rewritten as

trW xð Þfxx xð Þ � fxx xð ÞT¼
Xd
i¼1

w i�1ð Þdþi xð Þf 2
ii xð Þ � 0;

because fxx(x) is Hermitian and thus fii(x) 2 R, 8i. Hence, AVar 2 Rþ is established.
For x ¼ 0: It is not hard to show that W(0) is real-valued. Then, by Lemmata 3 and 5,

the squared bias term is approximated by

k42vec W 0ð Þð ÞTW 0ð Þvec W 0ð Þð Þ
M8

¼ k42
M8

Xd
i¼1

Xd
j¼1

w j�1ð Þdþi 0ð ÞW2
ij 0ð Þ � 0; ð38Þ

or (ABias)2 2 Rþ is established.

Lemmata 4 and 5 imply that the variance term is approximated by

M
T

Z 1

�1
t2k xð Þdx trW 0ð Þ Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ

¼ M
T

Z 1

�1
t2k xð Þdx trW 0ð Þfxx 0ð Þ � fxx 0ð Þ þ trW 0ð ÞKddfxx 0ð Þ � fxx 0ð Þf g: ð39Þ

The first trace part is

trW 0ð Þfxx 0ð Þ � fxx 0ð Þ ¼
Xd
i¼1

Xd
j¼1

w j�1ð Þdþi 0ð Þfii 0ð Þfjj 0ð Þ � 0;

because fxx(0) is positive definite and thus fii (0) 2 Rþ, 8i. Since fxx (0) is symmetric, this
part can be rewritten as tr W(0)fxx(0) � fxx(0)

T.

By the definition of Kdd and the expression 2-(4) of Chapter 2 in MN, the second trace
part is
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trW 0ð ÞKddfxx 0ð Þ � fxx 0ð Þ ¼ trW 0ð Þ
Xd
i¼1

Xd
j¼1

eieTj � ejeTi
	 


fxx 0ð Þ � fxx 0ð Þð Þ

¼ trW 0ð Þ
Xd
i¼1

Xd
j¼1

eieTj
	 


fxx 0ð Þ � ejeTi
� �

fxx 0ð Þ

¼
Xd
i¼1

Xd
j¼1

w j�1ð Þdþi 0ð Þfij 0ð Þfji 0ð Þ

¼
Xd
i¼1

Xd
j¼1

w j�1ð Þdþi 0ð Þf 2
ij 0ð Þ � 0;

because fxx(0) is real-valued and symmetric. Hence, AVar 2 Rþ is established.

Substituting eqns (36), (37), (38) and (39) into (35) yields (12). Taking the first-order
condition to the right-hand-side gives the AMSE-optimal bandwidth Mopt

1 xð Þ, and thus the
theorem is established. u

A.5. PROOF OF THEOREM 2

By the expressions 4-(3)(4) of Chapter 2 in MN, it can be shown that xTAx ¼
(x � x)Tvec(A) for a d-dimensional (possibly complex-valued) vector x and a d � d
(possibly complex-valued) matrix A. Using this and Theorem 4 of Chapter 12 in MN,
MSE2

~fxx xð Þ; fxx xð Þ
� �

is approximated by

MSE2
~fxx xð Þ; fxx xð Þ
� �

¼ E vec ~fxx xð Þ � fxx xð Þ
� �T

v� vð Þ v� vð ÞTvec ~fxx xð Þ � fxx xð Þ
� �n o

¼ E vec ~fxx xð Þ � fxx xð Þ
� �� �T

v� vð Þ v� vð ÞTE vec ~fxx xð Þ � fxx xð Þ
� �� �

þ tr v� vð Þ v� vð ÞTvar vec ~fxx xð Þ � fxx xð Þ
� �� �

¼ vTE ~fxx xð Þ � fxx xð Þ
� �

v
� �2þtr v� vð ÞTvar vec ~fxx xð Þ

� �� �
v� vð Þ: ð40Þ

Bias Term: By Lemmata 3 and 5, the bias term is approximated by

� k22v
TW xð Þv
M4

¼ � k22
M4

Xd
i¼1

Xd
j¼1

vivjWij xð Þ

¼ � k22
M4

Xd
i¼1

v2iWii xð Þ þ
Xd
i¼1

Xd
j¼iþ1

vivj Wij xð Þ þWji xð Þ
� �( )

: ð41Þ

Since W(x) is Hermitian, Wii(x) 2 R, 8i, and

Wij xð Þ þWji xð Þ ¼ Wij xð Þ þWij xð Þ ¼ 2Re Wij xð Þ
� �

2 R; 8i 6¼ j:

Hence, ABias 2 R is established.
Variance Term for x 6¼ 0: Lemmata 4 and 5 imply that the variance term is

approximated by

M
T

Z 1

�1
t2k xð Þdx tr v� vð ÞT fxx xð Þ � fxx xð ÞT

	 

v� vð Þ: ð42Þ
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By the expression 2-(4) of Chapter 2 in MN, the trace part is

tr v� vð ÞT fxx xð Þ � fxx xð ÞT
	 


v� vð Þ ¼ v� vð ÞT fxx xð Þ � fxx xð ÞT
	 


v� vð Þ

¼ vTfxx xð Þv
� �

vTfxx xð ÞTv
	 


:

Since fxx(x) is Hermitian, so is fxx(x)
T¼fxx(x). Then,

vTfxx xð Þv ¼
Xd
i¼1

v2i fii xð Þ þ
Xd
i¼1

Xd
j¼iþ1

vivj fij xð Þ þ fji xð Þ
� �

¼
Xd
i¼1

v2i fii xð Þ þ 2
Xd
i¼1

Xd
j¼iþ1

vivjRe fij xð Þ
� �

2 R;

because fii (x) 2 R, 8i, and fji (x) ¼ fij(x), 8i 6¼ j. In addition,

vTfxx xð ÞTv ¼
Xd
i¼1

v2i fii xð Þ þ
Xd
i¼1

Xd
j¼iþ1

vivj fij xð Þ þ fji xð Þ
	 


¼
Xd
i¼1

v2i fii xð Þ þ 2
Xd
i¼1

Xd
j¼iþ1

vivjRe fij xð Þ
� �

¼ vTfxx xð Þv;

because fii (x) 2 R, 8i, and fij(x) þ fji(x) ¼ fij(x) þ fji(x) ¼ 2Re(fij(x)), 8i 6¼ j. Then, eqn
(42) is rewritten as

M
T

Z 1

�1
t2k xð Þdx tr v� vð ÞT fxx xð Þ � fxx xð ÞT

	 

v� vð Þ ¼ M

T
vTfxx xð Þv
� �2Z 1

�1
t2k xð Þdx; ð43Þ

and thus AVar 2 Rþ is established.
Variance Term for x ¼ 0: By Lemmata 4 and 5, the variance term is approximated by

M
T

Z 1

�1
t2k xð Þdx tr v� vð ÞT Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ v� vð Þ

¼ M
T

Z 1

�1
t2k xð Þdx vTfxx 0ð Þv

� �2þtr v� vð ÞTKdd fxx 0ð Þ � fxx 0ð Þð Þ v� vð Þ
n o

: ð44Þ

By the definition of Kdd and the expression 2-(4) of Chapter 2 in MN, the second trace part
is

tr v� vð ÞTKdd fxx 0ð Þ � fxx 0ð Þð Þ v� vð Þ

¼ v� vð ÞT
Xd
i¼1

Xd
j¼1

eieTj � ejeTi
	 


fxx 0ð Þ � fxx 0ð Þð Þ v� vð Þ

¼
Xd
i¼1

Xd
j¼1

vT eieTj
	 


fxx 0ð Þv� vT ejeTi
� �

fxx 0ð Þv

¼
Xd
i¼1

Xd
j¼1

vT eieTj
	 


fxx 0ð Þv
	 


vT ejeTi
� �

fxx 0ð Þv
� �
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¼
Xd
i¼1

Xd
j¼1

vi
Xd
k¼1

vkfjk 0ð Þ
 !

vj
Xd
l¼1

vlfil 0ð Þ
 !

¼
Xd
i¼1

Xd
l¼1

vivlfil 0ð Þ
 ! Xd

j¼1

Xd
k¼1

vjvkfjk 0ð Þ
 !

¼ vTfxx 0ð Þv
� �2� 0: ð45Þ

Hence, AVar 2 Rþ is established.

Substituting eqns (41), (43), (44) and (45) into (40) yields (13). The AMSE-
optimal bandwidth Mopt

2 xð Þ follows the proof of Theorem 1, and thus the theorem is
established. h

A.6. DERIVATION OF EQN (14)

The standard result on the bias term of the spectral density estimator and eqn (10) yield

M4 E €fxx xð Þ
� �

� fxx xð Þ
� �

’ �tk;4f 4ð Þ
xx xð Þ ¼ �tk;4f 0000

xx xð Þ; ð46Þ

where tk,4 is the fourth generalized derivative of tk(Æ) at the origin. On the other hand,
Lemma in Stuetzle and Mittal (1979) implies thatZ 1

�1
h4TK hð Þdh ¼ �6

Z 1

�1
h2K hð Þdh

� �2

: ð47Þ

Using tk xð Þ ¼
R1
�1 TK hð Þeixhdh and eqn (9),Z 1

�1
h4TK hð Þdh ¼ t0000k 0ð Þ ¼ �24tk;4: ð48Þ

Substituting eqns (31) and (48) into eqn (47) establishes tk;4 ¼ k22 . Therefore, eqn (46) is
rewritten as

M4 E €fxx xð Þ
� �

� fxx xð Þ
� �

’ �k22f
0000
xx xð Þ;

and thus eqn (14) follows Theorems 1 and 2. u

A.7. PROOF OF THEOREM 3

This theorem can be shown by induction. Lemmata 3, 4 and 5 have already shown the case
of n ¼ 1. Next, suppose that that eqn (17) is true for some n(�1). Then, by a similar
technique to the derivation of eqn (11),

~fxx;nþ1 xð Þ ¼ fxx xð Þ þ ~Bnþ1 xð Þ þ ~Vnþ1 xð Þ þ Rnþ1;

where

~Bnþ1 xð Þ ¼ ~Bn xð Þ ~f 1=2
xx;n xð Þ þ f 1=2

xx xð Þ
	 
�1

f 1=2
xx xð Þ

� f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
~Bn kj
� �

~f 1=2
xx;n kj
� �

þ f 1=2
xx kj
� �	 
�1

f 1=2
xx xð Þ
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þ f 1=2
xx xð Þ ~f 1=2

xx;n xð Þ þ f 1=2
xx xð Þ

	 
�1
~Bn xð Þ

� f 1=2
xx xð Þ

X
j� Nj j

wxkj
~f 1=2
xx;n kj
� �

þ f 1=2
xx kj
� �	 
�1

~Bn kj
� �

f�1=2
xx kj

� �
f 1=2
xx xð Þ;

~Vnþ1 xð Þ ¼ f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
�kj f

�1=2
xx kj

� �
f 1=2
xx xð Þ

þ f 1=2
xx xð Þ ~f 1=2

xx;n xð Þ þ f 1=2
xx xð Þ

	 
�1
~Vn xð Þ þ ~Vn xð Þ ~f 1=2

xx;n xð Þ þ f 1=2
xx xð Þ

	 
�1

f 1=2
xx xð Þ

� f 1=2
xx xð Þ

X
j� Nj j

wxkj
~f 1=2
xx;n xð Þ þ f 1=2

xx xð Þ
	 
�1

~Vn xð Þf�1=2
xx kj

� �
f 1=2
xx xð Þ

� f 1=2
xx xð Þ

X
j� Nj j

wxkj f
�1=2
xx kj

� �
~Vn xð Þ ~f 1=2

xx;n xð Þ þ f 1=2
xx xð Þ

	 
�1

f 1=2
xx xð Þ;

and Rnþ1 is the remainder term.
To approximate the bias term, let Unþ1 xð Þ ¼ f�1=2

xx kj
� �

Wn kj
� �

f�1=2
xx kj

� �
. Then, by the

assumption of induction and the same argument as in the proof of Lemma 3, each of first
two and final two terms in M2þ2 nþ1ð Þ ~Bnþ1 xð Þ is approximated by
�1ð Þnþ1knþ2

2 f 1=2
xx xð ÞU00

nþ1 xð Þf 1=2
xx xð Þ. Letting Wnþ1 xð Þ ¼ f 1=2

xx xð ÞU00
nþ1 xð Þf 1=2

xx xð Þ establishes
the approximation to the bias term for the case of n þ 1. Also note that Wn(x) is Hermitian
and positive definite, so is Unþ1(x) and thus Wnþ1(x).

On the other hand, applying the same argument as in the proof of Lemma 4, for large T

such that kj ’ x, we have

T
2pM

var vec ~Vnþ1 xð Þ
� �� �

’ T
2pM

var vec
X
j� Nj j

wxkj�kj þ ~Vn xð Þ �
X
j� Nj j

wxkj
~Vn kj
� �0

@
1
A

0
@

1
A:

The �kj are asymptotically independent with zero asymptotic mean, and by the standard
result on the variance of the finite Fourier transform (33) holds. In addition, ~Vn xð Þ is the
weighted sum of the �kj, and by the assumption of induction, each weight can be
approximated by Kn(h)dh. Hence,

T
2pM

var vec ~Vnþ1 xð Þ
� �� �

’
R1
�1 K0 hð Þ þ Kn hð Þ � K0 � Kn hð Þf g2dhfxx xð Þ � fxx xð ÞT for x 6¼ 0R1
�1 K0 hð Þ þ Kn hð Þ � K0 � Kn hð Þf g2dh Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ for x ¼ 0

(

¼
R1
�1 K2

nþ1 hð Þdhfxx xð Þ � fxx xð ÞT for x 6¼ 0R1
�1 K2

nþ1 hð Þdh Id2 þ Kddð Þfxx 0ð Þ � fxx 0ð Þ for x ¼ 0

(

by letting Knþ1(h) ¼ K0(h) þ Kn(h) � K0 s Kn(h). Finally, using the Parseval’s relation
establishes the approximation to the variance term for the case of n þ 1.

Lastly, by the same argument as in the proof of Lemma 5, the remainder term is shown

to be Rnþ1 ¼ op(M
�(2þ2(nþ1)) þ (T/M)�1/2). Therefore, the proof by induction is

completed. h
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NOTES

1. For the reference to the subsequent argument, see Section 3.7 in Brillinger
(1975).

2. We are not motivated to apply the MBC technique to the estimator under
the first-order kernel such as the Bartlett kernel, because the resulting esti-
mator merely attains the convergence rate that is usually attained under the
second-order kernel.

3. As mentioned later, the general positive semidefinite weighting matrix W
works only for the case of zero frequency.

4. In the absence of serial dependence in fxtg, the optimal bandwidth becomes
any fixed non-negative number. To see this, observe that B̂k ¼ 0; 8k and thus
~B xð Þ ¼ 0. In other words, the bias-uncorrected estimator f̂xx xð Þ is already
unbiased, and thus no bias correction is required. Hence, only the variance
term survives in each definition of the MSE. Therefore, for each fixed
bandwidth M, the convergence rate of the MSE is O(T�1).

5. A disturbing issue on PR is �zero� estimates. The frequency of zero esti-
mates depends on the size of the long-run variance for a given choice of
the bandwidth. As far as the true long-run variance is relatively large,
zero estimates rarely (but not never) occur. However, the issue becomes
severe when the truth is close to zero: in an extreme case (MA(2) with
(w1, w2) ¼ (�1.9, 0.95)), nearly 43% of PR1 estimates are zeros!
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