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Abstract. Economists often use matched samples, especially when dealing with
earning data where some observations are missing in one sample and need to
be imputed from another sample. Hirukawa and Prokhorov (2018, Journal of
Econometrics 203: 344–358) show that the ordinary least-squares estimator using
matched samples is inconsistent and propose two consistent estimators. We de-
scribe a new command, msreg, that implements these two consistent estimators
based on two samples. The estimators attain the parametric convergence rate if
the number of continuous matching variables is no greater than four.
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1 Introduction

Matching-based imputation is common in economic datasets. For example, the U.S.
Census uses a practice known as “hot-deck imputation”, which is implemented when
census reports for nonresponders the values of important variables such as earnings
and income are borrowed from responders with a few similar characteristics. In some
surveys, the share of such imputed responses reaches 30%.

Hirukawa and Prokhorov (2018) were concerned with this widely used but often ig-
nored practice. The concern was that users of such data in applied econometrics are
often unaware that these are imputed, rather than actual, observations and that the re-
sulting matching discrepancy leads to nonnegligible biases in the ordinary least-squares
(OLS) estimator. They list many other settings, usually involving more than one dataset,
where matching is unavoidable and needs to be accounted for.

The goal of this article is to facilitate the use of the consistent estimation approaches
proposed by Hirukawa and Prokhorov (2018) in their numerous applications. Hirukawa
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and Prokhorov (2018) derive the imputation bias analytically and propose two bias-
corrected estimators. In this article, we introduce a new command, msreg, that imple-
ments both estimators in Stata.

Section 2 documents theoretical backgrounds for the msreg command. Section 3
discusses the msreg syntax and provides a numerical example. Section 4 contains a
simulation study. Section 5 provides an empirical application by estimating the return
to schooling as in Hirukawa and Prokhorov (2018).

2 Setup and estimators

2.1 Setup and assumptions

Suppose that we are interested in fitting a linear regression model,

y = β0 + x′
1β1 + x′

2β2 + z′γ + u = w′θ + u E(u|w) = 0

where x1 ∈ Rd1 , x2 ∈ Rd2 , z ∈ Rdz , w = (1,x′
1,x

′
2, z

′), and θ = (β0,β1
′,β2

′,γ′)′.

If we can observe all the variables in one sample, OLS is a consistent estimator for θ.
However, in reality, we often encounter a situation where the variables are taken from
two different samples. To be precise, we need more notation to distinguish between the
two samples. The first sample is denoted by S1 = {(yi,x1i, zi)}ni=1. The second sample
is denoted by S2 = {(x2j , zj)}mj=1. For inference, we also denote d3 as the number of
continuous common variables in z hereafter, which is not always equal to dz.

Estimation theories in Hirukawa and Prokhorov (2018) are built on a set of assump-
tions that are required for identification, consistency, and asymptotic normality of their
estimators. Some of them are quite common. For example, assumption 2 imposes com-
pactness of the support of continuous common variables. In our empirical analysis in
section 5, educ, feduc, and meduc are such variables, and it is natural to think of their
support as compact. On the other hand, there are more subtle assumptions in Hirukawa
and Prokhorov (2018) that may or may not hold in a given application. Examples in-
clude a common joint distribution for S1 and S2 (assumption 1), E (η1η

′
2) = 0, and strict

nonlinearity in g2 (·) [assumption 3(ii)], where η` := x` − g` (z) and g` (z) := E (x`| z)
for ` = 1, 2. It is difficult to test the validity of these assumptions because x1 and x2

belong to two distinct samples.

2.2 Nearest-neighbor matching

The matched sample can be constructed via the nearest-neighbor matching (NNM) using
a vector of common variables z across two samples. Note that z must contain at least
one continuous variable for valid inference; inclusion of discrete common variables with
a finite number of support points (for example, binary variables) in z does not affect
the asymptotic results that will be stated shortly.
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To specify the NNM, we need to first define a matrix norm to measure the distance
between two vectors. For a vector x and some symmetric and positive definite matrix
A, the vector norm is defined as ||x||A = (x′Ax)1/2. Following Abadie and Imbens

(2011), we use the Mahalanobis metric AM =
{
(1/N)

∑N
i=1(zi − z)(zi − z)′

}−1

and

the normalized Euclidean metric ANE = diag
(
A−1

M

)−1
, where N = n + m and z =

(1/N)
∑N

i=1 zi.

Let jk(i) be the index of the kth match in S2 to the unit i in S1; that is, for each
i ∈ {1, . . . , n}, jk(i) satisfies

m∑
j=1

1
{
||zj − zi||A ≤ ||zjk(i) − zi||A

}
= k

In other words, zjk(i) is the kth nearest neighbor in S2 to the unit i in S1.

For each unit i, let JK(i) = {ji(1), . . . , ji(K)} denote the K matches from S2. The
NNM-based matched sample is

S =
{
(yi,x1i,x2j1(i), . . . ,x2jK(i), zi)

}n
i=1

We also write x2j(i) = (1/K)
∑

j∈JK(i) x2j .

For estimation, we use a transformation of the matched sample S.

S∗ =
{
(yi,x1i,x2j(i), zi)

}n
i=1

In contrast with the original matched sample S, we replace the individual matched
variable x2j1(i), . . . ,x2jK(i) by its mean x2j(i).

Throughout, it is assumed that we estimate θ by regressing yi on
wi,j(i) = (1,x′

1i,x2j(i)
′, zi)

′.

2.3 Inconsistency of matched-sample OLS

We start by using an OLS estimator on the matched sample S∗. The OLS estimator is

θ̂MSOLS = Q̂W

−1
R̂W

where Q̂W = (1/n)
∑n

i=1 wi,j(i)w
′
i,j(i) and R̂W = (1/n)

∑n
i=1 wi,j(i)yi. It is referred to

as the matched-sample OLS (MSOLS) estimator.

Theorem 1 (Hirukawa and Prokhorov [2018], theorem 1). Under some regularity con-
ditions,

θ̂MSOLS = Q−1
W PWθ +Op

(
m−1/d3

)
+Op

(
n−1/2

)
where QW = E(wi,j(i)w

′
i,j(i)), PW = QW − (1/K)Σ, Σ is a (d + 1) × (d + 1) block-

diagonal matrix of the form Σ = diag{0(d1+1)×(d1+1),Σ2,0dz×dz
}, and Σ2 = E(η2η

′
2).
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Theorem 1 implies that MSOLS is inconsistent in general. The inconsistency is at-
tributed to correlation between the imputed regressor x2j(i) and (1/K)

∑
j∈JK(i)

η2j in

the composite error term εi,j(i). All asymptotic analyses in Hirukawa and Prokhorov
(2018) are based on letting n and m diverge while keeping K fixed. It is in princi-
ple possible to restore consistency by letting K diverge at a rate slower than n and
m. However, a fixed K is what researchers are likely to do in practice; Abadie and
Imbens (2006) also adopt this setup. Moreover, the Op

(
m−1/d3

)
term corresponds to

the second-order bias term λi,j(i) because of the matching discrepancy of Abadie and

Imbens (2006). Observe that this term affects the convergence rate of θ̂MSOLS to its
probability limit; see remark 3 of Hirukawa and Prokhorov (2018) for more details.

2.4 One-step bias-corrected estimator

The source of the inconsistency of the MSOLS estimator is that Q̂W
p−→ QW , whereas

R̂W
p−→ PWθ = {QW − (1/K)Σ}θ. To eliminate the nonvanishing bias, we replace

the denominator Q̂W by a consistent estimator of PW and leave the numerator R̂W un-
changed. Because this bias correction has an indirect inference interpretation, Hirukawa
and Prokhorov (2018) call this estimator the matched-sample indirect inference (MSII)

estimator. Let P̂W be some consistent estimator of PW . Then, the MSII estimator is
defined as

θ̂MSII = P̂W

−1
R̂W

To consistently estimate PW , we need consistent estimators for QW and Σ. Ap-

parently, Q̂W is a natural estimator for QW . Furthermore, it turns out that we can
consistently estimate Σ without nonparametric estimation of E(x2|z). To do so, we
first reorder S2 with respect to z in ascending order.

1. Define z(1) as the observation that has the smallest first element; that is, (1) =
argmin1≤j≤mzj1.

2. For j = 2, . . . ,m, choose (j) = argminj 6=(1),...,(j−1)||zj − z(j−1)||, where the norm

of a matrix ||A|| is defined as ||A|| = {tr(A′A)}1/2.

Given the reordered sample S2 = {(x2(j), z(j))}mj=1, Σ2 can be consistently estimated
by

Σ̂2 =
1

2(m− 1)

m∑
j=2

∆x2(j)∆x′
2(j)

where ∆x2(j) = x2(j) − x2(j−1). This is known as the difference-based variance estima-
tor; see von Neumann (1941), Yatchew (1997), and Horowitz and Spokoiny (2001) for
references.
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The estimator of PW is given by

P̂W = Q̂W − 1

K
Σ̂ = Q̂W − 1

K
diag

{
0(d1+1)×(d1+1), Σ̂2,0dz×dz

}
Theorem 2 below documents asymptotic normality of θ̂MSII. The theorem applies

only when the number of continuously distributed matching variables is so small that
the second-order, matching discrepancy bias can be safely ignored. Observe that both
the convergence rate of θ̂MSII and its asymptotic variance depend on the divergence
pattern of (n,m).

Theorem 2 (Hirukawa and Prokhorov [2018], Corollary 1). Under some regularity
conditions, as n,m→ ∞,

√
n
(
θ̂MSII − θ

)
d−→ N(0,VI) = N

(
0,P−1

W ΩP−1
W

)
if n/m→ κ ∈ (0,∞)

and d3 = 1

√
n
(
θ̂MSII − θ

)
d−→ N(0,VII) = N

(
0,P−1

W Ω11AP
−1
W

)
if n/m→ 0

and d3 = 1, 2

√
m
(
θ̂MSII − θ

)
d−→ N(0,VIII) = N

(
0,P−1

W Ω22P
−1
W

)
if n/m→ ∞

and d3 = 1

where the definitions of Ω, Ω11A, and Ω22 can be found in the appendix, along with
their consistent estimates.

As demonstrated in this theorem and theorem 3 below, the bias-corrected estimators
of Hirukawa and Prokhorov (2018) attain the parametric convergence rate only when
the number of continuous common variables is four or less. It may be tempting to
include as many continuous common variables as possible in the NNM. However, this
results in slowing down the convergence rate, and we do not recommend it.

2.5 Two-step bias-corrected estimator

The one-step bias-corrected estimator can attain the parametric rate of convergence
with at most two matching variables. To overcome this curse of dimensionality, we
should eliminate the second-order bias λi,j(i). The entire procedure is reminiscent of
the fully modified least-squares estimation for cointegrating regressions by Phillips and
Hansen (1990). In this sense, Hirukawa and Prokhorov (2018) call the estimator the
fully modified MSII (MSII-FM) estimator.

Estimating λi,j(i) requires consistent estimates of θ and g2(·). For θ, we can use

the MSII estimate θ̂MSII. For g2(·), we use a nonparametric power-series estimation
as in Abadie and Imbens (2011). Let v = (v1, . . . , vdz

) be a multi-index of dimension



128 msreg

dz, which is a dz-dimensional vector of nonnegative integers with |v| =
∑dz

l=1 vl. Also,

denote zv = Πdz

l=1z
vl
l . Consider a series {vQ}∞Q=1 containing distinct vectors such that

|v(Q)| is nondecreasing. Let pQ(z) = zv(Q) and pQ(z) = {p1(z), . . . , pQ(z)}′. Then, a
nonparametric series estimator of the regression function g2r(z), r = 1, . . . , d2 is

ĝ2r = pQ(m)(z)′


m∑
j=1

pQ(m)(zj)p
Q(m)(zj)

′


−

m∑
j=1

pQ(m)(zj)x2r,j

where x2r,j denotes the rth element of x2j in S2, (·)− denotes the generalized inverse,
and Q = Q(m) implies the dependence of Q on the sample size of S2.

The entire estimation procedure can be summarized in the following three steps:

1. Run MSII using the matched sample S∗ to obtain

θ̂MSII =
(
β̂II,0

′
, β̂II,1

′
, β̂II,2

′
, γ̂II

′
)′

2. Construct adjusted dependent variables {y+i }ni=1 = {yi − λ̂i,j(i)}ni=1, where

λ̂i,j(i) =

ĝ2(zi)− 1

K

∑
j∈JK(i)

ĝ2(zj)

′

β̂II,2

3. Rerun MSII using the modified matched sample S+ =
{
(y+i ,x1i,x2j(i), zi)

}n
i=1

to
obtain the final estimator

θ̂MSII−FM = P̂W

−1
R̂W

+
= P̂W

−1 1

n

n∑
i=1

w′
i,j(i)y

+
i

Theorem 3 (Hirukawa and Prokhorov [2018], theorem 4). Under some regularity con-
ditions, as n,m→ ∞,

√
n
(
θ̂MSII−FM − θ

)
d−→ N(0,VI) if n/m→ κ ∈ (0,∞) and d3 = 2, 3

√
n
(
θ̂MSII−FM − θ

)
d−→ N(0,VII) if n/m→ 0 and d3 = 3, 4

√
m
(
θ̂MSII−FM − θ

)
d−→ N(0,VIII) if n/m→ ∞ and d3 = 2, 3

where the definitions of VI , VII , and VIII are the same as in theorem 2.

In practice, the standard errors (SEs) resulting from each of the three cases may
be quite different. The relative magnitudes of n and m determine which case applies.
Hirukawa and Prokhorov (2018) did not provide any generic comparisons for the variance
matrices. Besides the scaling factor, the differences can be attributed to the specific
features of the datasets and model specification. In borderline cases, it is advisable to
use larger SEs for conservative inference.



M. Hirukawa, D. Liu, and A. Prokhorov 129

3 The msreg command

3.1 Syntax

msreg has the following syntax.

msreg depvar
[
varlist X1

]
(varlist X2 = varlist Z) using filename

[
if
] [

in
][

, vce(vce spec) estimator(est spec) nneighbor(#) metric(metric spec)

order(#) noconstant level(#) display options coeflegend
]

3.2 Options

vce(vce spec) specifies the type of variance–covariance matrix used in computation.
vce spec can be one of vi, vii, or viii. The default is vce(vi). The definition of
vi, vii, and viii can be found in theorem 2.

estimator(est spec) specifies the type of estimator. est spec can be either onestep or
twostep. onestep specifies to use the one-step bias-corrected estimator. twostep

specifies to use the two-step bias-corrected estimator. The default is
estimator(twostep).1

nneighbor(#) specifies the number of matches per observation. The default is
nneighbor(1). The maximum allowed number of matches is 10. Each observation
is matched with the mean of the specified number of observations from the other
dataset.

metric(metric spec) specifies the distance matrix that is used as the weight matrix in
a quadratic form that transforms the multiple distances into a single distance mea-
sure. metric spec can be either mahalanobis or euclidean. metric(mahalanobis)
specifies to use the inverse of the sample covariance matrix of matching variables,
which is the default. metric(euclidean) specifies to use the inverse of only diagonal
elements of the sample covariance matrix of matching variables.

order(#) specifies the order of polynomials in the power-series approximation for MSII-

FM. The default is order(2). The maximum allowed number of order is 5.

noconstant suppresses the constant term.

level(#) specifies the level of significance for the output table.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt),
pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

coeflegend specifies that the legend of the coefficients and how to specify them in an
expression be displayed rather than displaying the statistics for the coefficients.

1. We intentionally leave the option estimator(msols) undocumented. MSOLS is inconsistent and
we include it in the article for simulations only. We do not recommend using the option estima-

tor(msols).
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3.3 Stored results

msreg stores the following in e():

Scalars
e(N 1) number of observations in the first sample
e(N 2) number of observations in the second sample
e(nneighbor) number of nearest neighbors matched
e(chi2) chi-squared
e(p) p-value for test of variables
e(df m) degree of freedom in the model
e(order) order of polynomial in the power-series estimation

Macros
e(cmd) msreg
e(title) title in estimation output
e(chi2type) Wald
e(vce) vce spec specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(footnote) footnote displayed under the output table
e(common) common variables that exist in both samples
e(matched) matched variables
e(metric) type of distance matrix
e(estimator) type of estimator

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

3.4 A numerical example

We illustrate the use of msreg with a numerical example.

For illustration, we simulate two datasets: s1.dta and s2.dta. The first sample,
s1.dta, contains the dependent variable y and some independent variables, x11, x12,
z1, and z2. The second sample, s2.dta, contains some other dependent variables x21,
x22, z1, and z2. Notice that variables z1 and z2 exist in both samples. In contrast, the
variables x21 and x22 exist only in the second sample, s2.dta. The data-generating
process is described in section 4.

We want to fit the following regression model:

y = β0 + β11x11 + β12x12 + β21x21 + β22x22 + γ1z1 + γ2z2 + u (1)

The true values of all the coefficients are set to 1.

Apparently, we cannot estimate (1) using just the first sample, s1.dta, because the
variables x21 and x22 are missing in this dataset. Instead, we want to use the common
variables that exist in both samples, that is, z1 and z2, to construct matched variables
x22 and x21 from the second sample, s2.dta.
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We now use msreg to estimate the coefficients in (1). We can use the default two-step
bias-corrected estimator and the default vi type variance if we assume n/m converges
to a nonzero constant.

. use s1

. msreg y x11 x12 (x21 x22 = z1 z2) using s2, nneighbor(2) order(3)

Matched sample regression Number of obs in sample 1 = 250
Number of obs in sample 2 = 750
Number of matches = 2
Order of power-series = 3

Estimator : twostep Wald chi2(6) = 5060.15
Distance metric : mahalanobis Prob > chi2 = 0.0000

VI
Coef. Std. Err. z P>|z| [95% Conf. Interval]

x11 .8993908 .1602669 5.61 0.000 .5852736 1.213508
x12 .9877756 .1594351 6.20 0.000 .6752885 1.300263
x21 1.103668 .0568935 19.40 0.000 .9921588 1.215177
x22 1.063374 .161514 6.58 0.000 .7468123 1.379936
z1 1.105623 .2745877 4.03 0.000 .5674414 1.643805
z2 .7304006 .2866126 2.55 0.011 .1686502 1.292151

_cons .7213349 .2237863 3.22 0.001 .2827219 1.159948

Common variables : z1 z2
Matched variables: x21 x22
Note: VI Std. Err. assumes that sample size ratio between sample 1 and sample

2 converges to a nonzero constant and there are at most three continuous
common variables.

Here are some comments on the syntax.

• The (x21 x22 = z1 z2) specifies that the variables x21 and x22 are the variables
to be matched, and the variables z1 and z2 are the common variables that exist
in both samples.

• using s2 specifies that the variables x21 and x22 come from s2.dta.

• We use the default two-step bias-corrected estimator.

• The default option vce(vi) specifies to use the vi-type variance matrix as speci-
fied in theorem 2 because we assume the sample-size ratio between the two samples
converges to a nonzero constant and there are only two continuous common vari-
ables used for matching. Actually, the note states a similar explanation about
vce(vi).

• Option nneighbor(2) specifies to pick out 2 matches via the NNM.

• Option order(3) specifies to fit a third-order polynomial in the power-series ap-
proximation for MSII-FM.

• The output shows the point estimates of coefficients and their SEs, and they can
be interpreted as in a regular linear regression framework.
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4 A simulation study

4.1 Simulation design

We conduct a Monte Carlo simulation study for two purposes: first, we want to see
the finite-sample performance of MSII-FM in contrast to MSOLS; second, the simulation
results can serve as a verification of the numerical implementation of our command
msreg. The simulation study replicates that of Hirukawa and Prokhorov (2018).

The model considered throughout is

y = β0 + x′
1β1 + x′

2β2 + z′γ + u (2)

where x1 = (x11, x12)
′, β1 = (β11, β12)

′ ∈ R2, x2 = (x21, x22)
′, β2 = (β21, β22)

′ ∈ R2,
and z = (z1, . . . , zd3

)′, γ = (γ1, . . . , γd3
)′ ∈ Rd3 for d3 = 1, 2, 3. We assume that

two samples, namely, S1 = {(yi,x1i, zi)}ni=1 and S2 = {(x2j , zj)}mj=1 are observable in
practice.

Here is how to generate the data. First, z∗ = (z∗1 , z
∗
2 , z

∗
3) is generated by

z∗
i.i.d.∼ N

00
0

 ,
 1 1/

√
2 1/

√
3

1/
√
2 1

√
2/
√
3

1/
√
3

√
2/

√
3 1


Each z∗p (p = 1, 2, 3) is transformed to zp = 4Φ(z∗p)− 2, where Φ(·) is the cdf of N(0, 1).
Notice that zp are mutually correlated U [−2, 2] random variables. For a given d3, the
zp (p ≤ d3) are used as matching variables.

Second, x1 = (x11, x12)
′ is generated by x1q =

∑d3

p=1 zp + ηq (q = 1, 2), where

ηq ∼ N(0, 1). Third, x2 = (x21, x22)
′ is generated by x2r =

∑d3

p=1 g2r(zp)+η2r (r = 1, 2)
for some nonlinear function g2r(·), where η2r ∼ N(0, 1). Specifically, g21(z) = z +
(5/τ)φ(z/τ), τ = 0.25, where φ(·) is the pdf of N(0, 1), and g22(z) = 4

√
|z/2|(1− |z/2|)

sin{2π(1 + ε)/(|z/2|+ ε)}, with ε = 0.05.

Finally, y is generated by setting all coefficients equal to 1 with u
i.i.d.∼ N(0, 1). The

sample sizes are set to (n,m) = (1000, 1000). The number of replications is 1,000.

We focus on the finite-sample properties of estimators of β22 and γ1. For each
estimator, the following performance measures are computed: i) Bias (1−Mean), where
Mean is the simulation average of the parameter estimate; ii) standard deviation (SD)
(simulation SD of the parameter estimate); iii) SE (simulation average of the SE); and
iv) Rej. rate (rejection rate for the test of parameter estimate equal to its true value 1
against the nominal 5% level of significance).

For d3 = 1, 2, 3, we estimate the coefficients in (2) using both MSOLS and MSII-FM.
For MSOLS, the number of matches isK = 1, 2, 4, 8. For MSII-FM, the number of matches
K is fixed at 1, and orders of polynomials in the power-series approximation are 2, 3,
and 4. For a more complete simulation study, see section 4 of Hirukawa and Prokhorov
(2018).
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4.2 Results

The simulation results are summarized in tables 1 and 2 for MSOLS and MSII-FM, re-
spectively.

Table 1 shows that regardless of the number of matches, there is a big bias of β22,
and there is a large rejection rate, which indicate inconsistency of MSOLS as implied in
theorem 1.

Table 1. Monte Carlo results for MSOLS

β22 γ1
K 1 2 4 8 1 2 4 8

d3 = 1

Bias 0.4486 0.2866 0.1634 0.0773 −0.1680 −0.0919 −0.0442 −0.0216
SD 0.0426 0.0455 0.0474 0.0492 0.1122 0.1052 0.1005 0.0980

SE 0.0507 0.0523 0.0546 0.0603 0.1174 0.1141 0.1119 0.1109
Rej. rate 1.0000 1.0000 0.9110 0.3800 0.3210 0.1550 0.1070 0.0910

d3 = 2

Bias 0.5280 0.3724 0.2239 0.0828 −0.1289 −0.0723 −0.0372 0.0093
SD 0.0408 0.0460 0.0523 0.0619 0.1468 0.1398 0.1369 0.1379

SE 0.0462 0.0529 0.0627 0.0754 0.1548 0.1502 0.1534 0.1667
Rej. rate 1.0000 1.0000 0.9660 0.3110 0.1640 0.1030 0.0880 0.1100

d3 = 3

Bias 0.7532 0.6149 0.4472 0.2305 −0.2206 −0.1306 −0.0475 0.0281
SD 0.0472 0.0575 0.0707 0.0893 0.1993 0.1906 0.1881 0.1922

SE 0.0514 0.0648 0.0794 0.1082 0.2015 0.1990 0.2078 0.2270
Rej. rate 1.0000 1.0000 1.0000 0.6860 0.1980 0.1210 0.0860 0.0920

Table 2 shows that 1) the bias is small; that is, the mean of the point estimates is
very close to its true value; 2) the SD of the point estimate is very close to the mean
of the SEs; and 3) the overall rejection rate is close to the nominal 5% level. Notice
that for the case d3 = 2, the rejection rate is a little bit off for β22. However, based on
results for larger samples, it seems that the over-rejection rate is due to the finite-sample
bias of MSII-FM (reported in the Supplement of Hirukawa and Prokhorov [2018]). The
simulation result shows that MSII-FM performs well in a finite sample as predicted by
theorem 3 and that it also numerically verifies the implementation of msreg.
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Table 2. Simulation results for MSII-FM

β22 γ1
Order 2 3 4 2 3 4

d3 = 1

Bias −0.0305 −0.0305 −0.0323 0.0110 0.0110 0.0119
SD 0.1049 0.1049 0.1047 0.1257 0.1259 0.1258
SE 0.1130 0.1148 0.1149 0.1353 0.1361 0.1359
Rej. rate 0.0620 0.0610 0.0640 0.0730 0.0730 0.0720

d3 = 2

Bias −0.1740 −0.1735 −0.1641 0.0318 0.0382 0.0401
SD 0.1539 0.1541 0.1540 0.1750 0.1754 0.1765
SE 0.1637 0.1636 0.1643 0.1912 0.1941 0.1930
Rej. rate 0.1400 0.1380 0.1270 0.0820 0.0840 0.0760

d3 = 3

Bias −0.0948 −0.0904 −0.0866 0.0372 0.0408 0.0526
SD 0.2884 0.2925 0.2904 0.2481 0.2499 0.2495
SE 0.3041 0.3152 0.3132 0.2680 0.2749 0.2736
Rej. rate 0.0370 0.0350 0.0370 0.0610 0.0690 0.0650

5 An empirical application: Return to schooling

We now apply msreg to a version of Mincer’s (1974) wage equation. We consider the
following wage regression,

log(wage) = β0 + β1expr+ β2expr
2 + β3kww+ β4educ+ β5feduc+ β6meduc

+ β7smsa+ β8south+ β9black+ u (3)

where expr is years of experience, educ is years of education, kww is Knowledge of World
of Work test score, feduc and meduc are years of father’s and mother’s education, and
black, smsa, and south are dummy variables to indicate whether an individual is black,
lives in an urban area, and lives in the south, respectively.
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We can estimate (3) using only card.dta from Card (1995), as in the benchmark
OLS result below.

. use card

. regress lnwage exper c.exper#c.exper
> kww educ feduc meduc i.smsa i.south i.black

Source SS df MS Number of obs = 2,191
F(9, 2181) = 89.96

Model 114.487495 9 12.7208327 Prob > F = 0.0000
Residual 308.394118 2,181 .141400329 R-squared = 0.2707

Adj R-squared = 0.2677
Total 422.881613 2,190 .193096627 Root MSE = .37603

lnwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

exper .0786594 .0082641 9.52 0.000 .062453 .0948658

c.exper#
c.exper -.0021546 .0004049 -5.32 0.000 -.0029486 -.0013607

kww .0055563 .0013232 4.20 0.000 .0029615 .0081511
educ .061174 .0051257 11.93 0.000 .0511222 .0712258

feduc -.0018021 .0030073 -0.60 0.549 -.0076996 .0040955
meduc .0070962 .0035015 2.03 0.043 .0002295 .013963

1.smsa .1516693 .0186575 8.13 0.000 .1150809 .1882577
1.south -.1111491 .0177506 -6.26 0.000 -.1459589 -.0763393
1.black -.1320785 .0254406 -5.19 0.000 -.1819688 -.0821882

_cons 4.68611 .0815838 57.44 0.000 4.52612 4.8461

. estimate store ols

The estimation result is stored as ols.

Nonetheless, we pretend that the variable kww is missing in this dataset. In accor-
dance with this scenario, we use yet another dataset, wage2.dta, from Blackburn and
Neumark (1992). The dataset contains six variables—educ, feduc, meduc, smsa, south,
and black—other than kww. All six variables are used as matching variables to impute
the missing kww, where educ, feduc, and meduc are assumed to be continuous. Our aim
is to see how the estimation result of (3) changes if kww is imputed from wage2.dta.
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. msreg lnwage exper c.exper#c.exper
> (kww = educ feduc meduc i.smsa i.south i.black)
> using wage2, order(3)

Matched sample regression Number of obs in sample 1 = 2,191
Number of obs in sample 2 = 470
Number of matches = 1
Order of power-series = 3

Estimator : twostep Wald chi2(9) = 785.11
Distance metric : mahalanobis Prob > chi2 = 0.0000

VI
Coef. Std. Err. z P>|z| [95% Conf. Interval]

exper .0840744 .0082734 10.16 0.000 .0678589 .1002898

c.exper#
c.exper -.0021476 .0004202 -5.11 0.000 -.0029713 -.001324

kww .0020755 .0052253 0.40 0.691 -.0081658 .0123168
educ .0680349 .0079751 8.53 0.000 .0524041 .0836658

feduc -.0005824 .003143 -0.19 0.853 -.0067427 .0055778
meduc .0070538 .0039251 1.80 0.072 -.0006393 .0147469

1.smsa .1557546 .0186934 8.33 0.000 .1191161 .192393
1.south -.1114039 .0178276 -6.25 0.000 -.1463453 -.0764626
1.black -.1517787 .0354906 -4.28 0.000 -.221339 -.0822183

_cons 4.654032 .1187133 39.20 0.000 4.421359 4.886706

Common variables : educ feduc meduc 0b.smsa 1.smsa 0b.south 1.south 0b.black
1.black

Matched variables: kww
Note: VI Std. Err. assumes that sample size ratio between sample 1 and sample

2 converges to a nonzero constant and there are at most three continuous
common variables.

. estimate store twostep_vi

We use the default vi type covariance estimation assuming the sample-size ratio
between the two datasets converge to a nonzero constant. We use a third-order polyno-
mial in power-series estimation to remove the second-order bias. The estimation result
is stored as twostep vi.
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We can now compare these two estimation results.

. estimate table ols twostep_vi, b star

Variable ols twostep_vi

exper .0786594*** .08407435***

c.exper#
c.exper -.00215464*** -.00214765***

kww .00555626*** .00207551
educ .06117396*** .06803494***

feduc -.00180207 -.00058241
meduc .00709624* .00705379

smsa
1 .15166928*** .15575459***

south
1 -.11114906*** -.11140395***

black
1 -.13207849*** -.15177868***

_cons 4.6861104*** 4.6540324***

legend: * p<0.05; ** p<0.01; *** p<0.001

The first column shows the benchmark OLS results. The signs of expr, expr2, kww,
and educ are as expected, and the estimates are significant at the 5% level.

The second column shows the results from the two-step bias-corrected estimator
with the default vi-type covariance. All the point estimates have the same sign as in
the OLS benchmark. However, the coefficient on kww is insignificant because of a large
SE.

6 Conclusion

In this article, we described a new command, msreg, that implements two estimators
proposed in Hirukawa and Prokhorov (2018). The command allows users to obtain
consistent estimators of linear regression models after imputing missing regressors via
the NNM. We illustrated the use of msreg through a numerical example and an empirical
application.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-1

. net install st0630 (to install program files, if available)

. net get st0630 (to install ancillary files, if available)
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A Appendix

Theorems 2 and 3 give the asymptotic distributions of θ̂MSII and θ̂MSII−FM, respectively.
The covariance matrices VI , VII , and VIII depend on the definitions of Ω, Ω11A, and
Ω22. We define Ω, Ω11A, and Ω22 as follows:

Ω = Ω11A + κ

[
(β′

2Σ2β2)E(w)E(w)′

+
1

K2
diag

{
0(d1+1)×(d1+1), (β

′
2Σ2β2)Vg2 +

1

2
Ψ,0dz×dz

}]
Ω11A = E

{(
wi,j(i)εi,j(i) +

1

K
Σθ

)(
wi,j(i)εi,j(i) +

1

K
Σθ

)′
}

Ω22 =
1

K2
diag

{
0(d1+1)×(d1+1),Ξ+

1

2
Ψ,0dz×dz

}
Vg2 = Var {g2(z)}
Ξ = E

{
(η2η

′
2 −Σ2)β2β

′
2 (η2η

′
2 −Σ2)

}
Ψ = (β′

2Σ2β2)Σ2 +Σ2β2β
′
2Σ2

We present consistent estimators of Ω11A, Ω22, and Ω for MSII below. Because
MSII-FM is first-order asymptotically equivalent to MSII as documented in theorem 3,
simply replacing θ̂MSII in Ω̂11A, Ω̂22, and Ω̂ with θ̂MSII−FM yields the estimators for
MSII-FM,
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Ω̂11A =
1

n

n∑
i=1

(
wi,j(i)ε̂i,j(i) +

1

K
Σ̂θ̂MSII

)(
wi,j(i)ε̂i,j(i) +

1

K
Σ̂θ̂MSII

)′

Ω̂22 =
1

K2
diag

{
0(d1+1)×(d1+1), Γ̂(−1) + Γ̂(0) + Γ̂(1),0dz×dz

}
Ω̂ = Ω̂11A +

n

m

((
β̂2,MSII

′
Σ̂2β̂2,MSII

)
ww′

+
1

K2
diag

[
0(d1+1)×(d1+1), β̂2,MSII

′
Σ̂2β̂2,MSIIV̂g2

+ Γ̂(0)−
{
Γ̂(−1) + Γ̂(1)

}
,0dz×dz

])
where ε̂i,j(i) = yi − w′

i,j(i)θ̂MSII, β̂2,II is the MSII estimate of β2, and Γ̂(l) is the lth

sample autocovariance of
{
∆x2j∆x′

2j/2− Σ̂2

}
; that is,

Γ̂(l) =
1

m− 1

min{m,m+l}∑
j=max{2,2+l}
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∆x2j∆x′

2j

2
− Σ̂2
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2
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)
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(x2j − x2j)(x2j − x2j)
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