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ABSTRACT
When conducting regression analysis, econometricians often face the situ-
ation where some relevant regressors are unavailable in the data set at
hand. This article shows how to construct a new class of nonparametric
proxies by combining the original data set with one containing the missing
regressors. Imputation of the missing values is done using a nonstandard
kernel adapted to mixed data. We derive the asymptotic distribution of the
resulting semiparametric two-sample estimator of the parameters of inter-
est and show, using Monte Carlo simulations, that it dominates the solu-
tions involving instrumental variables and other parametric alternatives. An
application to the PSID and NLS data illustrates the importance of our esti-
mation approach for empirical research.
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1. Introduction

Omission of relevant variables leads to challenging problems in applied work. If the correlation
between the omitted variable and included regressors is strong, least squares estimates are biased
and inconsistent. This issue has a long history in economics.

A classic example of the missing regressor is an ability measure in Mincer’s (1974) wage
regression, where estimates suffer from the so called “ability bias” unless the regressors include a
variable representing ability (see, e.g., Card, 1995, for details). Micro-level data sets such as the
Current Population Survey (CPS) and the Panel Study of Income Dynamics (PSID) do not gener-
ally contain individual test scores that can be used as (a proxy for) ability.

Another example can be found in the study of gender wage gap (e.g., Black et al., 1999;
Zabalza and Arrufat, 1985). Work experience is an important regressor in the wage regression.
Although the General Household Survey (GHS) and CPS contain wages and other predictors,
they do not include a variable for actual work experience.

This article argues that availability of a suitable auxiliary sample offers an underexploited
opportunity. We use the sample to construct a new semiparametric estimator and we study its
properties. In a nutshell, our two-sample estimation procedure is to run the ordinary least
squares (OLS) after replacing the missing regressor with a nonparametric estimate of its condi-
tional mean, obtained using a nonstandard kernel function tailored for both discrete and continu-
ous data.

Our approach is different from but not unrelated to the work on matched-sample estimators
(see, e.g., Abadie and Imbens, 2006, 2011; Hirukawa and Prokhorov, 2018). One key advantage of
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our estimator is that the imputed proxy does not rely on a combined sample constructed via the
nearest-neighbor matching (NNM) or another ad hoc matching scheme. Matching-free estimation
is also the purpose of some well-known moment-based two-sample methods (e.g., Angrist and
Krueger, 1992, 1995; Arellano and Meghir, 1992; Inoue and Solon, 2010; Klevmarken, 1982;
Murtazashvili et al., 2015; Pacini and Windmeijer, 2016). Unfortunately, these approaches are not
applicable in the setting of a linear regression where some regressors are missing in the primary
sample, and two-sample moment-based estimation is infeasible. Our setup is closer to what is
considered by Pacini (2019), Chen et al. (2008) and Graham et al. (2016), who also use an auxil-
iary sample to impute missing regressors. However, Pacini’s (2019) main focus is on relaxing
identification conditions for two-sample estimation, while Chen et al. (2008) and Graham et al.
(2016) study parametric and semi-parametric efficiency bounds for GMM.

We establish large-sample properties of the proposed semiparametric two-sample estimator. Its
finite-sample properties are examined through extensive Monte Carlo simulations (largely
deferred to an online supplement to save space), where we show that our estimator dominates
the competitors, in particular, instrumental variable (IV) estimators using linear and nonlinear
instruments and a parametric two-sample alternative. In an empirical application, we look for a
setting where we are able to obtain estimates based on both the IV estimator and proposed esti-
mator at the same time. We do so for the return to schooling and offer new insights arising from
the use of IVs based on one sample as well as from the use of proxies based on two samples.

The nonparametric imputation we propose is important in several practical dimensions. First,
having access to a second sample, empirical economists commonly impute the variables that are
necessary for estimation but missing in the first sample. For example, Fang et al. (2008) impute
medical expenditure of Health and Retirement Study (HRS) respondents using the information
from the Medicare Current Beneficiary Survey (MCBS), and Flavin and Nakagawa (2008) impute
the square footage of the homes of PSID respondents using data on housing from the American
Housing Survey (AHS). Instead of estimating the conditional mean of the missing variable non-
parametrically, these papers adopt a linear projection-based imputation. As a matter of course, if
the functional form turns out to be incorrectly specified, then consistency of the estimators can
no longer be guaranteed. Furthermore, estimation errors associated with imputation need to be
explicitly accounted for, as imputed values cannot be treated as error-free and adjustments need
to be made to the standard errors. A remarkable observation is that our nonparametric imput-
ation approach performs no worse even under correct parametric specification. The result on
inconsistency of the linear projection approach and the circumstances under which it still works
may be of independent interest. We explore this in the Monte Carlo simulations of this article
and in the online supplement.

Second, our nonparametric imputation method is important in the context of the literature on
two-step semiparametric regression estimation with a plug-in first-step nonparametrically gener-
ated regressor (see, e.g., Hsu et al., 2022; Newey, 2009; Rilstone, 1996; Stengos and Yan, 2001).
The literature explores statistical properties of regression estimators when the regressors that can-
not be observed directly are estimated by nonparametric methods, similarly to Pagan’s (1984)
classical fully parametric case. However, these approaches are not directly applicable when imput-
ation needs to be based on two samples or when there are no common observations in them.

Finally, we employ a new uniform consistency result for estimators based on a nonstandard
kernel and mixed data, which is of independent interest. A key aspect of the result is compactness
of the support of the kernel function, a feature that often arises in economics and finance either
by construction or as a theoretical requirement. For example, economic and financial variables
such as expenditure and budget shares, unemployment rates and default and recovery rates are
typically bounded from above and below by construction. Theoretical compactness requirements
are used in the context of partial linear regression models (see, e.g., Yatchew, 1997), NNM (see,
e.g., Abadie and Imbens, 2006), and estimation of first-price auctions (see, e.g., Guerre et al.,
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2000), to name just a few examples. Interested readers may consult Hirukawa et al. (2022) for
further details.

The remainder of this article is organized as follows. Section 2 describes the model, defines the
proposed estimator, and derives and discusses its convergence properties. Section 3 presents
results of selected Monte Carlo simulations to compare finite-sample properties of the proposed
estimator with the IV and other alternatives. As an empirical example, in Section 4, we apply the
two-sample estimator to a version of Mincer’s (1974) wage regression. Both in simulations and
the application, we compare our estimator (a) with the IV approach, (b) with an approach where
the missing variable is imputed using a fully parametric method, and (c) with the approach of
Hirukawa and Prokhorov (2018) based on NNM. Section 5 concludes with a few questions for
future research. Technical proofs are provided in the Appendix. The online supplement contains
details of the alternative estimators (a)–(c), comprehensive simulation results for a variety of
designs, and additional discussions on the empirical example.

The article adopts the following notational conventions: kAk ¼ trðA0AÞ� �1=2
is the Euclidean

norm of matrix A; 1f�g denotes an indicator function; 0p�q signifies the p� q zero matrix, where

the subscript may be suppressed if q¼ 1; Bðp, qÞ ¼ Ð 10 yp�1ð1� yÞq�1dy for p, q > 0 is the beta
function; and the symbol> applied to matrices means positive definiteness.

2. Two-sample two-step estimation

2.1. Model

We consider the following linear regression model

Y ¼ b0 þ X0
1b1 þ X0

2b2 þ X0
3Ib3 þ u, (1)

where X1 2 R
d1 , X2 2 R

d2 , X3I 2 R
d3I (the distinction between these regressors will be made clear

shortly). Throughout, we assume that either b1 or b3 is the parameter of primary interest. Let
d :¼ d1 þ d2 þ d3I : When ð1,X0

1,X
0
2,X

0
3IÞ0 2 R

dþ1 is exogenous and a single random sample of
ðY ,X1,X2,X3IÞ is available, the OLS estimator of b ¼ ðb0, b01, b02, b03Þ0 is consistent under the usual
assumptions.

Let S1 denote the data set at hand and let S2 denote a second data set which will be required
for a two-sample estimation. We assume that S1 ¼ ðY ,X1,X3Þ and S2 ¼ ðX2,X3Þ, where X3 :¼
ðX3I ,X3EÞ is the vector of common variables across the two samples that are partitioned into
those included (X3I) and those excluded (X3E) from regression (1). We note that X2 is missing in
S1 although it is assumed to be relevant, i.e., b2 6¼ 0: This setup was recently considered by
Pacini (2019) but his focus was on relaxing the identification assumptions involving the joint dis-
tribution of ðY ,X1,X2,X3IÞ:

The distinction between X1 and X3 will become important later. For now, we can think of X3

as variables that are common across S1 and S2, enter as regressors and are used, due to their
presence in both samples, for imputation of the missing regressors in X2. On the other hand,
when a common variable serves merely as a regressor but is not used for imputation, it is classi-
fied as X1. The vector X1 can be empty; the vector X3 cannot.

Even though S1 and S2 contain common variables X3, this does not mean that they need to
have common observations, i.e., the two samples do not have to overlap. Finally, denote d3 :¼
dimðX3Þ ¼ dimðX3IÞ þ dimðX3EÞ :¼ d3I þ d3E, where d3 > 0 must be the case, and either d3I or
d3E is allowed to be zero.

An example of this sampling arrangement is when a micro-level data set (e.g., CPS or PSID)
can be complemented by an auxiliary data set which is focused on some important variables that
are not available elsewhere, e.g., a psychometric data set with ability measures.

ECONOMETRIC REVIEWS 3



In such cases it is common to instrument for the unobserved variable (see Section 1.1 of the
online supplement for details of IV estimation). However, the IV estimation is unavailable if there
are no valid instruments in the same sample and it may be desirable to avoid the IV estimation
for a host of other reasons discussed in Section 2.5.

Denote S1 ¼ S1n ¼ ðYi ,X1i,X3iÞ
� �n

i¼1 and S2 ¼ S2m ¼ ðX2j ,X3jÞ
� �m

j¼1
: We now discuss how we

construct a proxy for X2 using S2m:

2.2. Additional notation

We start by introducing some additional notation that will help define the semiparametric two-
sample estimator and derive its asymptotic properties. First, we allow for the vector of common
variables X3 ¼ ðX3I ,X3EÞ to consist of both continuous (C) and discrete (D) variables so that d3 ¼
dimðX3Þ ¼ dimðX3CÞ þ dimðX3DÞ ¼: d3C þ d3D: While d3D ¼ 0 is allowed, d3C > 0 must be the
case for the subsequent asymptotic analysis. This distinction will be needed for the application
of kernel smoothing to mixed continuous and discrete data. Second, let X3 :¼ X3C � X3D,
where X3C :¼ suppðX3CÞ and X3D :¼ suppðX3DÞ: Third, denote g2ðX3Þ :¼ EðX2 X3Þj and g2 :¼
X2 � g2ðX3Þ with Eðg2 X3Þ ¼ 0:j The conditional expectation function g2ð�Þ and the error term g2
will determine the asymptotic adjustments required to account for the use of nonparametric
proxies. Finally, for a pair of vectors ðZ,WÞ, let UZ,W :¼ EðZiW0

iÞ, Sn,Z,W :¼ ð1=nÞPn
i¼1 ZiW0

i

and Sm,Z,W :¼ ð1=mÞPm
j¼1 ZjW0

j , where summations for Sn,Z,W and Sm,Z,W are assumed to be

taken within S1n and S2m, respectively, and where the subscripts n and m emphasize the relevant
sample sizes.

2.3. Estimation of b and g2ð�Þ
We reformulate the regression (1) as

Y ¼ X0bþ �,

where X :¼ ð1,X0
1, g2ðX3Þ0 ,X0

3IÞ0 and � :¼ uþ g02b2:
In essence, we wish to obtain an estimator of the unknown function g2ðX3Þ using S2 and con-

struct a proxy for X2 using some distance measure between the common variables X3 in S1 and
S2: We will use a kernel function (as opposed to NNM or another matching scheme) to
achieve that.

Let ĝ 2ð�Þ be some consistent nonparametric estimator of g2ð�Þ: Then, the estimation procedure
we propose consists of the following two steps:

Step 1: Regard ðX2j,X3jÞ
� �m

j¼1
in S2 and X3if gni¼1 in S1 as m data points and n design points,

respectively, and obtain n nonparametric estimates ĝ 2ðX3iÞ
� �n

i¼1
:

Step 2: Run OLS for the regression of Yi on X̂ i :¼ ð1,X0
1i, ĝ 2ðX3iÞ0 ,X0

3IiÞ0:

The estimator of b is then

b̂PILS :¼ S�1
n, X̂ , X̂ Sn, X̂ ,Y ¼ 1

n

Xn
i¼1

X̂ iX̂
0
i

 !�1
1
n

Xn
i¼1

X̂ iYi:

Because this estimator is the OLS with ĝ 2ðX3iÞ plugged in place of the missing regressor X2i, we
call it the plug-in least squares (PILS) estimator hereinafter.
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The part of X3 that is used for imputation but excluded from the original model can be used
to form exclusion restrictions EðX0

3EuÞ ¼ 0: If g2ðX3Þ is not linear in X3E, these restrictions can,
in principle, be used to improve precision of the estimation of b (or to construct specification
tests). However, since our main goal is to use X3E in the construction of a proxy for X2, we do
not pursue the issues of efficiency or specification testing here.

At a first glance, the PILS approach—just like its fully parametric counterpart (see Section 1.2
of the online supplement for details)—may be viewed as a variant of generated regressors, which
have been extensively studied by many researchers. However, two samples and nonparametric
imputation raise new and nontrivial issues, which require careful consideration. We study the
issues in the next section.

A remaining task is to deliver a consistent estimator of g2ð�Þ: Taking into consideration that
g2ð�Þ may depend on both continuous and discrete covariates, we choose the kernel regression
smoother for mixed continuous and categorical data proposed by Racine and Li (2004). In this
sense, PILS may be viewed as a partial mean estimator of Newey (1994), although Newey (1994)
does not consider the situation where design and data points for kernel smoothing come from
different data sources.

A key part of the estimator is the construction of a multivariate kernel. Let Kðt3C; x3C,hÞ and
Lðt3D; x3D,kÞ denote product kernels for the continuous and discrete components of X3, respect-
ively, where t3� and x3� are data points and design points, and h and k are vectors of bandwidths.
We provide details of how these kernels are constructed in Appendix A.1. Then, the product ker-
nel for X3 is

W t3; x3, h,kð Þ :¼ K t3C; x3C,hð ÞL t3D; x3D,kð Þ:
It follows that a nonparametric estimator of g2ð�Þ can be defined as

ĝ 2 X3ið Þ :¼
Pm

j¼1X2jW X3j;X3i, h,k
� �

Pm
j¼1W X3j;X3i, h,k

� � , i ¼ 1, :::, n:

There are many conventional options for the specific univariate kernel to use for continuous
variables due to the requirement for compactness of X3C (see Assumption 2 below). Assuming

without loss of generality that the compact set is a d3C-dimensional unit hypercube 0, 1½ �d3C , we
propose to employ Chen’s (1999) univariate beta kernel with support on 0, 1½ � as an attractive
alternative to standard symmetric kernels. Our application of this kernel is motivated by the uni-
form convergence result on a compact support which we prove in a companion paper (Hirukawa
et al., 2022) and which is, as far as we know, new. This asymmetric kernel is free of the boundary
bias by construction and its shape varies across design points even under a fixed value of the
smoothing parameter b. The latter property implies that the amount of smoothing by this kernel
changes in an adaptive manner.

2.4. Convergence properties of PILS

2.4.1. Regularity conditions
Now we explore asymptotic properties of the PILS estimator as both n and m diverge. For this
purpose, the following regularity conditions are imposed.

Assumption 1. The two random samples ðS1,S2Þ ¼ ðS1n,S2mÞ are drawn independently from
the joint distribution of ðY ,X1,X2,X3Þ with finite fourth-order moments.

Assumption 2. X3C is continuously distributed with a convex and compact support X3C, and its
density is bounded and bounded away from zero on X3C:
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Assumption 3.
(i) EðujX1,X3Þ ¼ 0 and r2uðX1,X3Þ :¼ Eðu2 X1,X3Þ 2 ð0,1Þ:j
(ii) ðg2??X1Þ X3:j
(iii) g2ð�Þ is non-constant on X3C if X3E contains at least one continuous variable, and g2ð�Þ is

strictly nonlinear on X3C otherwise.

Assumption 4.
(i) Let f ð�Þ be the marginal pdf of X3C: Then, for some integer � � 2, the �th-order deriva-

tives of f ð�Þ and f ð�Þg2ð�Þ with respect to X3C are continuous and bounded uniformly
on X3C:

(ii) UX,X :¼ EðXX0Þ > 0:
(iii) There exist some constants c 2 ð0,1Þ and C 2 1,1Þ½ so that

sup
x32X3

E
�
jjX2jj2þcjX3 ¼ x3

�
� C:

Assumption 5. The univariate continuous kernel K is either: (a) a symmetric and bounded kernel
function of order � that satisfies (i)

Ð
KðtÞdt ¼ 1,

Ð
tlKðtÞdt ¼ 0 for l ¼ 1, :::, � � 1,

Ð
t�KðtÞdt 6¼

0, (ii) the first-order Lipschitz condition, and (iii)
Ð jtjk KðtÞj jdt < 1 for some k > 2�; or (b) the

beta kernel of Chen (1999).

Assumption 6. Sequences of smoothing parameters hpð¼ hpðmÞ > 0Þ, bpð¼ bpðmÞ > 0Þ and kqð¼
kqðmÞ 2 ð0, 1ÞÞ and boundary parameters hpð¼ hpðmÞ > 0Þ for p ¼ 1, :::, d3C and q ¼ 1, :::, d3D
satisfy one of the following conditions as m ! 1 : (a) for a symmetric �th-order kernel,

hp, kq ! 0 and logm=ðmQd3C
p¼1 hpÞ ! 0; and (b) for the beta kernel, bp, kq, hp ! 0, bp=hp ! 0

and logm= m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQd3C

p¼1 bphp
q	 


! 0:

The first three assumptions are often encountered in matching-based estimation (see, e.g.,
Hirukawa and Prokhorov, 2018) and are natural in our settings. In particular, it follows from
Assumption 3(i) that even when some part of X3 does not enter regression (1) due to an exclu-
sion restriction, X1 and X3 are exogenous in the full model. Nonlinearity of g2ð�Þ in Assumption
3(iii) is required only when all continuous common variables are included as regressors in (1).
Otherwise, excluded continuous common variables introduce additional randomness in g2ð�Þ,
which helps identify b.

Assumption 3(ii) is also standard for the proxy variable literature. It implies that

g2jðX1,X3Þ¼d g2jX3, where “¼d ” denotes equality in distribution. It is sometimes possible to use a
weaker assumption, e.g., conditional mean independence Eðg2jX1,X3Þ ¼ Eðg2jX3Þ (see, e.g.,
Wooldridge, 2010, Section 4.3.2). However, we focus on conditional independence for two rea-
sons. First, it implies orthogonality of g2 and X1, which is a key requirement for consistency of
PILS in Theorem 1. Second, it simplifies the covariance estimation in Section 2.4.3. A similar
assumption can be found in Inoue and Solon (2010, Assumption c) and Hirukawa and
Prokhorov (2018, Assumption 4).

Moreover, this assumption involves quantities that are either unobserved (g2) or unobserved
in the same sample (g2 and X1). Shah and Peters (2020) have recently demonstrated that (even if
they were observed) a uniformly valid conditional independence test does not exist. This may
look like a disadvantage of our method. However, as discussed by Wooldridge (2010, p.68), a
conditional independence assumption is routinely made or implied in all proxy-based estimators,
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and our approach is no different. As we argue in Section 4.3, the assumption is easier to claim
given enough observables in X3.

Along with compactness of X3C in Assumption 2, Assumptions 4–6 are required to establish
weak uniform consistency of the nonparametric regression estimator ĝ 2ð�Þ on X3: Similar condi-
tions can be found, for instance, in Li and Ouyang (2005), Hansen (2008) and Su et al. (2013) for
a symmetric kernel, and Hirukawa et al. (2022) for the beta kernel. Notice that the beta kernel is
nonnegative so that the order �¼ 2 is the case in Assumption 4(i).

Strictly speaking, uniform consistency holds on X3 for a symmetric kernel. In contrast, for the
beta kernel, the boundary parameters h1, :::, hd3C play a key role in uniform consistency of ĝ 2ð�Þ:
Specifically, uniform consistency in this case is established on SX3C � X3D, where SX3C :¼Qd3C

p¼1 hp, 1� hp
� �

is a compact set expanding to X3C ¼ 0, 1½ �d3C (more slowly than the smoothing

parameters b1, :::, bd3C ) so that SX3C � X3D is expanding to X3 as m ! 1: On the other hand,
because the regression estimator ĝ 2ð�Þ is a Nadaraya-Watson-type estimator, it suffers from the
so-called boundary bias when a symmetric kernel is employed. When the beta kernel is used,
ĝ 2ð�Þ is free of this issue by construction.

We note that Assumption 5(a) allows for higher-order kernels (i.e., � > 2). In theory, such
kernels could be a remedy for the curse of dimensionality implied by Corollary 1 below. In prac-
tice, however, it is well known that higher-order kernels are unlikely to dominate nonnegative
ones for moderate sample sizes, and that the advantage, if any, is typically marginal (see, e.g.,
Marron, 1994; Marron and Wand, 1992). In fact, our simulation results indicate poor finite-sam-
ple performance of PILS using higher-order kernels.

2.4.2. Consistency and asymptotic normality of PILS
The next two theorems establish consistency and asymptotic normality of b̂PILS: In particular,

asymptotic normality of b̂PILS is obtained after correcting for Bg2 , the bias term due to kernel
smoothing. Each theorem holds regardless of the number of common variables and regardless of
the divergence patterns in (n, m).

Theorem 1. If Assumptions 1–6 hold, then b̂PILS !
p
b as n,m ! 1:

Theorem 2. If Assumptions 1–6 hold, thenffiffiffi
n

p
b̂PILS � b� Bg2

� �
!d N 0 dþ1ð Þ�1,V

� �
:¼ N 0 dþ1ð Þ�1,U

�1
X,XXU

�1
X,X

� �
as n,m ! 1, where

Bg2 :¼ S�1
n, X̂ , X̂ Sn, X̂ , ½g2 X3ð Þ�E ĝ 2 X3ð ÞjX3f g�0b2

¼ 1
n

Xn
i¼1

X̂ iX̂
0
i

 !�1
1
n

Xn
i¼1

X̂ i g2 X3ið Þ � E ĝ 2 X3ið ÞjX3i
� �� �0b2

¼
Op

Pd3C
p¼1 h

�
p þ

Pd3D
q¼1 kq

� �
for a symmetric �th-order kernel

Op
Pd3C

p¼1 bp þ
Pd3D

q¼1 kq
� �

for the beta kernel
, and

8><
>:

X:¼ X1 þ X2 :¼ E XX0�2ð Þ þ E XX0b02g2g
0
2b2

� �
:

As derived in the proof of Theorem 1, there is the asymptotically negligible bias term Bg2 , due
to kernel smoothing. There are also two

ffiffiffi
n

p
-asymptotically normal terms. One comes from the

sampling error in regression (1), and it has the asymptotic variance U�1
X,XX1U

�1
X,X: The other is
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due to the approximation error of g2, and its asymptotic variance is U�1
X,XX2U

�1
X,X: As a conse-

quence, the asymptotic variance X in Theorem 2 has similar structure to that of the double kernel
estimator by Stengos and Yan (2001, Theorem 1) and the two-step series estimator by Hsu et al.
(2022, Theorem 2.1). A difference from Stengos and Yan (2001) and Hsu et al. (2022) is that the
two terms are uncorrelated. Each of them can be obtained within two independent samples S1

and S2, and thus X is free of covariance terms.

2.4.3. Covariance estimation
Covariance estimation is essential for inference. The problem of estimating V consistently boils

down to proposing consistent estimators of X1 and X2: For the PILS residual �̂i :¼ Yi � X̂
0
ib̂PILS,

an estimator of X1 is

X̂1 :¼ 1
n

Xn
i¼1

X̂ iX̂
0
i�̂
2
i :

Consistency of X̂1 can be established in the same manner as in the proofs of Theorems 1 and 2.

On the other hand, €X2 :¼ ð1=nÞPn
i¼1 X̂ iX̂

0
ib̂

0
2, PILSĝ2iĝ

0
2ib̂2, PILS might work as a consistent esti-

mator for X2, where b̂2, PILS is the PILS estimator of b2 and ĝ2 :¼ X2 � ĝ 2ðX3Þ: In reality, it turns
out to be difficult to obtain ĝ2if gni¼1 because of the absence of X2 in S1: Instead, using

g2jðX1,X3Þ¼d g2 X3j yields

X2 ¼ EfXX0b02E g2g
0
2 X3j Þb2g ¼: E XX0b02R2 X3ð Þb2

� �
:

�
Then, we can alternatively consider the estimator

X̂2 :¼ 1
n

Xn
i¼1

X̂ iX̂
0
ib̂

0
2, PILSR̂2 X3ið Þb̂2, PILS,

where

R̂2 X3ið Þ :¼
Pm

j¼1ĝ2jĝ
0
2jW X3j;X3i, h,k

� �
Pm

j¼1W X3j;X3i, h,k
� � , i ¼ 1, :::, n,

and the nonparametric regression residuals ĝ2j
� �m

j¼1
¼ X2j � ĝ 2ðX3jÞ
� �m

j¼1
can be obtained within

S2: The estimation procedure for R̂2ð�Þ is inspired by the Algorithm in Section 2.4 of Fan and Yao

(1998). To show consistency of X̂2, we can see that a similar argument to the proof of Lemma A1 in
Appendix A.2 establishes uniform consistency of ĝ2j for g2j, which in turn leads to uniform consist-

ency of R̂2ðX3iÞ for R2ðX3iÞ: Then, X̂2 ¼ ð1=nÞPn
i¼1 XiX0

ib
0
2R2ðX3iÞb2 þ opð1Þ !

p
X2:

In conclusion, V can be consistently estimated by

V̂ :¼ S�1
n, X̂ , X̂ X̂S�1

n, X̂ , X̂ :¼ S�1
n, X̂ , X̂ X̂1 þ X̂2

� �
S�1
n, X̂ , X̂ :

2.4.4.
ffiffiffi
n

p
-consistency of PILS

Theorems 1 and 2 jointly imply that although PILS is consistent, its convergence is affected by
the bias term Bg2 generated by kernel smoothing. For a large d3C, the order of magnitude in the

bias term dominates and the convergence rate of b̂PILS becomes inferior. It appears that this prob-
lem is unavoidable in a regression that uses a nonparametric component. A similar phenomenon
arises in the context of imputation bias correction (see, e.g., Hirukawa and Prokhorov, 2018).
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However,
ffiffiffi
n

p
-consistency of b̂PILS automatically holds for small values of d3C: To illustrate

such cases, we modify Assumption 6 in order to control the bias and variance convergence of
ĝ 2ð�Þ more easily.

Assumption 60. Sequences of the smoothing and boundary parameters satisfy one of the following
conditions as m ! 1 : (a) for a �th-order symmetric kernel, there is a bandwidth hð¼ hðmÞ > 0Þ so
that h1, :::, hd3C / h, k1, :::, kd3D / h� , h ! 0, and logm=ðmhd3CÞ ! 0; and (b) for the beta kernel,
there are a smoothing parameter bð¼ bðmÞ > 0Þ and a boundary parameter hð¼ hðmÞ > 0Þ so that

b1, :::, bd3C / b, k1, :::, kd3D / b, h1, :::, hd3C / h, b, h ! 0, b=h ! 0, and logm= mðbhÞd3C=2
n o

! 0:

The corollary below describes the cases in which b̂PILS becomes
ffiffiffi
n

p
-asymptotically normal.

Corollary 1. Let h / ð logm=mÞa and b / ð logm=mÞ2a for some constant a > 0. Also suppose that
one of the following divergence patterns in (n, m) is true: (i) n=m ! j 2 ð0,1Þ; (ii) n=m ! 0; or

(iii) n=m ! 1 and n=m4a ! 0. Then, under Assumptions 1–5 and 60, as n,m ! 1,
ffiffiffi
n

p ðb̂PILS �
bÞ !d Nð0ðdþ1Þ�1,VÞ holds either (a) if a �th-order symmetric kernel is employed and d3C � 2� � 1
or (b) if the beta kernel is employed and d3C � 3:

Corollary 1 presents an upper bound of the number of continuous common variables for PILS
to be

ffiffiffi
n

p
-consistent. This is recognized as the curse of dimensionality in continuous common

variables, and it can be relaxed, in theory, by using higher-order kernels. In particular, when
employing a nonnegative kernel (which is either a symmetric pdf or the beta kernel), we must
limit the number of continuous common variables to 3 or less to make PILS

ffiffiffi
n

p
-consistent. To

see this in more detail, note that for the most realistic case n=m ! j, shrinkage rates of the

smoothing parameters are h / ð logm=mÞa and b / ð logm=mÞ2a for some a 2 ð1=4, 1=d3CÞ (see
Appendix A.4). These rates are faster than what yields Stone’s (1982) optimal global rate of con-

vergence, i.e., h� / ð logm=mÞ1=ð4þd3CÞ and b� / ð logm=mÞ2=ð4þd3CÞ that can be obtained through
balancing the squared bias and variance of ĝ 2ð�Þ: This is because to attain

ffiffiffi
n

p
-consistency we

should keep the convergence rate of the dominant bias term in ĝ 2ð�Þ sufficiently fast by under-
smoothing, or more specifically, by setting the exponent a within the aforementioned range. We
give some examples of h and b that fulfill the rate requirement in Sections 3 and 4.

Finally, it may be the case that the missing regressor X2 can be observed with a measurement
error. This issue occurs, for example, when an ability measure is unreliable in the wage regres-

sion. Suppose that we can observe X
^

2 ¼ X2 þ t at best, where t is the measurement error. As
long as EðtjX3Þ ¼ 0d2�1, the effect of t is filtered out via kernel smoothing and

g
^

2 X3ið Þ :¼
Pm

j¼1X
^

2jW X3j;X3i,h, k
� �

Pm
j¼1W X3j;X3i, h, k

� � ¼ ĝ 2 X3ið Þ þ opð1Þ, i ¼ 1, :::, n

holds. In the end, consistency of PILS is maintained.

2.5. Comparison of PILS with competing estimators

We conclude this section by comparing PILS with competing estimators. The competing estima-
tors we consider are IV estimators using linear and nonlinear instruments, a fully parametric
alternative to PILS (called PARA hereinafter), and the matched-sample indirect inference (MSII)
and fully-modified MSII (MSII-FM) estimators. PARA is often a method of choice (see, e.g., Fang
et al. 2008). MSII(-FM) was proposed by Hirukawa and Prokhorov (2018) as an alternative to the
inconsistent OLS estimator using the matched sample (called MSOLS hereinafter). Definitions
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and statistical properties of these estimators are reviewed in the online supplement. Finite-sample
properties of all the estimators will be assessed in comparison with PILS in the next section.

2.5.1. Comparison with IV
The use of IVs has been associated with at least two problems. First, instruments that are not
strongly correlated with the endogenous variables—weak instruments—lead to large inconsisten-
cies in the IV estimators even if a weak correlation exists between the instruments and the struc-
tural equation error, i.e., even if the instruments only slightly violate the validity assumption (see,
e.g., Bound et al., 1995). When we are ready to assume that the IVs are valid, the weak instru-
ment problem results in large asymptotic and finite-sample biases and, when many such instru-
ments are available, the distribution of IV estimators is known to deviate substantially from the
large-sample approximation (see, e.g., Bekker, 1994; Chao and Swanson, 2005).

Second, finite-sample properties of IV estimators are known to be generally poor, especially
when the instruments are weak (see, e.g., Flores-Lagunes, 2007). Various bias reduction techni-
ques have had limited success and even very inventive uses of instruments have, for these reasons,
been criticized in terms of their validity, strength and finite-sample performance.

Furthermore, valid and strong instruments may be unavailable in the same sample. A number
of ingenious methods have been proposed to combine data from more than one source in such
cases (see, e.g., Angrist and Krueger, 1992, 1995; Arellano and Meghir, 1992; Inoue and Solon,
2010; Klevmarken, 1982; Murtazashvili et al., 2015). However, the two-sample IV estimators
inherit the same problems as their single-sample counterparts (see, e.g., Choi et al., 2018).

The identification strategy for our estimator is different. The central identification conditions
are that g2ð�Þ either depends on additional exogenous variables X3E or is nonlinear. If there are
no additional exogenous variables, then identification relies on nonlinearity in the first step. The
weak identification issue, similar to the weak IV, can appear in our setting if g2ð�Þ is linear and
depends very weakly on X3E so that g2ð�Þ is close to being a linear function of X3I only. We con-
sider these cases in the extensive simulation comparisons.

There is a rich literature proposing ingenious methods such as integrated regression functions,
basis functions, sieves and local smoothing, to incorporate nonlinearities in an IV estimation based
on conditional moment restrictions (see, e.g., Dominguez and Lobato, 2004; Kitamura et al., 2004;
Lavergne and Patilea, 2013; Mammen et al., 2016). For example, Mammen et al. (2016) provide a
general “three-step” estimation framework that uses a nonparametric estimator in each step. A full
account of nonlinearity would involve one of these methods. However, our use of several functions of
instruments is quite close to how these nonlinearities are commonly handled in practice.

Let Z denote the instruments. The validity of Z as instruments can be checked. Note that X2

admits the reduced form X2 ¼ g2ðX3Þ þ g2 ¼ g2ðX3I ,X3EÞ þ g2: If X3I is non-empty (i.e., some
common variables are included as regressors) and some elements of Z are relevant, then those
elements are either a part of X3I or correlated with X3I: As a result, Z and X2 are also correlated,
and the IV estimator of the omitted variable regression becomes inconsistent. Then, we are
tempted to test the null of consistency of IV estimation indirectly by testing the null hypothesis
H0 : g2ðX3I ,X3EÞ ¼ g2ðX3EÞ a:e: against the alternative H1 : g2ðX3I ,X3EÞ 6¼ g2ðX3EÞ for a non-empty
set on suppðX3IÞ: Several versions of the test of significance in nonparametric regressions have
been proposed in the literature. Examples include Fan and Li (1996) and Racine (1997) for con-
tinuous regressors and Lavergne (2001) and Racine et al. (2006) for discrete or categorical regres-
sors, to name a few.

2.5.2. Comparison with PARA
PARA imputes a parametric, linear predictor of X2. It seems attractive, as it is not subject to the
curse of dimensionality in continuous common variables unlike PILS. However, it requires
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dimðX3EÞ > 0 for identification because otherwise, the imputed predictor of X2 is a linear func-
tion of X3I : In contrast, as in Assumption 3(iii), PILS achieves identification by nonlinearity even
if X3E is empty.

PARA shares similar properties with the two-sample (TS) two-stage least squares (2SLS) esti-
mator of Inoue and Solon (2010). An interpretation of PARA in the context of TS2SLS is that
the missing regressor X2 in the former plays the role of an endogenous variable in the latter. In
particular, in the special case when X1 is empty, PARA is numerically equivalent to TS2SLS.1

As demonstrated in Proposition S1 of the online supplement, consistency of PARA depends on
whether X1 is present in (1). It necessarily becomes consistent when X1 is empty. When X1 is non-
empty, which is the most common setting in practice, consistency of PARA fails if EðX1X0

2Þ 6¼
EðX1X0

3ÞA0, where A is the coefficient matrix in the linear projection of X2 on X3.
2 On the other

hand, consistency of PILS fails if EðX1X0
2 X3Þ 6¼ EðX1 X3ÞEðX0

2 X3Þ,j



 which is a violation of an
implication of Assumption 3(ii). Since EðX1X0

2Þ 6¼ EðX1X0
3ÞA0 does not imply EðX1X0

2 X3Þ 6¼j
EðX1 X3ÞEðX0

2 X3Þ,j

 PILS can be consistent when EðX1X0
2Þ 6¼ EðX1X0

3ÞA0 (i.e., PARA is inconsistent)

but still EðX1X0
2 X3Þ ¼ EðX1 X3ÞEðX0

2 X3Þj



 (i.e., Assumption 3(ii) is valid). This could be an explan-
ation for the significant differences observed between the PILS and PARA estimates of the return to
schooling in Section 4.

2.5.3. Comparison with MSII(-FM)
While PILS and MSII(-FM) are both two-sample semiparametric estimators, the former has three
novel features relative to the latter. First, while both MSII(-FM) and PILS are

ffiffiffi
n

p
-consistent and

asymptotically normal two-sample estimators, their approaches to restoring consistency differ.
Consistency of MSII(-FM) is established by imputing X2 from S2 and then eliminating the non-
vanishing bias caused by the imputation. The bias correction requires a consistent, nonparametric

estimate of R2, and that the estimation error in R̂2 is Opðn�1=2Þ: As a consequence, the asymp-
totic variance of MSII(-FM) tends to be large and highly complicated because of multiple asymp-
totically normal terms with the same Opðn�1=2Þ rate.

In contrast, consistency of PILS comes from directly imputing a consistent estimate of
g2ðX3Þ ¼ EðX2 X3Þj in place of the missing X2. By construction, it does not require bias correction
that is a key ingredient in MSII(-FM).3 The asymptotic variance of PILS also comes from two
Opðn�1=2Þ terms, namely, the sampling error as in OLS and the approximation error from replac-
ing the unobservable g2 with its kernel estimate ĝ 2: Although it is hard to compare asymptotic
variances of PILS and MSII(-FM) analytically, Monte Carlo simulations below indicate that the
former tends to be smaller than the latter.

Second, the asymptotic analysis we develop for PILS explicitly incorporates discrete matching
variables. This is in contrast to the asymptotic analysis of Hirukawa and Prokhorov (2018), who
do not accommodate discrete variables explicitly but argue that, similarly to the treatment effect
literature (see, e.g., Abadie and Imbens, 2006), the inclusion of discrete matching variables with a
finite number of support points does not affect convergence rates of MSII(-FM).

Third, we clarify the role of excluded continuous matching variables for identification.
Hirukawa and Prokhorov (2018) maintain the assumption that all common variables enter the

1We thank an anonymous referee for pointing this out to us.
2The coefficient matrix A, as opposed to the one given in Proposition S1 of the online Supplement, is based on the
assumption that the linear projection has no intercepts. Our argument below is not affected with or without intercepts in
the projection.
3From the viewpoint of imputation, the relationship between MSII(-FM) and PILS may be compared to the one between the
NNM-based estimators studied by Abadie and Imbens (2006, 2011) and kernel-based matching estimators studied by Heckman
et al. (1998).
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regression and are used for both estimation and matching. The price to pay for this assumption
is that we need to impose nonlinearity of the conditional mean of the missing regressor given the
matching variables in order to achieve identification. This article relaxes the assumption so that
some common variables may be employed only for imputation. The existence of such common
variables allows for linearity in the conditional mean.

3. Finite-sample performance

3.1. Monte Carlo setup

In this section we present selected results of an extensive Monte Carlo study comparing finite-
sample properties of PILS with the alternative estimators. The design of the Monte Carlo study is
meant to reflect the two scenarios depending on whether or not X1 is empty. Due to the limita-
tion of space, we focus on the more realistic case in which X1 is non-empty. Monte Carlo designs
and results when X1 is empty are available in the online supplement.

The Monte Carlo study is designed to mimic important aspects of the return to schooling
application in Section 4. These are: (a) allowing for both included and excluded continuous
matching variables (educ and age in the application); (b) maintaining n=m ¼ 2 and considering
the sample sizes of ðn,mÞ ¼ ð2000, 1000Þ; (c) permitting the included continuous matching vari-
able X3IC (educ) to become endogenous when X2 (abil) is omitted; and (d) choosing as an instru-
ment Z a variable that differs from the matching variable (fatheduc) and setting corrðX3IC,ZÞ and
corrðX3IC,Z2Þ (roughly) equal to 0.4.4 Of primary interest is estimation of b3, the coefficient on
X3IC (educ).

Our design is largely inspired by the study on nonlinear instruments of Dieterle and Snell
(2016). Consider the two forms of our regression

ðLÞ Y ¼ b0 þ b1X1 þ b2X2 þ b3X3IC þ u,

ðSÞ Y ¼ b0 þ b1X1 þ b3X3IC þ v, v ¼ uþ b2X2,

where true parameter values are b0 ¼ b1 ¼ b2 ¼ b3 ¼ 1, and b3 is the parameter of interest. Let

u, g1 	iid Nð0, 1Þ, X3EC , n 	iid U �2, 2½ �, Z 	iid U 0, 1½ �, and X3ED 	iid Bernoullið1=2Þ � 1=2, where all these
random variables are mutually independent. Next, X1 and X3IC are generated as

X1 ¼ 2X3ICX
2
3ECX3ED þ g1, and

X3IC ¼ 4q1 Z � 1
2

	 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q21

q
n,

where q1 ¼ corrðX3IC ,ZÞ and q1 2 0:1, 0:4f g: The cases with q1 ¼ 0:1 and 0.4 correspond to
weak and strong instruments, respectively. The specification of X3IC ensures compactness of
suppðX3ICÞ, EðX3ICÞ ¼ EðX3ECÞ ¼ EðX3EDÞ ¼ 0 and VarðX3ICÞ ¼ VarðX3ECÞ ¼ 4=3 regardless of q1.
A straightforward calculation also yields

q2 ¼ corr X3IC ,Z
2

� � ¼ ffiffiffiffiffi
15

p

4
q1 ¼

0:0968 for q1 ¼ 0:1

0:3873 for q1 ¼ 0:4
:

(

The missing regressor X2 is generated as one of the following two models:

4Sample correlations between educ and fatheduc and between educ and fatheduc2 are 0.434 and 0.420, respectively.
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Model A:

X2 ¼ X3IC

5q1
þ X3EC þ X3ED þ g2, and

g2 ¼ �E
X3IC

5q1





Z
 !

¼ � 2
5

2Z � 1ð Þ:

Model B:

X2 ¼ 1

12
ffiffiffiffi
C

p X3IC

2q1

	 
3

þ 1
4
sin

p
2
X3EC

	 

X3ED þ g2,

g2 ¼ � 1

12
ffiffiffiffi
C

p E
X3IC

2q1

	 
3



Z
( )

¼ � 1

12
ffiffiffiffi
C

p 2Z � 1ð Þ3 þ 1
q21

� 1
	 


2Z � 1ð Þ
� �

, and

C ¼ 8
105

� 4
15q21

þ 1
3q41

:

The constant C for Model B is the variance of E ðX3IC=ð2q1ÞÞ3 Zj g:
�

Hence, the term 12
ffiffiffiffi
C

p
in

the denominator of g2 is intended to make Varðg2Þ invariant to q1. Also observe that X2 is linear
in X3 ¼ ðX3IC ,X3EC ,X3EDÞ for Model A. This guarantees consistency of PARA. On the other hand,
X2 is nonlinear and even additively non-separable in X3 for Model B. As a result, PARA becomes
inconsistent in this case.

The above procedure provides us with two observable samples

S1 ¼ Yi ,X1i,X3ICi ,X3ECi,X3EDi,Zið Þ� �n
i¼1

and S2 ¼ X2j,X3ICj,X3ECj ,X3EDjð Þ� �m
j¼1

:

The complete sample

S� ¼ Yi ,X1i ,X2i,X3ICi ,X3ECi,X3EDi,Zið Þ� �n
i¼1

is the sample that would not be observed in practice. Finally, the matched sample

S ¼ Yi ,X1i,X2j1ðiÞ , :::,X2jKðiÞ ,X3ICi ,X3ECi,X3EDi,Zi
� �� �n

i¼1

is constructed via the NNM with respect to X3 ¼ ðX3IC ,X3EC ,X3EDÞ as in Hirukawa and
Prokhorov (2018). The NNM is based on the Mahalanobis distance, and the number of matches
is set equal to K¼ 1 (single match) that is most commonly chosen. Sample sizes of S1 and S2 are
n 2 1000, 2000f g and m ¼ n=2: The number of replications is 1000.

There are three options to estimate b3 consistently. The first option is to estimate regression
(S) using S1 only. While EðvÞ ¼ EðX1vÞ ¼ 0 holds, EðX3ICvÞ 6¼ 0 (i.e., X3IC is endogenous in (S))
is the case and OLS for (S) is inconsistent. However, EðvjZÞ ¼ 0 and q 6¼ 0: Hence, we can esti-
mate b3 consistently by using Z and its functions as instruments for X3IC : The remaining two
options rely on both S1 and S2 to estimate regression (L). Option two is to construct the
matched sample S from S1 and S2 and run MSII or MSII-FM using S: Option three is to
employ PILS using both S1 and S2:

Based on the above estimation strategies, we compare the following estimators of b3: (i) the
infeasible OLS estimator for regression (L) using S� [OLS�];5 (ii) the inconsistent OLS estimator
for regression (S) using S1 only [OLS-S]; (iii) the IV estimator for (S) using Z as an instrument
for X3IC [IV1-S]; (iv) the IV estimator for ðSÞ using Z2 as an instrument for X3IC [IV2-S]; (v) the
two-step GMM estimator for ðSÞ using ðZ,Z2Þ as instruments for X3IC [GMM-S], along with the

5OLS� is consistent, because EðuÞ ¼ EðX1uÞ ¼ EðX2uÞ ¼ EðX3IC uÞ ¼ 0:
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initial 2SLS estimator [2SLS-S]; (vi) the inconsistent MSOLS estimator for (L) using S with K¼ 1
[MSOLS]; (vii) the MSII-FM estimator for (L) using S with K¼ 1 and second-order polynomial
[MSII-FM], along with the first-step MSII estimator [MSII]; (viii) the PARA estimator for (L)
using S1 and S2 [PARA]; (ix) the PILS estimator for (L) using S1, S2 and the Epanechnikov ker-
nel KEðtÞ ¼ ð3=4Þð1� t2Þ1 jtj � 1f g [PILS-E];6 and (x) the PILS estimator for (L) using S1, S2

and the beta kernel [PILS-B].
Implementing the two PILS estimators requires a choice of the smoothing parameters. We use

ĥ ¼ r̂Xð logm=mÞ0:3 for the Epanechnikov kernel, b̂ ¼ r̂Uð logm=mÞ0:6 for the beta kernel, and

k̂ ¼ ð logm=mÞ0:6 for the discrete kernel, where r̂X and r̂U are sample standard deviations of the
continuous common variable in the original scale Xð¼ X3IC ,X3ECÞ and in the transformed scale
U :¼ ðX þ 2Þ=4 2 0, 1½ �, respectively. These shrinkage rates fulfill the requirements in
Section 2.4.4.

For each estimator of b3, the following performance measures are computed: (i) Mean (simula-
tion average of the parameter estimate); (ii) SD (simulation standard deviation of the parameter
estimate); (iii) RMSE (root mean-squared error of the parameter estimate); (iv) SE (simulation
average of the standard error); and (v) CR (coverage rate for the nominal 95% confidence inter-
val). Formulae for standard errors are as follows: (a) heteroskedasticity-robust standard errors by
Eicker (1963) and White (1980) are calculated for OLS� and IV-S; (b) the formula for MSII-FM
follows Theorem 4 of Hirukawa and Prokhorov (2018), (c) the formula for PILS appears in
Theorem 2; and (d) the formula for PARA is given in Proposition S3 of the online supplement.
Because of inconsistency we do not compute SE or CR of OLS-S and MSOLS. Those of the first-
step MSII are also omitted due to its nonparametric convergence rate. Likewise, we present SE
and CR of PARA only when it is consistent, i.e., for Model A.

We also consider a variation to the above design which examines how the estimators behave
near identification failure. Identification of two-sample estimators heavily relies on the functional
form of g2ð�Þ and existence of excluded matching variable X3E: In particular, identification failure
occurs if g2ð�Þ reduces to a linear function of the included matching variable X3I only.

Therefore, we allow for weaker identification by changing how we generate X2:

Model A0:

X2 ¼ X3IC

5q1
þ w X3EC þ X3EDð Þ þ g2,

Model B0:

X2 ¼ 1

12
ffiffiffiffi
C

p X3IC

2q1

	 
3

þ 1
4
w sin

p
2
X3EC

	 

X3ED þ g2,

where the weight w 2 1:0, 0:1f g controls the strength of identification in two-sample estimators.
We fix q1 ¼ 0:4, ðn,mÞ ¼ ð2000, 1000Þ and the number of replications is 1000. All other aspects
of the simulation setup remain unchanged. Therefore, w¼ 1.0 corresponds to the results for q1 ¼

6In addition to the second-order Epanechnikov kernel, we consider the fourth and sixth-order Epanechnikov kernels by Hansen
(2005), where their functional forms are

KE, 4ðtÞ ¼ 15
8

1� 7
3
t2

	 

KEðtÞ and KE, 6ðtÞ ¼ 175

64
1� 6t2 þ 33

5
t4

	 

KEðtÞ,

respectively. However, our early simulation results indicate huge finite-sample biases from these estimators, and thus are
not reported.
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0:4 in the original setup. Because the purpose is to check how the quality of two-sample estimates
deteriorates as w shrinks, we only report Mean, SD and RMSE for each estimator.

3.2. Results

Table 1 presents the results from alternative specifications of X2. It is immediately clear that
OLS� outperforms all other estimators as would be expected. However, OLS� is infeasible, and its

Table 1. Monte Carlo results.

ðn,mÞ ¼ ð1000, 500Þ ðn,mÞ ¼ ð2000, 1000Þ
Estimator Mean SD RMSE �SE CR Mean SD RMSE �SE CR

Model A (q1 ¼ 0:1)
OLS� 0.9986 0.0559 0.0559 0.0560 95% 1.0020 0.0397 0.0398 0.0397 95%
OLS-S 2.9802 0.0450 1.9807 – – 2.9807 0.0314 1.9809 – –
IV1-S 0.7461 1.2942 1.3189 1.1668 92% 0.9019 0.6212 0.6289 0.6171 94%
IV2-S 0.7076 1.5997 1.6262 1.3316 93% 0.8921 0.6651 0.6738 0.6457 93%
2SLS-S 1.0207 0.9247 0.9249 0.9019 88% 1.0115 0.5629 0.5630 0.5744 92%
GMM-S 1.0209 0.9251 0.9253 0.9012 88% 1.0112 0.5631 0.5632 0.5741 92%
MSOLS 1.1265 0.0624 0.1411 – – 1.0938 0.0434 0.1034 – –
MSII 0.9058 0.0805 0.1239 – – 0.9467 0.0504 0.0734 – –
MSII-FM 0.8203 0.0827 0.1978 0.1066 67% 0.9052 0.0511 0.1077 0.0629 72%
PARA 0.9990 0.0612 0.0612 0.0611 95% 1.0009 0.0426 0.0426 0.0432 96%
PILS-E 1.0288 0.0720 0.0775 0.0773 95% 1.0024 0.0462 0.0463 0.0533 98%
PILS-B 1.0013 0.0637 0.0637 0.0804 99% 0.9963 0.0437 0.0439 0.0550 99%

Model A (q1 ¼ 0:4)
OLS� 0.9999 0.0294 0.0294 0.0293 94% 1.0012 0.0204 0.0205 0.0207 96%
OLS-S 1.4203 0.0451 0.4228 – – 1.4204 0.0311 0.4216 – –
IV1-S 0.9993 0.1163 0.1163 0.1165 96% 0.9970 0.0800 0.0801 0.0821 96%
IV2-S 0.9989 0.1198 0.1198 0.1202 95% 0.9965 0.0832 0.0832 0.0848 96%
2SLS-S 1.0018 0.1165 0.1165 0.1161 95% 0.9982 0.0798 0.0799 0.0820 96%
GMM-S 1.0019 0.1167 0.1168 0.1160 96% 0.9982 0.0798 0.0798 0.0819 96%
MSOLS 1.0166 0.0313 0.0354 – – 1.0152 0.0219 0.0266 – –
MSII 0.9952 0.0317 0.0321 – – 0.9987 0.0221 0.0221 – –
MSII-FM 0.9861 0.0317 0.0347 0.0308 92% 0.9938 0.0221 0.0229 0.0216 94%
PARA 0.9998 0.0310 0.0310 0.0307 95% 1.0010 0.0214 0.0214 0.0217 96%
PILS-E 1.0094 0.0354 0.0367 0.0327 91% 1.0035 0.0236 0.0239 0.0226 93%
PILS-B 1.0013 0.0318 0.0318 0.0315 95% 1.0012 0.0219 0.0219 0.0221 95%

Model B (q1 ¼ 0:1)
OLS� 0.9986 0.0602 0.0602 0.0613 95% 0.9996 0.0447 0.0447 0.0433 95%
OLS-S 1.4334 0.0288 0.4344 – – 1.4343 0.0199 0.4347 – –
IV1-S 0.9359 0.4259 0.4306 0.4207 97% 0.9820 0.2432 0.2439 0.2432 97%
IV2-S 0.9204 0.5361 0.5420 0.4801 96% 0.9794 0.2593 0.2602 0.2537 97%
2SLS-S 0.9978 0.3717 0.3717 0.3623 95% 1.0067 0.2299 0.2300 0.2330 96%
GMM-S 0.9974 0.3721 0.3721 0.3619 94% 1.0064 0.2299 0.2300 0.2329 96%
MSOLS 1.0907 0.0598 0.1087 – – 1.0663 0.0440 0.0796 – –
MSII 0.8611 0.1102 0.1773 – – 0.9222 0.0616 0.0992 – –
MSII-FM 0.8204 0.1185 0.2152 0.1309 81% 0.9079 0.0630 0.1116 0.0676 77%
PARA 1.4632 2.8122 2.8501 – – 1.5260 4.1731 4.2061 – –
PILS-E 1.0087 0.0702 0.0707 0.0751 95% 0.9926 0.0487 0.0492 0.0523 97%
PILS-B 0.9607 0.0727 0.0827 0.0896 98% 0.9636 0.0507 0.0624 0.0583 95%

Model B (q1 ¼ 0:4)
OLS� 0.9990 0.0371 0.0371 0.0373 96% 1.0005 0.0271 0.0271 0.0263 94%
OLS-S 1.1077 0.0283 0.1113 – – 1.1084 0.0190 0.1101 – –
IV1-S 0.9979 0.0687 0.0687 0.0703 96% 1.0004 0.0496 0.0496 0.0496 95%
IV2-S 0.9971 0.0709 0.0710 0.0726 95% 1.0002 0.0511 0.0511 0.0512 96%
2SLS-S 0.9987 0.0689 0.0689 0.0702 96% 1.0008 0.0494 0.0494 0.0495 95%
GMM-S 0.9987 0.0690 0.0691 0.0701 95% 1.0008 0.0494 0.0494 0.0495 95%
MSOLS 1.0404 0.0370 0.0548 – – 1.0378 0.0265 0.0462 – –
MSII 0.9854 0.0538 0.0557 – – 0.9917 0.0362 0.0371 – –
MSII-FM 0.9809 0.0553 0.0585 0.0534 93% 0.9897 0.0366 0.0380 0.0355 94%
PARA 1.1324 0.9097 0.9192 – – 1.1148 2.0242 2.0275 – –
PILS-E 1.0192 0.0414 0.0456 0.0487 94% 1.0110 0.0298 0.0318 0.0355 96%
PILS-B 0.9992 0.0417 0.0418 0.0640 98% 0.9992 0.0307 0.0307 0.0423 98%
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performance can be used only as a benchmark. Instead, realistic comparisons can be made
between the other estimators.

Performance of IV1-S and IV2-S is largely governed by strengths of instruments, while huge
biases and variability due to weak instruments are ameliorated by a larger sample size. While per-
formances of 2SLS-S and GMM-S improve due to additional moment restrictions, their efficien-
cies do not surpass those of two PILS estimators.

The instrument strength also influences the performance of the two-sample estimators. MSII-
FM is a prominent example. The estimator is severely biased and unstable for each of two weak
instrument cases.

The performance of PARA depends heavily on specification of X2. PARA performs exception-
ally well in the more favorable case (i.e., Model A), as expected. On the other hand, the estimator
generates substantial bias and variability for Model B. The poor performance may be attributed
to identification failure due to difficulty in the linear projection of the product of periodic and
binary random variables.

The two PILS estimators appear to be more robust against changes in the strength of instru-
ments and/or specification of X2. An inspection reveals that PILS-B outperforms PILS-E in terms
of RMSE, except in the case of Model B with q1 ¼ 0:1:

Table 2 presents the results for the variation addressing near identification failure. Qualities of
OLS�, OLS-S and all IV-based estimates remain unchanged throughout this table, as expected. In
contrast, performances of two-sample estimators are influenced by both the functional form of
g2ð�Þ and the value of w.

For Model A0, g2ð�Þ reduces to a linear function of the included matching variable X3IC as w !
0, and identification failure is expected. Indeed, as w decreases, the finite-sample distribution of
MSII-FM appears to be off-centered from the true value of 1 and highly dispersed. A potential
explanation is that as w decreases, excluded matching variables ðX3EC ,X3EDÞ lose their importance
in estimating correction terms for non-negligible and matching-discrepancy biases. Nonetheless,

Table 2. Estimates of b3 with shrinking w:

w¼ 1.0 w¼ 0.1

Estimator Mean SD RMSE Mean SD RMSE

Model A0 (q1 ¼ 0:4)
OLS� 1.0012 0.0204 0.0205 1.0012 0.0435 0.0435
OLS-S 1.4204 0.0311 0.4216 1.4209 0.0194 0.4214
IV1-S 0.9970 0.0800 0.0801 0.9998 0.0548 0.0548
IV2-S 0.9965 0.0832 0.0832 0.9996 0.0569 0.0569
2SLS-S 0.9982 0.0798 0.0799 1.0011 0.0547 0.0547
GMM-S 0.9982 0.0798 0.0798 1.0011 0.0547 0.0547
MSOLS 1.0152 0.0219 0.0266 1.2922 0.0444 0.2955
MSII 0.9987 0.0221 0.0221 0.9460 0.1691 0.1775
MSII-FM 0.9938 0.0221 0.0229 0.9045 0.1872 0.2101
PARA 1.0010 0.0214 0.0214 1.0013 0.0819 0.0819
PILS-E 1.0035 0.0236 0.0239 1.1469 0.0625 0.1597
PILS-B 1.0012 0.0219 0.0219 1.0540 0.0708 0.0890

Model B0 (q1 ¼ 0:4)
OLS� 1.0005 0.0271 0.0271 1.0004 0.0317 0.0317
OLS-S 1.1084 0.0190 0.1101 1.1084 0.0190 0.1101
IV1-S 1.0004 0.0496 0.0496 1.0004 0.0495 0.0495
IV2-S 1.0002 0.0511 0.0511 1.0002 0.0511 0.0511
2SLS-S 1.0008 0.0494 0.0494 1.0008 0.0494 0.0494
GMM-S 1.0008 0.0494 0.0494 1.0008 0.0493 0.0493
MSOLS 1.0378 0.0265 0.0462 1.0629 0.0309 0.0701
MSII 0.9917 0.0362 0.0371 0.9647 0.0815 0.0888
MSII-FM 0.9897 0.0366 0.0380 0.9600 0.0840 0.0931
PARA 1.1148 2.0242 2.0275 1.0665 1.1649 1.1668
PILS-E 1.0110 0.0298 0.0318 1.0290 0.0375 0.0474
PILS-B 0.9992 0.0307 0.0307 1.0028 0.0424 0.0425
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using the full set of X3 ¼ ðX3IC ,X3EC ,X3EDÞ makes their estimates quite imprecise due to additional
noises, whereas in reality it may suffice to estimate the terms by using X3IC only. Likewise, the
finite-sample distribution of PARA for Model A0 also tends to be dispersed with w. This may be
attributed to near multi-collinearity in the regression. The proxy of X2 is almost a linear function
of X3IC for a very small w, and imputing it as an extra regressor makes PARA unstable. Large
biases in PILS-E and B are thought to be due to the same identification failure.

On the other hand, g2ð�Þ for Model B0 collapses to a cubic function of X3IC for w ! 0: In this
case, the role of ðX3EC ,X3EDÞ is less important for identification, and the performance of all two-
sample estimators is only marginally affected by w. In particular, PILS-B seems to be more robust
against changes in w than any other two-sample estimator.

4. An application: Estimation of return to schooling

4.1. Earnings function

Estimation of the causal link between education and earnings has been a focus of labor econo-
mists over the last several decades. Card (2001) suggested that endogeneity of education in the
earnings equation might at least in part be responsible for the continuing interest in uncovering
the causal effect of education on labor market outcomes. As Griliches (1977) discusses in detail,
empirical labor economists have long speculated that the primary reason why education is
endogenous when estimating the returns to schooling is some omitted explanatory variable(s)—
unobservable factors that influence education such as ability and motivation—that are likely to
have a direct effect on individual earnings and wages. The aim of this section is to estimate the
rate of return to additional schooling using alternative estimators available to us. These include
the traditional one-sample OLS and linear and nonlinear IV estimators as well as MSII, PARA,
and PILS. A more comprehensive comparison can be found in the online supplement.

Following the classical framework of the human capital earnings/wage function of Mincer
(1974) we assume additivity and wish to use US data in order to estimate the causal effect of edu-
cation on earnings using the following model:

log earningsð Þ ¼ b0 þ b1educationþ b2abilityþ b3experienceþ b4experience
2

þ b5married þ b6blackþ b7southþ b8urbanþ u,
(2)

where log ðearningsÞ is the natural logarithm of the individual’s total annual labor income, educa-
tion is the individual’s completed years of education, ability is the individual’s ability/skills (with
zero mean), experience is work experience of the individual, married is an indicator for whether
the individual is married, black is an indicator for whether the individual is black, south is an
indicator for whether the individual currently lives in the southern geographical region, urban is
an indicator of the individual’s urban residence while growing up,7 and u is an idiosyn-
cratic error.

The main issue with estimating Eq. (2) is that econometricians are typically unable to observe
the individual’s skills. Because of that, the (one-sample) OLS estimator of the return to school-
ing—b1—from Eq. (2) where ability is excluded is likely to suffer from an “ability bias.” Two text-
book solutions to this problem are (i) to find within the same data set a valid proxy for the
unobservable skills and use OLS estimation, and (ii) to find within the same data set a valid
instrumental variable for the individual’s educational level and use the IV approach. Since in add-
ition to these two approaches, we advocate using two-sample estimation, we would like to be able
to apply in practice the one- and two-sample approaches to the same applied task.

7The publicly available part of the PSID survey that we use does not provide information on current urban residence.
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4.2. Constructing the samples

To estimate earnings and wage equations for the US, labor economists frequently use such
micro-data sets as CPS, PSID and the National Longitudinal Survey (NLS). While CPS has a
larger sample and is more representative of the entire demographic composition of the US popu-
lation than the other two surveys, it does not typically collect important wage determinants such
as actual work experience and ability. The PSID data set does provide information on actual
work experience but, similar to CPS, generally does not collect data on ability. NLS routinely
reports ability measures and contains data on actual and potential work experience but it is less
representative of the US labor force. Given the features of these surveys, PSID and NLS seem
most suitable as our main and auxiliary data sets, respectively.

We employ the 1972 wave of PSID as our main data set. We choose this wave so that we can
estimate Eq. (2) using not only IV and PILS but also using a proxy for unobserved skills and abil-
ity. While PSID generally does not contain any measures of unobserved ability, the 1972 wave is
among the few PSID waves that do include an ability measure.

In the 1972 wave, the PSID respondents were administered a particular assessment of abstract
thinking—the Lorge-Thorndike Intelligence Test (LTIT). In essence, this is a test of verbal
skills—a sentence completion test—that Veroff et al. (1971, p.26) describe “as a feasible, reason-
ably valid assessment of what psychologists have labeled intelligence.” Furthermore, Veroff et al.
(1971, p.26) advise that this test “seems to correlate well with most different kinds of tests of
intelligence, well enough to suggest using it singly without going to multiple measurement.” LTIT
administered to the PSID respondents contained 13 questions, where each question received a
point for the correct response. Thus, the score for the entire sentence completion test can range
from zero (the worst outcome) to 13 (the best outcome). We call the variable containing the total
test score IQ score, and we demean it.

In addition to the information on the individual’s ability discussed above, we also gather infor-
mation on the individual’s actual work experience, completed years of education, age, whether

Table 3. Sample characteristics.

Variable Mean Std. Dev. Min. Median Max.

Panel A: The PSID sample

Earnings 8763.24 5968.39 30 7900 70000
log (Earnings) 8.84 0.80 3.40 8.97 11.16
Education 12.15 3.09 5 12 17
Experience 19.57 13.17 0 18 68
Married 0.89 0.31 0 1 1
Black 0.26 0.44 0 0 1
South 0.41 0.49 0 0 1
Urban 0.28 0.45 0 0 1
Age 38.57 13.48 17 37 86
South while growing up 0.46 0.50 0 0 1
IQ score 9.49 2.28 0 10 13
Father’s education 9.26 3.06 0 8 17

Panel B: The NLS sample

Education 12.98 3.20 1 13 18
Married 0.63 0.48 0 1 1
Black 0.34 0.48 0 0 1
South 0.53 0.50 0 1 1
Urban 0.58 0.49 0 1 1
Age 28.47 3.14 24 28 34
South while growing up 0.55 0.50 0 1 1
KWW score 32.48 8.42 4 33 56

Notes: ðn ¼Þ2430 individuals in the PSID sample. ðm ¼Þ1102 individuals in the NLS sample. Demeaned IQ score and KWW
score are used.
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the person is black, married, and lives in the southern geographical region.8 Furthermore, we
include a dummy variable for whether the person grew up in an urban area and for whether the
person grew up in the southern region. Finally, in our PSID sample, we also get information on
the completed years of education by the individual’s father. The last variable—father’s educational
level—is used as an instrument for the individual’s educational attainment when no measure of
ability is available.

Our main sample contains 2430 men who reported positive labor income in 1971. Panel A of
Table 3 reports summary statistics for the variables in our PSID sample. The sample correlation
between an individual’s education and the father’s education is 0.434.

To exploit the two-sample approaches, we need a second sample where the ability measure is
available and/or potentially more reliable. We employ the CARD data set provided with
Wooldridge (2013). This data set contains observations from the 1977 wave of the Young Men
Cohort of NLS. We exploit observations with positive wages in 1976.

As an ability measure we employ the results of the “Knowledge of the World of Work”
(KWW score) test that the NLS respondents were administered during their interviews in 1966.
The KWW score from NLS is arguably a better measure of unobserved ability than the IQ score
from the 1972 wave of PSID. A higher KWW score indicates higher intelligence. We demean this
measure before using it to estimate Eq. (2).

Panel B of Table 3 provides summary statistics for the NLS sample of m¼ 1102 respondents
when education, married, black, south, and urban are used as the included common variables,
X3I , and age (the individual’s age, in years) and south while growing up (an indicator for whether
the person resided in the southern region while growing up) are used as the excluded common
variables, X3E: Note that experience and experience2, which are not observed in the NLS sample,
represent X1 in regression (2). The summary statistics for experience are provided in Panel A of
Table 3.

4.3. Estimation approaches

We report estimation results in Table 4.9 Columns (1)–(3) report the parametric estimation
results based on just the PSID sample. Columns (1) reports the OLS estimates using the ability
proxy from the 1972 waive. Column (2) reports the OLS results that do not account for unob-
served ability. In most real-life settings, the results in column (1) are infeasible and those in col-
umn (2) are subject to the “ability bias.” Column (3) provides the IV estimates where the father’s
education is used as an IV for an individual’s educational level.

Columns (4)–(7) report two-sample estimates based on both the PSID and NLS samples.
Columns (4), (5), and (7) contain the results based on semiparametric two-sample approaches,
while column (6) reports the only estimates based on a fully parametric two-sample procedure.
Specifically, column (4) contains the OLS estimates when the two samples are combined using
hot-deck imputation and no bias correction is applied. As discussed by Hirukawa and Prokhorov
(2018), this estimator is inconsistent. Column (5) provides the MSII-FM results that account for
the imputation biases. In essence, the MSII approach is a bias-corrected version of the MSOLS
approach. Column (6) exhibits the PARA results as yet another two-sample estimator. It is worth
emphasizing that PARA is not guaranteed to be consistent in this case. Finally, column (7)
reports the PILS results using the beta kernel, chosen on the basis of the simulation results in
previous section.

8We follow the 1979 NLS of Youth definition of the southern region. The southern region includes Alabama, Arkansas,
Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South
Carolina, Tennessee, Texas, Virginia, and West Virginia.
9GAUSS codes implementing the IV and two-sample estimators as well as the data sets are available at https://sites.google.
com/site/artembprokhorovv0/papers/SimulationAndApplicationFiles.zip.
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The two-sample estimators use five variables common to both samples—education, married, black,
south, and urban—as included variables and two variables—age and south while growing up—as
excluded variables. Note that since in our case both the main (PSID) and auxiliary (NLS) samples
contain information on the individual’s educational level, we treat education as a part of X3. We
choose not to employ experience as a common variable because experience in PSID represents actual
experience, while experience in NLS represents potential experience, which is quite different. As a
consequence, our entire set of common variables contains education, married, black, south, urban,
age, south while growing up, where education and age are treated as continuous.

In the context of Assumption 3(ii), the PILS results assume that experience and ability are related only
through education, married, black, south, urban, age, and south while growing up. This seems plausible
given the weak empirical link between experience and ability and the long list of observables we condition
on. In the proxy literature, this is known as redundancy or ignorability of the proxy variable in the struc-
tural equation, akin to ignorability of selection in selectivity models (see, e.g.,Wooldridge, 2010, p.67).

The NNM used by MSOLS and MSII-FM adopts a single match (K¼ 1) based on the
Mahalanobis metric. We average the (demeaned) KWW score for ties in our second (NLS) sam-
ple and assign this average as a unique value of the ability measure to the respondent with the
given values of our common variables. As a consequence, m¼ 1102 respondents remain in our
S2: A second-order polynomial is used in MSII-FM.

Our choice of a kernel for PILS reflects the favorable performance of the beta kernel in simulations.
For PILS, each continuous common variable X is converted from its original scale to a variable U :¼
ðX �mXÞ=ðMX �mXÞ 2 0, 1½ �, where MX and mX are maximal and minimal values in the pooled
sample constructed from observations of X in S1 and S2: The reason for using the maximum and min-
imum of the pooled sample is that the ranges of education and age are quite different between S1 and

S2: We use b̂ ¼ r̂Uð logm=mÞ0:6 and k̂ ¼ ð logm=mÞ0:6 for the beta and discrete kernels, respectively,
where r̂U is the sample standard deviation of a converted continuous common variable U in S2:
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Table 4. Estimation results.

ð1Þ ð2Þ ð3Þ ð4Þ ð5Þ ð6Þ ð7Þ
OLS� OLS-S IV-S MSOLS MSII-FM PARA PILS

Education 0.0635
ð0:0056Þ

0.0718
ð0:0053Þ

0.0953
ð0:0159Þ

0.0727
ð0:0059Þ

0.0685
ð0:0080Þ

–0.2850
ð0:2281Þ

0.0568
ð0:0087Þ

Experience 0.0809
ð0:0043Þ

0.0818
ð0:0043Þ

0.0830
ð0:0045Þ

0.0826
ð0:0049Þ

0.0766
ð0:0065Þ

0.1170
ð0:0095Þ

0.0818
ð0:0043Þ

Experience2 –0.0017
ð0:0001Þ

–0.0017
ð0:0001Þ

–0.0017
ð0:0001Þ

–0.0017
ð0:0001Þ

–0.0016
ð0:0001Þ

–0.0017
ð0:0001Þ

–0.0017
ð0:0001Þ

Ability 0.0313
ð0:0078Þ

–
ð � Þ

–
ð � Þ

–0.0012
ð0:0027Þ

0.0029
ð0:0081Þ

0.2444
ð0:1514Þ

0.0094
ð0:0045Þ

Married 0.3717
ð0:0539Þ

0.3793
ð0:0536Þ

0.3844
ð0:0536Þ

0.3799
ð0:0535Þ

0.3777
ð0:0535Þ

0.2226
ð0:1319Þ

0.3958
ð0:0543Þ

Black –0.1302
ð0:0323Þ

–0.1741
ð0:0316Þ

–0.1249
ð0:0426Þ

–0.1849
ð0:0393Þ

–0.1504
ð0:0806Þ

–0.1819
ð0:1146Þ

–0.1776
ð0:0316Þ

South –0.0921
ð0:0288Þ

–0.0983
ð0:0287Þ

–0.0814
ð0:0314Þ

–0.0979
ð0:0286Þ

–0.0989
ð0:0289Þ

–0.1372
ð0:1135Þ

–0.1042
ð0:0287Þ

Urban 0.1363
ð0:0282Þ

0.1499
ð0:0284Þ

0.1278
ð0:0332Þ

0.1538
ð0:0297Þ

0.1404
ð0:0390Þ

0.0138
ð0:1273Þ

0.1557
ð0:0282Þ

Data combination? No No No Yes Yes Yes Yes
Sample size: n 2430 2430 2430 2430 2430 2430 2430

m – – – 1102 1102 1102 1102

Notes: The dependent variable is the log of total annual labor earnings. Education, married, black, south, and urban are used
as the included common variables, and age and south while growing up are used as the excluded common variables. The
(demeaned) IQ score and KWW score variables are used as ability measures in the PSID and NLS samples, respectively.

10One potential concern about PILS is how sensitive it is to the choice of smoothing parameter values in nonparametric
estimation of g2ð�Þ: It is confirmed that even after their original values are doubled or cut by half, the estimation results are
qualitatively similar. Detailed results are available in the online supplement.
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4.4. Empirical findings

It is immediately clear from Table 4 that the PARA estimation results substantially differ from
the rest. First, contrary to the corresponding OLS� estimate, the estimate of the rate of return to
education is negative. Second, the PARA estimate of the coefficient on ability is expectedly posi-
tive but extraordinarily large when compared to the OLS� estimate. Third, PARA estimates are
quite unstable in that the standard error of each coefficient estimate is much larger than those of
the corresponding estimates from other methods in general. Because it is hard to provide a mean-
ingful interpretation to the PARA results, we exclude them from further discussion. One lesson
from the PARA estimates is that parametric imputation methods for missing regressors should be
used with caution. In this respect, MSII(-FM) and PILS adopt nonparametric imputation meth-
ods, and thus they are more robust than PARA.

Table 4 shows that the signs of coefficient estimates on all the regressors except ability are as
expected and most of the estimates are significant. The MSOLS estimator yields negative and insignifi-
cant estimates of the ability effect, whereas the MSII-FM estimator results in a positive and insignificant
estimate. Interestingly, OLS� and PILS are the only two estimators that produce positive (as one would
expect) and statistically significant estimates of the ability effect. Finally, we note that the PILS standard
errors tend to be smaller than those of MSII-FM, as predicted in a previous section.

Next we focus on the estimates of the rate of return to education. The estimates reported in Table 4
provide evidence that the father’s education is unlikely to be a valid instrument for an individual’s edu-
cation. This is because if the father’s education were a valid IV, the OLS-S and MSOLS estimators of b1
would be upward-inconsistent. However, we observe that the IV estimate is the largest in magnitude.
Furthermore, if this instrument is valid and there is no measurement error in the PSID ability measure,
then OLS� and IV are both consistent. However, we see that the OLS� and IV estimates are noticeably
different, suggesting again that the two estimators are unlikely to both be consistent.

The infeasible OLS – OLS�—is the second smallest (conceding in magnitude only to PILS). In
addition, if there is no measurement error in the PSID ability measure then OLS� is consistent,
but OLS-S and MSOLS are still upward-inconsistent. This possibility seems to fit well with our
estimates in Table 4. Indeed, the feasible one-sample estimate of b1 with omitted ability—OLS-
S—is between IV and infeasible OLS. In fact, the MSOLS and MSII-FM estimates of b1 are also
between the one-sample IV and infeasible OLS� estimates. Therefore, there are grounds to view
the infeasible OLS� as a benchmark result in our analysis.

Importantly, the only estimate of b1 that is smaller than the infeasible OLS is PILS. We note
that PILS is also the second closest (in absolute value) to the infeasible OLS estimate, while the
first closest is MSII-FM. This would be expected given that only MSII-FM and PILS are the con-
sistent approaches if the instrument is invalid. Furthermore, the possibility that PILS (and not
OLS�) is closer to the true return to education is not unrealistic. If the PSID ability measure is
error-ridden, OLS� is upward-inconsistent suggesting that PILS is likely to be the only estimator
that delivers the closest estimate to the true population value.11

5. Concluding remarks

When some regressors are unavailable for a regression analysis, econometricians often resort to
IV estimation. They typically make a considerable effort to find and justify valid instruments for
the regressors that are suspected to be endogenous due to their possible correlation with the
omitted regressors. In this article, we have explored two-sample alternatives to this conven-
tional approach.

11The online supplement presents a detailed discussion on this claim.
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We have developed the PILS estimation procedure for such models. The procedure first uses
an auxiliary sample to obtain a nonparametric estimator of the conditional mean of the regressor
which is missing in the main sample. Variables that are common in both samples are used in the
conditioning set. In the second step of the procedure, we simply run OLS using a plug-in esti-
mate of the conditional mean.

We establish asymptotic normality of PILS. Attractive finite-sample properties of PILS are con-
firmed in a Monte Carlo study. In particular, simulations demonstrate numerically that PILS is
generally more efficient than IV and it dominates other available estimators, e.g., MSII(-FM), in
terms of mean squared error. The results also indicate superior finite-sample properties of PILS
using the beta kernel.

However, in order for PILS to attain the parametric rate of convergence, the number of con-
tinuous common variables must be three or less (provided that nonnegative kernels are
employed). In this respect, the curse of dimensionality plays out similarly to the NNM-based esti-
mation considered by Hirukawa and Prokhorov (2018).

A natural extension is to adopt a dimension reduction method when using multiple common
variables. This can be done using a sparsity-based algorithm, e.g., lasso of the first step, or using
a propensity score algorithm. We leave these ideas for future research.
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Appendix A. Technical proofs

A.1. Construction of product kernel for estimating g2ð�Þ
We employ a continuous univariate kernel for each of d3C continuous variables X3C, p, p ¼ 1, :::, d3C: For simpli-
city, suppose that X3C, p is smoothed by a univariate symmetric kernel Kð�Þ and bandwidth hp. Then, the product
kernel for X3C, p is
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K t3C; x3C, hð Þ ¼
Yd3C
p¼1

1
hp

K
t3C, p � x3C, p

hp

	 

,

where t3C :¼ ðt3C, 1, :::, t3C, d3C Þ, x3C :¼ ðx3C, 1, :::, x3C, d3C Þ and h :¼ ðh1, :::, hd3C Þ are vectors of data points, design
points and bandwidths, respectively.

Next, we construct a kernel for the discrete component. While a variety of discrete kernels can be applied for
this component, our focus is on those given by Aitchison and Aitken (1976). In what follows a product of their
discrete kernels is exclusively considered. Each of d3D discrete variables X3D, q, q ¼ 1, :::, d3D is assumed to take
rqð� 2Þ different values, i.e., X3D, q 2 0, 1, :::, rq � 1f g: In addition, each discrete variable is classified into either
unordered or ordered, because the kernels employed for the two types of categorical variables differ slightly. The
univariate discrete kernel for an unordered variable is

l t3D, q; x3D, q, kq
� �

:¼ 1 if t3D, q ¼ x3D, q
kq= rq � 1ð Þ if t3D, q 6¼ x3D, q

,

(

where t3D, q, x3D, q and kq 2 ð0, 1Þ are the data point, design point and bandwidth, respectively. The univariate dis-
crete kernel for an ordered variable takes the form of

‘ t3D, q; x3D, q, kq
� �

:¼ rq
t3D, q � x3D, q


 



 !
1� kq
� �rq� t3D, q�x3D, qj jk t3D, q�x3D, qj j

q :

If there are q1ð� d3DÞ unordered discrete variables, then the product kernel for all d3D discrete variables is given
by

L t3D; x3D, kð Þ ¼
Yq1
q¼1

l t3D, q; x3D, q, kq
� �( ) Yd3D

q¼q1þ1

‘ t3D, q; x3D, q, kq
� �8<

:
9=
;,

where t3D :¼ ðt3D, 1, :::, t3D, d3DÞ, x3D :¼ ðx3D, 1, :::, x3D, d3DÞ and k :¼ ðk1, :::, kd3D Þ:
For the continuous component, we also apply an alternative nonstandard kernel. Taking compactness of X3C

into account (see Assumption 2), we employ the beta kernel by Chen (1999) in place of the univariate symmetric
kernel. For a design point x 2 0, 1½ � and the smoothing parameter b, the beta kernel is defined as

KB x, bð ÞðtÞ ¼ tx=b 1� tð Þ 1�xð Þ=b

B x=bþ 1, 1� xð Þ=bþ 1
� � 1 t 2 0, 1½ �� �

:

It turns out that convergence properties of nonparametric estimators based on this kernel family have not been
established. In a companion paper (Hirukawa et al., 2022), we provide a careful proof of weak and strong uniform
convergence with rates of nonparametric estimators smoothed by the beta kernel.

A.2. Proof of Theorem 1

The proof requires a lemma on uniform consistency of the kernel regression estimator ĝ2ð�Þ: Let g2kð�Þ be the kth
element of g2ð�Þ for k ¼ 1, :::, d2: In order to differentiate the continuous kernels used in the nonparametric estima-
tion of g2kð�Þ, we denote the estimates obtained using �th-order symmetric and beta kernels by ĝ S�2kð�Þ and ĝ B2kð�Þ,
respectively. Then, the lemma below establishes weak uniform consistency with rates of ĝ S�2kð�Þ and ĝ B2kð�Þ:

ECONOMETRIC REVIEWS 25



Lemma A1. If Assumptions 1–6 hold, then, for k ¼ 1, :::, d2, as m ! 1,

sup
x32X3
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A.2.1. Proof of Lemma A1
First two statements on ĝ S�2kð�Þ are implied by Theorem 2.1 of Li and Ouyang (2005). Remaining two statements on
ĝ B2kð�Þ are established by Theorem 7 of Hirukawa et al. (2022) with rn ¼ Oð1Þ due to uniform boundedness from
below of f ð�Þ: �

A.2.2. Proof of Theorem 1
To save space, we concentrate only on the case with the beta estimator ĝ B2 ð�Þ: The PILS estimator admits the
expansion

b̂PILS ¼ bþ S�1
n, X̂ , X̂ Sn, X̂ , � þ S�1

n, X̂ , X̂ Sn, X̂ , g2 X3ð Þ�ĝ B2 X3ð Þf g0
b2

¼ bþ S�1
n, X̂ , X̂ Sn, X̂ , g2 X3ð Þ�E ĝ B2 X3ð ÞjX3f g½ �0b2

þ S�1
n, X̂ , X̂ Sn, X̂ , � � S�1

n, X̂ , X̂ Sn, X̂ , ĝ B2 X3ð Þ�E ĝ B2 X3ð ÞjX3f g½ �0b2 ,
(A1)

where the third and fourth terms on the right-hand side can be interpreted as those of the sampling error in

regression (1) and the approximation error of g2, respectively. It follows from Lemma A1 that Bg2 :¼
S�1
n, X̂ , X̂

S
n, X̂ , g2ðX3Þ�E ĝ B2 ðX3ÞjX3f g½ �0b2 ¼ Opð

Pd3C
p¼1 bp þ

Pd3D
q¼1 kqÞ: Each of the last two terms is Opðn�1=2Þ by the central

limit theorem (CLT); see the proof of Theorem 2 for more details. Therefore,

b̂PILS ¼ bþ Op

Xd3C
p¼1

bp þ
Xd3D
q¼1

kq

0
@

1
Aþ Op n�1=2ð Þ þ Op n�1=2ð Þ !p b

as n,m ! 1: �

A.3. Proof of Theorem 2

We continue to focus on the case with the beta estimator ĝ B2 ð�Þ: Short-hand notations such as g2i ¼
g2ðX3iÞ, Eiðĝ B2iÞ ¼ E ĝB2 ðX3iÞ X3ij g,

�
and W j:i ¼ WðX3j;X3i, b,kÞ also apply. Then, by Lemma A1 and CLT,

Sn, X̂ , X̂ ¼ Sn,X,X þ opð1Þ !p UX,X > 0, and (A2)

ffiffiffi
n

p
Sn, X̂ , � ¼

1ffiffiffi
n

p
Xn
i¼1

Xi�i þ opð1Þ !d N 0 dþ1ð Þ�1,X1
� �

(A3)

for the sampling error part. Moreover,

S
n, X̂ , ĝ B2 X3ð Þ�E ĝ B2 X3ð ÞjX3f g½ �0b2 ¼ S

n,X, ĝ B2 X3ð Þ�E ĝ B2 X3ð ÞjX3f g½ �0b2 þ S
n, X̂�X, ĝ B2 X3ð Þ�E ĝ B2 X3ð ÞjX3f g½ �0b2

for the approximation error part, where the second term is of a smaller order of magnitude than the first term.
Also observe that ĝ B2i � Eiðĝ B2iÞ ¼ ~gB2i � Eið~gB2iÞ

� �þ ð~gB2i � g2iÞ þ g2i, where ~uB
i :¼Pm

j¼1 ujW j:i=
Pm

j¼1 W j:i for u 2
g2, g2f g: Then, by a similar argument to Proposition 9 of Stengos and Yan (2001) and CLT,

26 M. HIRUKAWA ET AL.



ffiffiffi
n

p
S
n, X̂ , ĝ B2 X3ð Þ�E ĝ B2 X3ð ÞjX3f g½ �0b2 ¼

1ffiffiffi
n

p
Xn
i¼1

Xig
0
2ib2 þ opð1Þ !d N 0 dþ1ð Þ�1,X2

� �
: (A4)

Finally, it is straightforward to see that for every i and k,

E X̂i�i
� �

X̂k ĝB2k � Ek ĝB2k

� �� �0
b2

� �0" #
¼ 0 dþ1ð Þ� dþ1ð Þ: (A5)

The result is established by substituting (A2)–(A5) into (A1) and rearranging it. �

A.4. Proof of Corollary 1

Again to save space, we provide the proof for the case with the beta estimator ĝ B2 ð�Þ: To control the convergence

rate of h, let h / bd=d3C for a sufficiently small d > 0 so that b=h ! 0 can be established. Because Bg2 ¼
OpðbÞ þ opðn�1=2Þ, ffiffiffi

n
p ðb̂PILS � b� Bg2 Þ ¼

ffiffiffi
n

p ðb̂PILS � bÞ þ opð1Þ holds if

nb2 ¼ O
n
m

	 

logmð Þ4am1�4a

� �
! 0:

This is the case if one of the following conditions is true: (i) n=m ! j and a > 1=4; (ii) n=m ! 0 and a > 1=4; or
(iii) n=m ! 1, n=m4a ! 0 at a polynomial rate and a > 1=4: It also follows from Assumption 60(b) that

logm

m bhð Þd3C=2
¼ O

logm
m

	 
1�a d3Cþdð Þ
( )

! 0

should be the case. This holds if 1� aðd3C þ dÞ > 0 or a < 1=ðd3C þ dÞ < 1=d3C: Therefore, for b̂PILS to beffiffiffi
n

p
-consistent, a must satisfy 1=4 < a < 1=d3C: This range is non-empty if d3C � 3: �
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