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Abstract
This paper provides a set of uniform consistency results
with rates for nonparametric density and regression esti-
mators smoothed by the beta kernel having support
on the unit interval. Weak and strong uniform conver-
gence is explored on the basis of expanding compact sets
and general sequences of smoothing parameters. The
results in this paper are useful for asymptotic analysis
of two-step semiparametric estimation using a first-step
kernel estimate as a plug-in. We provide simulations and
a real data example illustrating attractive properties of
the estimators.
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1 INTRODUCTION

It is well known that using standard symmetric kernels to estimate unknown curves on a bounded
support (e.g., on a half real line or on a compact set) leads to the so-called boundary bias in the
vicinity of the boundary. While many boundary correction methods have been proposed since
early works on boundary adapted kernel estimation by Müller (1991) and Jones (1993), smooth-
ing by a nonstandard, asymmetric kernel function emerges as a viable alternative. Because an
asymmetric kernel is based on a probability density function (pdf) having the same support as
that of the curves, it is free of the boundary bias by construction. In addition, the shape of the ker-
nel varies according to the position at which smoothing is done; in other words, the amount of
smoothing changes in an adaptive manner. More than two decades have passed since the advent
of asymmetric kernels, and a number of articles have reported favorable evidence from applying
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them to empirical models in economics and finance; see Hirukawa (2018) for more details on
asymmetric kernels and examples of their applications. However, little is known about uniform
consistency and convergence rates of asymmetric kernel estimators.

This paper studies uniform convergence for nonparametric estimators on a compact set
smoothed by an asymmetric kernel. Compactness of the support often arises either by construc-
tion of the data or as a theoretical requirement. For the former, economic and financial variables
defined as shares or proportions are typically bounded from above and below. Examples include
expenditure and budget shares, unemployment rates, target zone exchange rates, and default and
recovery rates, to name a few. For the latter, compactness is imposed, for instance, on the support
of nonparametric copulas (see, e.g., Sancetta & Satchell, 2004), of the nonparametric part of the
partial linear regressions (see, e.g., Yatchew, 1997) and of the covariates used for nearest-neighbor
matching (see, e.g., Abadie & Imbens, 2006). Furthermore, the fully nonparametric estimator of
first-price auctions is also built on compactness of supports of the distributions of private values
and observed bids (see, e.g., Guerre et al., 2000).

Throughout this paper it is assumed, without loss of generality, that the compact set is a
p-dimensional unit hypercube [0, 1]p. Among all asymmetric kernels, our particular focus is on
the beta kernel by Chen (1999). The kernel takes the form

KB(x,b)(u) =
ux∕b(1 − u)(1−x)∕b

B{x∕b + 1, (1 − x)∕b + 1}
1{u ∈ [0, 1]},

for a data point u ∈ [0, 1], a design point x ∈ [0, 1] and a smoothing parameter b > 0, where
B(𝛼, 𝛽) = ∫ 1

0 y𝛼−1(1 − y)𝛽−1dy for 𝛼, 𝛽 > 0 is the beta function, and 1{⋅} denotes an indicator
function. To cope with multivariate problems, we construct a tensor product kernel

KB(x,b)(u) =
p∏

j=1
KB(xj,bj)

(
uj
)
=

p∏

j=1

uxj∕bj

j

(
1 − uj

)(1−xj)∕bj

B
{

xj∕bj + 1,
(
1 − xj

)
∕bj + 1

}1
{

uj ∈ [0, 1]
}
,

where u ∶=
(

u1, … ,up
)
⊤ ∈ [0, 1]p, x ∶=

(
x1, … , xp

)
⊤ ∈ [0, 1]p and b ∶=

(
b1, … , bp

)
⊤ ∈ R

p
++

are p-dimensional vectors of data points, design points and smoothing parameters, respectively.
Our analysis is built on estimating g(x) ∶= m(x)f (x), where m(x) ∶= E(Y |X = x) and f (x) is

the marginal pdf of X. Given ni.i.d. observations {(Yi,Xi)}n
i=1 ∈ R × [0, 1]p, we consider the sample

average estimator

ĝB(x) ∶=
1
n

n∑

i=1
YiKB(x,b) (Xi) ,

and demonstrate its weak and strong uniform convergences with rates. On the one hand, most of
multivariate beta kernel estimators such as the joint density estimator and the Nadaraya–Watson
(or local constant) and local linear regression estimators can be expressed in this form. Conse-
quently, our convergence results can be applied to each of these estimators. On the other hand, our
focus in this paper is on uniform consistency of ĝB(x) on a p-dimensional hyperrectangle inside
[0, 1]p that is either fixed or expanding to [0, 1]p at a suitable rate. It may be possible to demonstrate
weak and strong uniform convergences of ĝB(x) on (0, 1)p after suitable modifications of regular-
ity conditions but we do not pursue this here. In this case, an inferior variance convergence rate
would dominate (as implied by pointwise convergence discussed in Section 4.1.1), and thus the
results corresponding to Theorems 7 and 8 of this paper cannot be readily used in analyses of the
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type considered in our companion paper (Hirukawa et al., 2021). It is also difficult to relate the
final forms of the results with the optimal global rates for nonnegative kernel estimators derived
by Stone (1982, 1983). We return to this point in the simulation section.

This paper has several contributions to the existing literature. First, uniform convergence for
asymmetric kernel estimators on expanding sets has not been formally established in the lit-
erature known to us. There is rich literature investigating uniform convergence on expanding
or unbounded sets for estimators based on standard symmetric kernels, including multivariate
frameworks (e.g., Hansen, 2008; Kristensen, 2009). However, the univariate beta kernel cannot
be expressed in the form (1∕b)K{(u − x)∕b} suitable for symmetric kernels. Therefore, it is worth
emphasizing that although our proofs take the same steps as in Hansen (2008), they rely on
different techniques from those for symmetric kernels.

Second, our results hold under weaker regularity conditions than the existing ones in the
literature. While some uniform consistency results are available for asymmetric kernel based esti-
mators, they have important limitations. Bouezmarni and Rolin (2003) show weak and strong
uniform consistency of the univariate beta kernel density estimator on [0, 1], but convergence
rates are not provided explicitly. As the most relevant results to ours, Shi and Song (2016) and
Koul and Song (2013) demonstrate strong uniform consistency with rates for univariate den-
sity and Nadaraya–Watson regression estimators smoothed by the gamma kernel (Chen, 2000)
with support on R+ and its variant, respectively. However, their focus is exclusively on uniform
convergences on a fixed compact interval.

Third, our uniform results cover multivariate nonparametric regression estimation using
asymmetric kernels. There are only a few works on asymmetric kernel estimation for two or
more dimensional cases. Examples include Bouezmarni and Rombouts (2010) and Funke and
Kawka (2015), and they deal exclusively with joint density estimation. We could find no work on
asymmetric kernel regression estimation with multiple regressors.

Fourth, the beta kernel estimators concerned in this paper are allowed to employ different
smoothing parameters for different dimensions. Hansen (2008) and Kristensen (2009) also derive
uniform convergence results of sample average estimators using product kernels. While they
establish the results on expanding sets like ours, they apply a single bandwidth parameter to all
dimensions.

It appears that so far, applications of the beta kernel have been limited to purely nonpara-
metric estimation problems like density and regression estimations. As suggested by Kanaya
and Bhattacharya (2017), a lack of uniform convergence results for beta kernel estimators may
have precluded researchers from employing the beta kernel to a wide variety of estimation prob-
lems. On the other hand, several authors report that beta kernel estimators exhibit attractive
finite-sample properties for diverse applications. Examples include Renault and Scaillet (2004)
and Hagmann et al. (2005) for recovery rate density estimation, Kristensen (2010) for realized
integrated volatility estimation, and our companion paper (Hirukawa et al., 2021) for two-step
two-sample semiparametric regression estimation.

The results in this paper may encourage application of the beta kernel in empirical economics
and finance. For example, the beta kernel is readily applicable to uniform inference on nonpara-
metric density and regression estimations such as those for first-price auctions and Lorenz curves.
It can be also employed for the two-step semiparametric estimation with a first-step nonparamet-
ric kernel-based plug-in estimate. Such a setting has been used by Robinson (1988), Newey (1994),
Rilstone (1996), and Stengos and Yan (2001). Hirukawa et al. (2021) directly apply Theorem 7
as a building block of their two-step two-sample semiparametric regression estimator using the
product beta kernel for the continuous part of the first-step nonparametric estimate.
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The remainder of this paper is organized as follows. Section 2 delivers weak and strong uni-
form convergence results for the sample average estimator ĝB(x) on a compact set that is either
fixed or expanding to a unit hypercube. Section 3 applies the results to density and regression esti-
mators. In the end, our analysis is extended to the nonparametric regression estimator with mixed
categorical and continuous regressors à la Racine and Li (2004). Section 4 conducts Monte Carlo
simulations and provides a real data application of beta kernel estimators. Section 5 concludes.
All proofs are given in the Appendix.

The paper adopts the following notational conventions: for a > 0, Γ(a) = ∫ ∞0 ta−1 exp(−t)dt is
the gamma function; for z ∈ R

d,∇{h(z)} signifies a d-column vector of the first-order derivatives
of a function h(z); and “a.s.” denotes “almost surely.” The expression “X

d
= Y” reads “A random

variable X obeys the distribution Y .” Finally, we mean by ||A|| the Frobenius norm of matrix A,
that is, ||A|| =

{
tr
(
A⊤A

)}1∕2.

2 MAIN RESULTS

2.1 Weak uniform convergence of the sample average estimator

Our analysis starts from demonstrating weak uniform consistency with rates of the sample
average estimator ĝB(x) for g(x) on a p-hyperrectangle

SX = SX(𝜼) ∶=
p∏

j=1

[
𝜂j, 1 − 𝜂j

]
⊆ [0, 1]p,

where the boundary parameters 𝜼 ∶=
(
𝜂1, … , 𝜂p

)
⊤ either are fixed or shrink to zero at a suitable

rate. To deliver the results, we impose the following regularity conditions.

Assumption 1. {(Yi,Xi)}n
i=1 ∈ R × [0, 1]p are i.i.d. random variables.

Assumption 2. The second-order derivatives of f (x) and g(x) are continuous on x ∈ (0, 1)p.

Assumption 3. There are some constants 𝛿 > 0 and C1 ∈ [1,∞) so that E|Y |2+𝛿 < ∞ and

sup
x∈(0,1)p

E
(
|Y |2+𝛿|||X = x

)
f (x) ≤ C1. (1)

Assumption 4W. bj
(
= bj(n) > 0

)
and 𝜂j

(
= 𝜂j(n) > 0

)
for j = 1, … , p satisfy bj, 𝜂j → 0, bj∕𝜂j →

0 and ln n∕
(

n
√∏p

j=1bj𝜂j

)
→ 0 as n →∞.

Assumption 2 implies that there is some constant C0 ∈ [1,∞) so that

sup
x∈(0,1)p

f (x) ≤ C0. (2)

The uniform boundedness condition (1) in Assumption 3 implies that E
(
|Y |2+𝛿||X = x

)
is

allowed to diverge at boundaries but no faster than {f (x)}−1. A similar condition can be found, for
instance, in Hansen (2008, Assumption 2) and Kristensen (2009, Assumption A3). The conditions
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on 𝜂j in Assumption 4W are intended for the case of an expanding set. In particular, the condition
bj∕𝜂j → 0 means that the boundary parameter 𝜂j must shrink to zero at a slower rate than bj. As
can be seen in the Appendix, this is crucial for Stirling’s approximation to the gamma function.
To a large degree, both 𝜂j and rn (to be introduced in Assumption 5) are theoretical devices used
in the novel proof of the convergence results. A specific rule for choosing them would have lim-
ited practical use but any intermediate order sequence with regards to the bandwidth would be
appropriate.

In the context of copula density estimation, this condition is known to be violated for many
copulas. For such copulas, it is not uncommon to exclude the boundaries of the hypercube from
the analysis (e.g., Sancetta & Satchell, 2004) or use trimming/weighting schemes at the edges
(e.g., Hill & Prokhorov, 2016). Controlling the upper bounds of the density f (x) and its deriva-
tives is a key for deriving uniform variance and bias convergence rates, respectively. However,
unboundedness of the density at boundaries leads to unboundedness of its derivatives in the same
region, which induces extra complexity in these exercises. We leave these extensions for future
work.

Below we document weak uniform consistency of ĝB(x) for g(x) on the expanding
p-hyperrectangle SX → [0, 1]p as n → ∞.

Theorem 1. If Assumptions 1–3 and 4W hold, then, as n → ∞,

sup
x∈SX

|ĝB(x) − g(x)| = Op

⎛
⎜
⎜
⎜⎝

p∑

j=1
bj +

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

.

2.2 Strong uniform convergence of the sample average estimator

Next, we demonstrate strong uniform consistency with rates of ĝB(x). Before doing so, the
assumption on smoothing parameters must be suitably strengthened.

Assumption 4S. bj
(
= bj(n) > 0

)
and 𝜂j

(
= 𝜂j(n) > 0

)
for j = 1, … , p satisfy bj, 𝜂j → 0, bj∕𝜂j → 0

and

ln n

n
√∏p

j=1bj𝜂j

( p∑

j=1

1
b2

j

)1−𝜅

= O(1), (3)

for some constant 𝜅 ∈ [0, 1), as n →∞.

The condition (3) is stronger than ln n∕
(

n
√∏p

j=1bj𝜂j

)
→ 0 in Assumption 4W in that the

former implies the latter. Under this condition, the statement in Theorem 1can be strengthened
to almost sure convergence.

Theorem 2. If Assumptions 1–3 and 4S hold, then, as n →∞,

sup
x∈SX

|ĝB(x) − g(x)| = O
⎛
⎜
⎜
⎜⎝

p∑

j=1
bj +

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

, a.s.
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3 APPLICATIONS

3.1 Density estimation

This section considers a variety of applications of Theorems 1 and 2 to nonparametric estimators
using the product beta kernel. We start from presenting two theorems on weak and strong uniform
convergence for the joint density estimator

̂f B(x) ∶=
1
n

n∑

i=1
KB(x,b) (Xi) .

Theorem 3. If Assumptions 1–3 and 4W hold, then, as n → ∞,

sup
x∈SX

|||
̂f B(x) − f (x)||| = Op

⎛
⎜
⎜
⎜⎝

p∑

j=1
bj +

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

.

Theorem 4. If Assumptions 1–3 and 4S hold, then, as n → ∞, the statement in Theorem 3 can be
strengthened to almost sure convergence.

Theorems 3 and 4 lead to the optimal uniform convergence rates of ̂f B(x) when SX is
fixed and a single smoothing parameter b is employed for each dimension. Let 𝜂1, … , 𝜂p be
fixed and b1, … , bp ∝ b, where bsatisfies, as n → ∞: (i) b + ln n∕

(
nbp∕2) → 0 for weak uniform

convergence; or (ii) b → 0 and ln n∕
{

nbp∕2+2(1−𝜅)} = O(1)with 𝜅 ∈ [0, 1) for strong uniform con-
vergence. Observe that b = O

{
(ln n∕n)2∕(4+p)}, which yields the optimal convergence rates below,

satisfies each rate requirement. For such b, the optimal weak and strong uniform convergence
rates of ̂f B(x) are both (ln n∕n)2∕(4+p). This rate coincides with Stone’s (1983) optimal global rate
for nonparametric density estimation.

3.2 Regression estimation using continuous data

We proceed to investigating regression estimation. We consider two most popular ker-
nel regression estimators, namely, the Nadaraya–Watson and local linear regression estima-
tors. The Nadaraya–Watson regression estimator smoothed by the product beta kernel is
defined as

m̂B(x) ∶=
∑n

i=1YiKB(x,b) (Xi)
∑n

i=1KB(x,b) (Xi)
=

ĝB(x)
̂f B(x)

.

On the other hand, the local linear regression estimator of m(x) and the estimator of
its first-order derivative ∇{m(x)} are given by the minimizer of the local least squares
problem

n∑

i=1

{
Yi − 𝛼 − 𝜷⊤ (Xi − x)

}2
KB(x,b) (Xi) .



HIRUKAWA et al. 1359

Let (𝛼̃(x), ̃𝛽(x)) be the minimizer for a given x. Then, the local linear estimator m̃B(x) = 𝛼̃(x)
smoothed by the product beta kernel has the closed form of

m̃B(x) ∶=
ĝB(x) − S1(x)⊤S2(x)−1T1(x)
̂f B(x) − S1(x)⊤S2(x)−1S1(x)

,

where

S1(x) =
1
n

n∑

i=1
(Xi − x)KB(x,b) (Xi) ,

S2(x) =
1
n

n∑

i=1
(Xi − x) (Xi − x)⊤KB(x,b) (Xi) , and

T1(x) =
1
n

n∑

i=1
Yi (Xi − x)KB(x,b) (Xi) .

It may be the case that f (x) → 0 as xj → 0, 1, for some 1 ≤ j ≤ p. To deal with this case, we
follow Hansen (2008) and impose an additional condition. Subsequently, we deliver two theorems
on uniform convergence of m̂B(x) and m̃B(x).

Assumption 5. Let rn ∶= infx∈SX f (x) > 0.As n → ∞, rn → 0 and the following statements hold:

r−1
n

⎛
⎜
⎜
⎜⎝

p∑

j=1
bj +

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

→ 0 for m̂B(x); and

r−2
n

⎛
⎜
⎜
⎜⎝

p∑

j=1

bj

𝜂j
+
√√√√

ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

→ 0 for m̃B(x).

Theorem 5. If Assumptions 1–3, 4W, and 5 hold, then, as n → ∞,

sup
x∈SX

|m̂B(x) −m(x)| = Op

⎧
⎪
⎨
⎪⎩

r−1
n

⎛
⎜
⎜
⎜⎝

p∑

j=1
bj +

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

⎫
⎪
⎬
⎪⎭

, and (4)

sup
x∈SX

|m̃B(x) −m(x)| = Op

⎧
⎪
⎨
⎪⎩

r−2
n

⎛
⎜
⎜
⎜⎝

p∑

j=1

bj

𝜂j
+
√√√√

ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

⎫
⎪
⎬
⎪⎭

. (5)

Theorem 6. If Assumptions 1–3, 4S, and 5 hold, then, as n → ∞, the statements in Theorem 5 can
be strengthened to almost sure convergence.

It is of importance and interest to compare Theorems 5 and 6 with Theorems 8–11 of
Hansen (2008). Taking into account that the marginal density f (x) tends to shrink to zero at the
rate rn in tail regions, Hansen (2008, Theorems 8 and 9) demonstrates that when the regression
surface m(x) is estimated over the entire Euclidean space by the Nadaraya–Watson estimator
using multivariate symmetric kernels, its weak and strong uniform convergence rates slow down
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from those of the corresponding sample average estimator by a factor of the additional penalty
term r−1

n . The statement (4) indicates that the result continues to hold after replacing multivariate
symmetric kernels with the product beta kernel defined on a unit hypercube.

Theorems 10 and 11 of Hansen (2008) document that the penalty term is strengthened to
r−2

n for the local linear estimator smoothed by multivariate symmetric kernels. The statement (5)
argues that the expanding compact set SX influences the uniform convergence rate of the beta
local linear estimator from two different angles. More specifically, in addition to the more strin-
gent penalty term r−2

n , the bias convergence also decelerates from O
(∑p

j=1bj

)
to O

{∑p
j=1

(
bj∕𝜂j

)}

due to the edge effect of SX.
We can also obtain the optimal uniform convergence rates of m̂B(x) and m̃B(x) for a fixed

SX and a single smoothing parameter b; see Section 3.1 for detailed rate requirements for b. In
this scenario, f (x) is bounded away from zero uniformly on x ∈ SX. Then, the optimal weak and
strong uniform convergence rates of m̂B(x) and m̃B(x) are both (ln n∕n)2∕(4+p). The rates agree with
Stone’s (1982) optimal global rate for nonparametric regression estimation.

3.3 Regression estimation using mixed categorical and continuous
data

3.3.1 A product kernel for mixed data

In this section our analysis is further extended to nonparametric regression estimation using
both categorical (or discrete) and continuous data. Racine and Li (2004) originally propose
to use a product kernel constructed from a univariate symmetric kernel for the continuous
part of the regression estimator. Li and Ouyang (2005) demonstrate strong uniform consis-
tency of that estimator on a compact interval. Our aim is to establish weak and strong con-
vergence of the regression estimator in which the product beta kernel is employed for the
continuous part.

A variety of discrete kernels can be applied for the categorical part; see Harfouche et al. (2018)
for a nonexhaustive list of such kernels. Among all discrete kernels, our focuses are on those
given by Aitchison and Aitken (1976), and in what follows a product of their discrete kernels
is exclusively considered. Suppose that a discrete random variable Z takes c(≥ 2) different val-
ues, that is, Z ∈ {0, 1, … , c − 1}. The variable can be further classified into either unordered or
ordered, because the kernels employed for the two types of categorical variables differ slightly.
The univariate discrete kernel for an unordered variable is

l(v; z, 𝜆) ∶=

{
1 − 𝜆 if v = z

𝜆∕(c − 1) if v ≠ z
,

where v, zand 𝜆 ∈ (0, 1) is the data point, the design point and the bandwidth, respectively. Given
the same notations, the univariate discrete kernel for an ordered variable is in the form of

𝓁(v; z, 𝜆) ∶=
(

c
|v − z|

)
(1 − 𝜆)c−|v−z|

𝜆

|v−z|
.

The product discrete kernel can be built on these univariate discrete kernels. If q1(≤ q) out of
q discrete variables are unordered, then the product discrete kernel becomes
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L(v; z,𝝀) =

{ q1∏

k=1
l (vk; zk, 𝜆k)

}{ q∏

k=q1+1
𝓁 (vk; zk, 𝜆k)

}
,

where v ∶=
(

v1, … , vq
)
⊤, z ∶=

(
z1, … , zq

)
⊤ and 𝛌 ∶=

(
𝜆1, … , 𝜆q

)
⊤. Combining this with the

product beta kernel KB(x,b)(u) finally leads to the product kernel for the mixed categorical and
continuous data

W(u, v; x, z,b,𝝀) ∶= KB(x,b)(u)L(v; z,𝝀).

Given this kernel and n i.i.d. observations {(Yi,Xi,Zi)}n
i=1 ∈ R × [0, 1]p × SZ, where SZ ∶=∏q

k=1 {0, 1, … , ck − 1}, we consider a Nadayara–Watson-type regression estimator of the condi-
tional mean m(x, z) ∶= E(Y |X = x,Z = z). It is in the form of

m̂W (x, z) ∶=
∑n

i=1YiW (Xi,Zi; x, z,b,𝝀)
∑n

i=1W (Xi,Zi; x, z,b,𝝀)
.

3.3.2 Weak and strong uniform convergence of the estimator

Below we demonstrate weak and strong uniform consistency of m̂W (x, z). To explore the uniform
convergence results, we modify Assumptions 1–3, 4W, 4S, and 5 as follows.

Assumption 1’. {(Yi,Xi,Zi)}n
i=1 ∈ R × [0, 1]p × SZ are i.i.d. random variables.

Assumption 2’. Let f (x, z) be the joint pdf of (X,Z). Then, the second-order derivatives of f (x, z)
and g(x, z) ∶= m(x, z)f (x, z) with respect to x are continuous on x ∈ (0, 1)p.

Assumption 3’. There are some constants 𝛿 > 0 and C1 ∈ [1,∞) so that E|Y |2+𝛿 <∞ and

sup
(x,z)∈(0,1)p×SZ

E
(
|Y |2+𝛿|||X = x,Z = z

)
f (x, z) ≤ C1.

Assumption 4W’. bj and 𝜂j for j = 1, … , p and 𝜆k (= 𝜆k(n) ∈ (0, 1)) for k = 1, … , q satisfy
bj, 𝜂j, 𝜆k → 0, bj∕𝜂j → 0 and ln n∕

(
n
√∏p

j=1bj𝜂j

)
→ 0 as n → ∞.

Assumption 4S’. bj and 𝜂j for j = 1, … , p and 𝜆k (= 𝜆k(n) ∈ (0, 1)) for k = 1, … , q satisfy
bj, 𝜂j, 𝜆k → 0, bj∕𝜂j → 0 and

ln n

n
√∏p

j=1bj𝜂j

( p∑

j=1

1
b2

j

)1−𝜅

= O(1),

for some constant 𝜅 ∈ [0, 1), as n →∞.

Assumption 5’. As n → ∞, rn → 0 and

r−1
n

⎛
⎜
⎜
⎜⎝

p∑

j=1
bj +

q∑

k=1
𝜆k +

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

→ 0.
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Let S ∶= SX × SZ. The following theorems document weak and strong uniform convergence
of m̂W (x, z).

Theorem 7. If Assumptions 1’–3’, 4W’, and 5’ hold, then, as n → ∞,

sup
(x,z)∈S

|m̂W (x, z) −m(x, z)| = Op

⎧
⎪
⎨
⎪⎩

r−1
n

⎛
⎜
⎜
⎜⎝

p∑

j=1
bj +

q∑

k=1
𝜆k +

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

⎫
⎪
⎬
⎪⎭

.

Theorem 8. If Assumptions 1’-3’, 4S’, and 5’ hold, then, as n → ∞, the statement in Theorem 7
can be strengthened to almost sure convergence.

It is possible to obtain the optimal uniform convergence rates of m̂W (x, z) when 𝜂1, … , 𝜂p
are fixed (so is SX), a single smoothing parameter b is employed for the continuous part,
and all bandwidths for the discrete part are set no greater than b in orders of magnitude.
Detailed rate requirements for b are the same as in Section 3.1. Then, the optimal weak and
strong uniform convergence rates of m̂W (x, z) are both (ln n∕n)2∕(4+p). Again, the rates corre-
spond with what Stone (1982) derives as the optimal global rate for nonparametric regression
estimation.

4 DATA ANALYSIS

So far uniform convergence results of beta kernel estimators have been explored from a the-
oretical point of view. In this section, we turn to practical aspects of the estimators and
conduct Monte Carlo simulations and a real data analysis. For illustrative purposes, we inves-
tigate univariate density estimation and nonparametric regression estimation with a univariate
regressor.

4.1 Monte Carlo simulations

4.1.1 Case #1: density estimation

Our simulation study starts from kernel density estimation. Two density functions with sup-
port on [0, 1] are considered. One is the logit normal distribution by Johnson (1949) with
density

f (x) = 1√
2𝜋𝜎x(1 − x)

exp
⎡
⎢
⎢
⎢⎣
−

{
ln
(

x
1−x

)
− 𝜇

}2

2𝜎2

⎤
⎥
⎥
⎥⎦
, (𝜇, 𝜎) = (−0.25, 1.75).

The other is the truncated normal distribution with density

f (x) = 1√
2𝜋𝜎

exp
{
−(x − 𝜇)

2

2𝜎2

}
∕
{
Φ
(

1 − 𝜇
𝜎

)
− Φ

(
−𝜇
𝜎

)}
, (𝜇, 𝜎) = (0.2, 0.4),
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F I G U R E 1 True densities for simulations

where Φ(⋅) is the standard normal distribution function. Shapes of these densities are given in
Figure 1. For each distribution, 1000 datasets of sample size n ∈ {200,400} are simulated.

The density estimators compared are: (i) the density estimator using the Epanechnikov ker-
nel [KDE-E]; (ii) the local linear density estimator by Lejeune and Sarda (1992) and Jones (1993)
using the Epanechnikov kernel [LLDE-E]; and (iii) the density estimator using the beta kernel
[KDE-B]. The definition of LLDE-E for the unit interval is given in Chen (1999, p. 138). LLDE-E
is boundary-adaptive in the sense that pointwise O

(
h2) bias and O

{
(nh)−1} variance conver-

gences are preserved near boundaries as well as in the interior, where h is the bandwidth. In
contrast, the beta kernel slows down its pointwise variance convergence from O

{(
nb1∕2)−1

}
to

O
{
(nb)−1} near boundaries (although its bias convergence is O(b) uniformly on [0, 1]). More-

over, while LLDE-E may generate negative estimates, KDE-B necessarily generates nonnegative
estimates because the beta kernel is nonnegative everywhere.
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As performance measures of an estimator f (⋅), we adopt the root integrated squared error
(RISE) and the integrated absolute deviation (IAD), where

RISE(f ) =

√

∫

1

0
{f (x) − f (x)}2dx,

IAD(f ) =
∫

1

0
|f (x) − f (x)|dx,

and each integral is approximated by the trapezoidal rule on an equally spaced grid on [0, 1].
Choosing the tuning parameter 𝛼 ∈ {h, b} is an important practical issue. Two alternative

choice rules are compared. One is the “best case” analysis. For each simulated sample the RISE
is computed over a grid of 𝛼, and then a minimizer of the RISE is obtained. The tuning parame-
ter chosen in this way is called “Oracle” hereinafter. The other is the data-driven, leave-one-out
cross-validation (CV) method. The CV criterion function is

CVD(𝛼) = ∫

1

0

{
f
𝛼

(x)
}2

dx − 2
n

n∑

i=1
f −i,𝛼 (Xi) ,

where f
𝛼

(⋅) signifies the dependence of the estimator on 𝛼, and f −i,𝛼(⋅) is the density estimate
using the sample with the ith observation eliminated. The minimizer of CVD(𝛼) is defined as the
CV tuning parameter. Bouezmarni and Rombouts (2010, Theorem 4) demonstrate asymptotic
optimality of the CV in terms of the mean integrated squared error (MISE).1

Table 1 reports averages and SDs of the two performance measures and tuning parameter
values over 1000 Monte Carlo samples. The results suggest that KDE-B performs best in both
Oracle and CV cases. Despite its theoretical superiority, LLDE-E looks inferior to KDE-E, which is
subject to boundary effects. Superior performance of KDE-B over LLDE-E agrees with simulation
results in Chen (1999). It also appears that performances of all three estimators are not affected
much by switching the smoothing parameter selection method from Oracle to CV.

4.1.2 Case #2: regression estimation

Next, finite-sample properties of beta regression estimators are examined. The data are generated
from the regression model Y = m(X) + 𝜀, where the regressor X is generated as absolute values
of N

(
0, 0.32) random variables truncated on [−1, 1], and the error 𝜀 is drawn from N

(
0, 0.052),

independently of X . Observe that the design density is relatively sparse toward the right boundary.
In addition, the true regression curve m(x) = 2∕3 − (x − 2∕3)2 is concave quadratic. These aspects
reflect the real data analysis below. As before, 1000 datasets of sample size n ∈ {200,400} are
simulated.

The regression estimators compared are: (i) the Nadaraya–Watson estimator using the
Epanechnikov kernel [NW-E]; (ii) the local linear estimator using the Epanechnikov kernel
[LL-E]; (iii) the Nadaraya–Watson estimator using the beta kernel [NW-B]; and (iv) the local lin-
ear estimator using the beta kernel [LL-B]. The tuning parameter 𝛼 for each estimator is chosen
either in the Oracle manner or by the leave-one-out CV. The CV criterion function is

CVR(𝛼) =
n∑

i=1

{
Yi −m−i,𝛼 (Xi)

}2
,
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T A B L E 1 Simulation results for density estimation

Oracle CV

Estimator RISE IAD h or b RISE IAD h or b
Logit normal (n = 200)

KDE-E 0.1997 0.1528 0.1460 0.2287 0.1783 0.1209

(0.0434) (0.0368) (0.0409) (0.0598) (0.0510) (0.0495)

LLDE-E 0.3365 0.2505 0.0395 0.3587 0.2478 0.0466

(0.0524) (0.0429) (0.0090) (0.0622) (0.0479) (0.0111)

KDE-B 0.1217 0.0918 0.2326 0.1409 0.1085 0.1851

(0.0353) (0.0319) (0.0420) (0.0524) (0.0445) (0.0947)

Logit normal (n = 400)

KDE-E 0.1817 0.1378 0.1142 0.2014 0.1561 0.0901

(0.0345) (0.0299) (0.0316) (0.0444) (0.0382) (0.0335)

LLDE-E 0.2741 0.2066 0.0326 0.2930 0.2011 0.0409

(0.0384) (0.0315) (0.0056) (0.0470) (0.0348) (0.0075)

KDE-B 0.1169 0.0861 0.2278 0.1219 0.0914 0.2223

(0.0268) (0.0247) (0.0482) (0.0314) (0.0282) (0.0635)

Truncated normal (n = 200)

KDE-E 0.1464 0.1064 0.1631 0.1780 0.1309 0.1400

(0.0341) (0.0288) (0.0456) (0.0605) (0.0511) (0.0513)

LLDE-E 0.2799 0.2003 0.0467 0.3072 0.1995 0.0533

(0.0504) (0.0377) (0.0131) (0.0602) (0.0419) (0.0123)

KDE-B 0.0975 0.0822 0.0754 0.1408 0.1227 0.1843

(0.0388) (0.0356) (0.0339) (0.0370) (0.0342) (0.0418)

Truncated normal (n = 400)

KDE-E 0.1261 0.0896 0.1269 0.1480 0.1079 0.1042

(0.0262) (0.0207) (0.0400) (0.0412) (0.0356) (0.0369)

LLDE-E 0.2180 0.1571 0.0377 0.2428 0.1511 0.0472

(0.0350) (0.0269) (0.0083) (0.0437) (0.0283) (0.0085)

KDE-B 0.0785 0.0655 0.0556 0.1134 0.0991 0.1386

(0.0285) (0.0258) (0.0228) (0.0281) (0.0260) (0.0275)

Abbreviations: CV, cross-validation; IAD, integrated absolute deviation; RISE, root integrated squared error.
Notes: “Oracle” and “CV” indicate that the tuning parameter is chosen as the direct minimizer of the RISE and via
the cross-validation, respectively. For each case, simulation averages and SDs (in parentheses) of two performance
measures (“RISE” and “IAD”) and tuning parameter values (“h or b”) are reported.
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T A B L E 2 Simulation results for regression estimation

Oracle CV

Estimator RISE IAD h or b RISE IAD h or b
m(x) = 2∕3 − (x − 2∕3)2(n = 200)

NW-E 0.0253 0.0194 0.1460 0.1382 0.0591 0.0871

(0.0117) (0.0091) (0.0574) (0.0918) (0.0411) (0.0410)

LL-E 0.0541 0.0253 0.2123 0.2552 0.0789 0.1720

(0.0632) (0.0296) (0.0681) (1.9524) (0.3703) (0.0453)

NW-B 0.0231 0.0168 0.0192 0.0258 0.0171 0.0078

(0.0091) (0.0066) (0.0142) (0.0108) (0.0060) (0.0027)

LL-B 0.0192 0.0133 0.0724 0.0279 0.0171 0.0482

(0.0133) (0.0074) (0.0459) (0.0187) (0.0091) (0.0163)

m(x) = 2∕3 − (x − 2∕3)2(n = 400)

NW-E 0.0208 0.0155 0.1284 0.1047 0.0403 0.0715

(0.0083) (0.0063) (0.0409) (0.0786) (0.0301) (0.0300)

LL-E 0.0253 0.0144 0.2130 0.1700 0.0457 0.1530

(0.0282) (0.0113) (0.0463) (1.0894) (0.2158) (0.0452)

NW-B 0.0188 0.0135 0.0160 0.0217 0.0138 0.0057

(0.0074) (0.0048) (0.0101) (0.0090) (0.0045) (0.0017)

LL-B 0.0146 0.0103 0.0642 0.0209 0.0127 0.0390

(0.0088) (0.0048) (0.0361) (0.0134) (0.0060) (0.0094)

Abbreviations: CV, cross-validation; IAD, integrated absolute deviation; RISE, root integrated squared error.
Notes: “Oracle” and “CV” indicate that the tuning parameter is chosen as the direct minimizer of the RISE and via
the cross-validation, respectively. For each case, simulation averages and standard deviations (in parentheses) of two
performance measures (“RISE” and “IAD”) and tuning parameter values (“h or b”) are reported.

where m−i,𝛼(⋅) is the regression estimate using tuning parameter 𝛼 and a sample with the ith obser-
vation eliminated. Again the minimizer of CVR(𝛼) is defined as the CV tuning parameter.2Finally,
RISE and IAD are considered as performance measures.

Results are provided in Table 2. In theory, LL-E should work under this design. However, the
results indicate that it is outperformed even by NW-E in terms of RISE for both Oracle and CV
cases. LL-B performs best and NW-B follows, except the CV case with n = 200. It is also worth
remarking that two beta estimators are more stable than two Epanechnikov estimators after the
smoothing parameter selection method is switched from Oracle to CV.

4.2 A real data example

We also apply beta density and regression estimations to a real data. The dataset is extracted
from the 1972 wave of the Panel Study of Income Dynamics for our companion paper (Hirukawa
et al., 2021). Inspired by Henderson and Souto (2018), we estimate a nonparametric regression
of ln(earnings) on experience using the white-male subsample, where earnings and experience are



HIRUKAWA et al. 1367

F I G U R E 2 Estimated density and regression curves for the Panel Study of Income Dynamics data. (a)
Regression curve estimates; (b) Density estimate

family head’s total annual labor income (in US dollars) and work experience since 18 years old
(in years), respectively. The sample size is 1977.

Applying beta kernel smoothing requires a transformation of the regressor to the unit scale.
Because this variable ranges from 0 to 68, we first conduct beta kernel regression smoothing for
the pair of (ln(earnings), experience∕68) and then back-transform the estimation results to the
original scale. Regression curves from the beta Nadaraya–Watson and local linear regression esti-
mators are considered. Furthermore, ln(earnings) is thought to be a concave function of experience
empirically, and the regression is popularly modeled parametrically as a quadratic function of
experience. From this viewpoint, the least-squares predicted values from the quadratic regression
model are also computed.

Figure 2 presents regression curve estimates. Smoothing parameters of two beta estimators
are chosen via the CV, and the values in the unit scale for the Nadaraya–Watson and local linear
estimators are 0.017 and 0.066, respectively. For reference, the beta density estimate of experience
is also provided, where the smoothing parameter is again chosen by the CV and its value in the
unit scale is 0.006. As the real underlying curve is unknown, it is hard to judge among three
regression estimators. However, it is safe to say that the curve from the local linear estimator
is considerably close to the plot of predicted values from the quadratic regression model. The
Nadaraya–Watson estimate is also similar to the predicted value plot up until the middle part, but
it becomes wavy on the right-tail part, reflecting sparseness of observations in this region.

5 CONCLUSION

In this paper, we have derived weak and strong uniform convergence rates of the sample aver-
age estimator smoothed by the product beta kernel on a compact set that is either fixed within
or expanding to a p-dimensional unit hypercube. The results are then applied to nonparamet-
ric density and regression estimators using the product beta kernel. It is demonstrated that the
optimal weak and strong convergence rates of the density and regression estimators are both
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(ln n∕n)2∕(p+4), which coincides with the best possible uniform rate for nonnegative kernel estima-
tors. For practical considerations, we apply beta kernel smoothing to simulations and an empirical
data analysis.
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ENDNOTES
1The MISE of KDE-B is given in equation (4.2) of Chen (1999), and an extension to the case of p-dimensional
joint density estimation is straightforward. Suppose that we are interested in finding a single smoothing parame-
ter b that minimizes the MISE for the p-dimensional case. As the MISE is O

{
b2 +

(
nbp∕2)−1

}
, the MISE-optimal

smoothing parameter is b∗ = O
(

n−2∕(4+p)). Observe that b∗ differs from b = O
{
(ln n∕n)2∕(4+p)}, which yields

Stone’s (1983) optimal global rate for nonparametric density estimation (ln n∕n)2∕(4+p); in other words, the former
does not attain the optimal global rate.
2The MISE of LL-B, for instance, is given in Section 3 of Chen (2002), and an extension to the case of multiple
p regressors is again straightforward. As before, the MISE-optimal smoothing parameter for the p-dimensional
case b∗ = O

(
n−2∕(4+p)) does not attain Stone’s (1982) optimal global rate for nonparametric regression estimation

(ln n∕n)2∕(4+p).
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APPENDIX

A.1 Useful Lemmata
Before proceeding, we present a few lemmata, all of which are key building blocks for
the technical proofs below. Throughout 𝜃xj denotes a beta random variable so that 𝜃xj

d
=

Beta
{

xj∕bj + 1,
(
1 − xj

)
∕bj + 1

}
. Also notice that Lemma 4 is Bernstein’s inequality.

Lemma 1. Let 𝜃xj and 𝜃xk be independent for j ≠ k. Then, as n →∞,

sup
xj∈(0,1)

E
(
𝜃xj − xj

)
= O

(
bj
)
, and

sup
xj,xk∈(0,1)

E
{(
𝜃xj − xj

) (
𝜃xk − xk

)}
=

{
O
(

bj
)

for j = k
O
(

bjbk
)

for j ≠ k
.

Lemma 2. Suppose that b(= b(n) > 0) and 𝜂(= 𝜂(n) > 0) satisfy b, 𝜂 → 0 and b∕𝜂 → 0 as n →∞.
Then, as n →∞,

sup
(x,u)∈[𝜂,1−𝜂]×[0,1]

KB(x,b)(u) ≤

(
9

4
√
𝜋

)
b−1∕2

𝜂

−1∕2
.

Lemma 3. Under the same condition as in Lemma 2, as n →∞,

sup
(x,u)∈[𝜂,1−𝜂]×[0,1]

||||
𝜕KB(x,b)(u)

𝜕x
||||
≤

{(
9

4
√
𝜋

)(
𝛾 + 𝜋

2

6

)
+ 1

}
b−(2+1∕2)

𝜂

−1∕2
,

where 𝛾 = 0.5772 … is Euler’s constant.

Lemma 4 (Van der Vaart & Wellner, 1996, Lemma 2.2.9). Let X1, … ,Xn be independent random
variables with bounded ranges [−M,M] and zero means. Then,

Pr

(|||||

n∑

i=1
Xi

|||||
> x

)
≤ 2 exp

{
− x2

2(v +Mx∕3)

}
,

for all x and v ≥ Var
(∑n

i=1Xi
)
.

Proof of Lemma 1. By the property of a beta random variable, 0 < xj < 1, bj > 0, and bj ≤ 1 for a
sufficiently large n,

||||
E
(
𝜃xj − xj

)||||
=
|||||

bj
(
1 − 2xj

)

1 + 2bj

|||||
≤

bj(1 + 2)
1 + 0

= 3bj, and

||||
E
(
𝜃xj − xj

)2||||
=
|||||||

bj

{
xj
(
1 − xj

)
+ 2

(
3x2

j − 3xj + 1
)

bj

}

(
1 + 2bj

) (
1 + 3bj

)
|||||||
≤

bj(1∕2 + 2 ⋅ 1 ⋅ 1)
(1 + 0)(1 + 0)

= 5
2

bj.

Then, the results immediately follow. ▪

Proof of Lemma 2. Recognize that ux∕b(1 − u)(1−x)∕b is maximized at u = x, that is, x is the mode
of the pdf of Beta{x∕b + 1, (1 − x)∕b + 1}. Hence,

ux∕b(1 − u)(1−x)∕b ≤ xx∕b(1 − x)(1−x)∕b
. (A1)
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It also follows from b∕𝜂 → 0 that for a given x ∈ [𝜂, 1 − 𝜂], x∕b, (1 − x)∕b →∞ holds as n →∞.
Then, we may apply Stirling’s approximation to three gamma functions in

1
B{x∕b + 1, (1 − x)∕b + 1}

=
(1∕b + 1)Γ(1∕b + 1)

Γ(x∕b + 1)Γ{(1 − x)∕b + 1}
.

Specifically, because both O(b∕x) and O{b∕(1 − x)} are o(1) as n →∞, uniformly on x ∈ [𝜂, 1 − 𝜂],
we have

(1∕b + 1)Γ(1∕b + 1)
Γ(x∕b + 1)Γ{(1 − x)∕b + 1}

=
(

1 + b
b

)√
2𝜋
(1

b

) 1
b
+ 1

2 exp
(
−1

b

)
{1 + O(b)}

×
[√

2𝜋
(x

b

) x
b
+ 1

2 exp
(
−x

b

){
1 + O

(
b
x

)}]−1

×
[√

2𝜋
(1 − x

b

) 1−x
b
+ 1

2 exp
(
−1 − x

b

){
1 + O

(
b

1 − x

)}]−1

= (1 + b)b−1∕2{1 + o(1)}

xx∕b(1 − x)(1−x)∕b
√

2𝜋
√

x(1 − x)
. (A2)

Therefore, by (A1) and (A2), we have, for a given x ∈ [𝜂, 1 − 𝜂],

KB(x,b)(u) ≤
b−1∕2(1 + b){1 + o(1)}

√
2𝜋
√

x(1 − x)
.

Furthermore, for a sufficiently large n, we can make each of b, 𝜂 and the o(1) term no greater than
1∕2. Then, the right-hand side is bounded by

b−1∕2(1 + 1∕2)2
√

2𝜋
√
𝜂(1 − 1∕2)

≤

(
9

4
√
𝜋

)
b−1∕2

𝜂

−1∕2
,

which completes the proof. ▪

Proof of Lemma 3. We consider the cases of u = 0, 1 and 0 < u < 1 separately. For u = 0, 1, because
x ∈ [𝜂, 1 − 𝜂], we have x∕b, (1 − x)∕b > 0 so that KB(x,b)(0) = KB(x,b)(1) = 0. Then, 𝜕KB(x,b)(0)∕𝜕x =
𝜕KB(x,b)(1)∕𝜕x = 0, and the result trivially holds.

For 0 < u < 1, recognize that

𝜕KB(x,b)(u)
𝜕x

=

[
𝜕 ln

{
KB(x,b)(u)

}

𝜕x

]
KB(x,b)(u).

Because

ln
{

KB(x,b)(u)
}
= lnΓ

(1
b
+ 2

)
+
(x

b

)
ln u +

(1 − x
b

)
ln(1 − u)

− lnΓ
(x

b
+ 1

)
− lnΓ

(1 − x
b

+ 1
)
,

we have
𝜕 ln

{
KB(x,b)(u)

}

𝜕x
= 1

b

[
ln u − ln(1 − u) −

Γ′(x∕b + 1)
Γ(x∕b + 1)

+
Γ′{(1 − x)∕b + 1}
Γ{(1 − x)∕b + 1}

]
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so that

||||
𝜕KB(x,b)(u)

𝜕x
||||
≤

1
b
{| ln u| + | ln(1 − u)|}KB(x,b)(u)

+ 1
b

{|||||

Γ′(x∕b + 1)
Γ(x∕b + 1)

|||||
+
|||||

Γ′{(1 − x)∕b + 1}
Γ{(1 − x)∕b + 1}

|||||

}
KB(x,b)(u)

= G1 + G2(say).

We find the bound for G2 first. Differentiating both sides of lnΓ(z + 1) = ln z + lnΓ(z) for z > 0
yields Γ′(z + 1)∕Γ(z + 1) = 1∕z + Γ′(z)∕Γ(z). Because the digamma function Γ′(z)∕Γ(z) admits the
series expansion

Γ′(z)
Γ(z)

= −𝛾 − 1
z
+ z

∞∑

m=1

1
m(z +m)

,

where 𝛾 = 0.5772 … is Euler’s constant, we have

||||
Γ′(z + 1)
Γ(z + 1)

||||
=
|||||
−𝛾 + z

∞∑

m=1

1
m(z +m)

|||||
≤ 𝛾 + z

∞∑

m=1

1
m2 = 𝛾 +

𝜋

2

6
z.

Combining this with Lemma 2, we find that

G2 ≤ b−1
(

2𝛾 + 𝜋

2

6
b−1

)(
9

4
√
𝜋

)
b−1∕2

𝜂

−1∕2

=

(
9

4
√
𝜋

)(
2𝛾b + 𝜋

2

6

)
b−(2+1∕2)

𝜂

−1∕2

≤

(
9

4
√
𝜋

)(
𝛾 + 𝜋

2

6

)
b−(2+1∕2)

𝜂

−1∕2
, (A3)

by putting b ≤ 1∕2 for a sufficiently large n.
Next

G1 = −
1
b
{ln u + ln(1 − u)}ux∕b(1 − u)(1−x)∕b

B{x∕b + 1, (1 − x)∕b + 1}

is examined. We start from arguing that 𝜓(u) ∶= − ln u(1 − u)ux∕b(1 − u)(1−x)∕b has the maximum
on (0, 1) for a sufficiently small b > 0. Let 𝜉(u) ∶= (u − x) ln u(1 − u) − b(1 − 2u) so that 𝜓 ′(u) =
b−1ux∕b−1(1 − u)(1−x)∕b−1

𝜉(u). Clearly, limu↓0 𝜉(u)→ ∞ and limu↑1 𝜉(u) → −∞ for x ∈ (0, 1) and
b ≈ 0. In addition, 𝜉′(u) = ln u(1 − u) + (u − x)(1 − 2u)∕{u(1 − u)} + 2b. A tedious but straight-
forward calculation yields ln u(1 − u) ≤ − ln 4 and (u − x)(1 − 2u)∕{u(1 − u)} ≤ 1 − 2

√
x(1 − x).

Therefore, 𝜉′(u) ≤ −{ln 4 + 2
√

x(1 − x)} + 1 + 2b < 0 for b ≈ 0, and thus 𝜉(u) is shown to be
monotone decreasing.

Next, let u∗ ∈ (0, 1)maximize𝜓(u). Heuristically, 𝜉(u) ≈ (u − x) ln u(1 − u) for b ≈ 0, and thus
u∗ ≈ x is the case. Therefore, u∗ → x as b → 0, but we even conjecture that u∗ = x + 𝛼b for some
constant |𝛼| ∈ (0,∞). Now this conjecture is shown to be true. Because u∗ solves 𝜉 (u∗) = 0, we
have
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|𝛼| =
||||
u∗ − x

b
||||
=
||||

1 − 2u∗
ln u∗ (1 − u∗)

||||
≤
||||

1 − 2x
ln x(1 − x)

||||
{1 + o(1)},

where the inequality is implied by u∗ = x + o(1). Observe that for x ∈ (0, 1), |1 − 2x| ≤ 1 and
| ln x(1 − x)| ≥ ln 4. It is also possible to make the o(1) term no greater than 1 for a sufficiently
large n, and thus the right-hand side is bounded by 1∕ ln 2. Therefore, |𝛼| ∈ (0,∞) is established.

For such u∗, − ln u∗ (1 − u∗) = − ln x(1 − x) + O(b), and

u∗x∕b(1 − u∗)(1−x)∕b = xx∕b(1 − x)(1−x)∕b
(

1 + 𝛼b
x

)x∕b(
1 − 𝛼b

1 − x

)(1−x)∕b

= xx∕b(1 − x)(1−x)∕b
{

exp(𝛼) + O
(

b
x

)}{
exp(−𝛼) + O

(
b

1 − x

)}

= xx∕b(1 − x)(1−x)∕b
{

1 + O
(

b
x

)
+ O

(
b

1 − x

)}
.

It follows from (A2) that

G1 ≤
b−1

𝜓 (u∗)
B{x∕b + 1, (1 − x)∕b + 1}

≤
b−(1+1∕2)(1 + b){1 + o(1)}

√
2𝜋
√

x(1 − x)
[−{ln x + ln(1 − x)} + O(b)]

{
1 + O

(
b
x

)
+ O

(
b

1 − x

)}

≤ O
{

b−(1+1∕2)
𝜂

−1∕2(− ln 𝜂)
}
, (A4)

uniformly on x ∈ [𝜂, 1 − 𝜂].
By (A3) and (A4), we finally have

||||
𝜕KB(x,b)(u)

𝜕x
||||
≤

{(
9

4
√
𝜋

)(
𝛾 + 𝜋

2

6

)
+ O{b(− ln 𝜂)}

}
b−(2+1∕2)

𝜂

−1∕2
.

The lemma is established by making the O{b(− ln 𝜂)} term no greater than 1 for a sufficiently
large n. ▪

Proof of Theorem 1. For ease of exposition, we additionally introduce the following notations:

an =
√√√√

ln n

n
√∏p

j=1bj𝜂j

;

𝜍in(x) =
1
n
[
YiKB(x,b) (Xi) − E

{
YiKB(x,b) (Xi)

}]
;

𝜏n = a−1∕(1+𝛿)
n ;

̂Yi = Yi1 {|Yi| ≤ 𝜏n} ;

𝜍̂ in(x) =
1
n
[
̂YiKB(x,b) (Xi) − E

{
̂YiKB(x,b) (Xi)

}]
; and

Nn = a
−
(

1+ 1
1+𝛿

)

n

( p∏

j=1
bj𝜂j

)− 1
2
( p∑

j=1

1
b2

j

)
.
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The meaning of each notation will be revealed shortly.
Consider that

sup
x∈SX

|ĝB(x) − g(x)| ≤ sup
x∈SX

|E {ĝB(x)} − g(x)| + sup
x∈SX

|ĝB(x) − E {ĝB(x)}| .

The proof is completed if the following two statements are demonstrated:

sup
x∈SX

|E {ĝB(x)} − g(x)| = O

( p∑

j=1
bj

)
; and (A5)

sup
x∈SX

|ĝB(x) − E {ĝB(x)}| = Op (an) . (A6)

For (A5), observe that

E {ĝB(x)} = E
{

E (Yi|Xi)KB(x,b) (Xi)
}

= E
{

m (Xi)KB(x,b) (Xi)
}

=
∫[0,1]p

m(u)f (u)KB(x,b)(u)du

= E {g (𝛉x)} ,

where 𝛉x ∶=
(
𝜃x1 , … , 𝜃xp

)
⊤

. By a second-order Taylor expansion around 𝛉x = x,

E {g (𝛉x)} = g(x) +
p∑

j=1

𝜕g(x)
𝜕xj

E
(
𝜃xj − xj

)
+ 1

2

p∑

j=1

𝜕

2g(x)
𝜕x2

j

E
(
𝜃xj − xj

)2

+
p∑

j=1

p∑

k=1,k≠j

𝜕

2g(x)
𝜕xj𝜕xk

E
{(
𝜃xj − xj

) (
𝜃xk − xk

)}
,

for some x joining 𝛉x and x. Then, Assumption 2 and Lemma 1 lead to (A5).
For (A6), as in the proof of Theorem 2 in Hansen (2008), our proof takes the following three

steps:

1. Demonstrate that the error bound from replacing Yi with its truncated version ̂Yi is Op (an)
uniformly on x ∈ SX;

2. Split each edge of the p-hyperrectangle SX into Nn equally spaced grids to create Np
n identi-

cal subhyperrectangles, and replace the supremum with a maximization over the finite Np
n

subhyperrectangles; and
3. Employ Lemma 4 (Bernstein’s inequality) to bound the remainder term.

Step 1.
Let Rn(x) ∶= (1∕n)

∑n
i=1Yi1 {|Yi| > 𝜏n}KB(x,b) (Xi). Then, ĝB(x) − E {ĝB(x)} =

∑n
i=1𝜍in(x) and∑n

i=1𝜍in(x) −
∑n

i=1𝜍̂ in(x) = Rn(x) − E {Rn(x)}. Now, for |Yi| > 𝜏n, (|Yi| ∕𝜏n)1+𝛿 > 1 is the case. It
follows that
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|E {Rn(x)}| ≤ E
{
|Yi| 1 {|Yi| > 𝜏n}KB(x,b) (Xi)

}

≤ E

{
|Yi|

(
|Yi|
𝜏n

)1+𝛿

1 {|Yi| > 𝜏n}KB(x,b) (Xi)

}

≤ 𝜏−(1+𝛿)n E
{
|Yi|2+𝛿KB(x,b) (Xi)

}
, (A7)

where, by Assumption 3 and the fact that KB(x,b)(⋅) is the pdf of the product of p independent beta
random variables 𝜃x1 , … , 𝜃xp ,

E
{
|Yi|2+𝛿KB(x,b) (Xi)

}
= E

{
E
(
|Yi|2+𝛿|||Xi

)
KB(x,b) (Xi)

}

=
∫[0,1]p

E
(
|Y |2+𝛿|||X = u

)
f (u)KB(x,b)(u)du ≤ C1. (A8)

Therefore, by the definition of 𝜏n, |E {Rn(x)}| ≤ O (an) uniformly on x ∈ SX, and as a result of
Markov’s inequality,

sup
x∈SX

|||||

n∑

i=1
𝜍in(x) −

n∑

i=1
𝜍̂ in(x)

|||||
= sup

x∈SX

|Rn(x) − E {Rn(x)}| = Op (an) . (A9)

Step 2.
Let Ah, h = 1, … ,Np

n be the hth subhyperrectangle. Also let xh be the most distant point in Ah
from the origin, that is, xh ∶= arg maxx∈Ah ||x||. Suppose that the design point x falls into Ah. Then,
the rate of supx∈Ah

||
∑n

i=1𝜍̂ in(x) −
∑n

i=1𝜍̂ in (xh)|| is determined by |||
̂Yi
|||
|||KB(x,b) (Xi) −KB(xh,b) (Xi)

|||. By
the mean-value theorem,

|||KB(x,b)(u) −KB(xh,b)(u)
||| ≤ sup

(x,u)∈Ah×[0,1]p

‖‖‖∇
{
KB(x,b)(u)

}‖‖‖ sup
x∈Ah

‖x − xh‖ ,

for some x̃ joining x and xh. Furthermore, by Lemmata 2 and 3, for k = 1, … , p,

||||
𝜕KB(x,b)(u)

𝜕xk

||||
≤

{ p∏

j=1,j≠k
KB(xj,bj)

(
uj
)
} |||||

𝜕KB(xk ,bk) (uk)

𝜕xk

|||||
= O

⎧
⎪
⎨
⎪⎩

( p∏

j=1
bj𝜂j

)− 1
2 1

b2
k

⎫
⎪
⎬
⎪⎭

,

uniformly on (x,u) ∈ Ah × [0, 1]p, and thus

sup
(x,u)∈Ah×[0,1]p

‖‖‖∇
{
KB(x,b)(u)

}‖‖‖ = O
⎧
⎪
⎨
⎪⎩

( p∏

j=1
bj𝜂j

)− 1
2
( p∑

j=1

1
b2

j

)⎫
⎪
⎬
⎪⎭

.

It follows from supx∈Ah
‖x − xh‖ = O

(
N−1

n
)

that uniformly on (x,u) ∈ Ah × [0, 1]p,

|||
̂Yi
|||
|||KB(x,b) (Xi) −KB(xh,b) (Xi)

||| ≤ O
⎧
⎪
⎨
⎪⎩

𝜏nN−1
n

( p∏

j=1
bj𝜂j

)− 1
2
( p∑

j=1

1
b2

j

)⎫
⎪
⎬
⎪⎭

= O (an) .
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Therefore,

max
1≤h≤Np

n

sup
x∈Ah

|||||

n∑

i=1
𝜍̂ in(x) −

n∑

i=1
𝜍̂ in (xh)

|||||
= O (an) . (A10)

Step 3.
Before employing Bernstein’s inequality in Lemma 4, we must determine the values of M and

v. First, by Lemma 2, for a sufficiently large n,

|𝜍̂ in(x)| ≤ 2

(
9

4
√
𝜋

)p
𝜏n

n
√∏p

j=1bj𝜂j

= 2

(
9

4
√
𝜋

)p
a2−1∕(1+𝛿)

n

ln n
=∶ M.

Second,

Var

{ n∑

i=1
𝜍̂ in(x)

}
=

n∑

i=1
Var {𝜍̂ in(x)}

≤
1

n2

n∑

i=1
E
{|||
̂Yi
|||KB(x,b) (Xi)

}2

= 1
n ∫[0,1]p

E
(
|Y |2|||X = u

)
f (u)K2

B(x,b)(u)du.

By Lyapunov’s inequality, (2), Assumption 3, and C0,C1 ≥ 1,

E
(
|Y |2|||X = u

)
f (u) ≤

{
E
(
|Y |2+𝛿|||X = u

)
f (u)

}2∕(2+𝛿)
{f (u)}𝛿∕(2+𝛿)

≤ C2∕(2+𝛿)
1 C𝛿∕(2+𝛿)

0 ≤ C0C1.

Moreover,

K2
B(x,b)(u) =

B{2x∕b + 1, 2(1 − x)∕b + 1}
B2{x∕b + 1, (1 − x)∕b + 1}

u2x∕b(1 − u)2(1−x)∕b

B{2x∕b + 1, 2(1 − x)∕b + 1}
1{u ∈ [0, 1]}.

By Lemma of Chen (1999), the first term is bounded by b−1∕2(1 + b)3∕2∕{2
√
𝜋

√
x(1 − x)} for a

sufficiently large n. The second term is the pdf of Beta{2x∕b + 1, 2(1 − x)∕b + 1}. Therefore,

Var

{ n∑

i=1
𝜍̂ in(x)

}
≤

1
n

C0C1

p∏

j=1

b−1∕2
j

(
1 + bj

)3∕2

2
√
𝜋

√
xj
(
1 − xj

) ≤
1
n

C0C1

p∏

j=1

b−1∕2
j

(
1 + bj

)3∕2

2
√
𝜋

√
𝜂j
(
1 − 𝜂j

) .

For a sufficiently large n, b1, … , bp and 𝜂1, … , 𝜂p are no greater than 1∕2, and thus

Var

{ n∑

i=1
𝜍̂ in(x)

}
≤

1

n
√∏p

j=1bj𝜂j

C0C1

(
3
4

√
3
𝜋

)p

=
a2

n

ln n
C0C1

(
3
4

√
3
𝜋

)p

=∶ v.
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Lemma 4 establishes that for such M and v and an arbitrarily chosen K > 0,

Pr
⎧
⎪
⎨
⎪⎩

|||||

n∑

i=1
𝜍̂ in(x)

|||||
> K

√√√√C0C1

(
3
4

√
3
𝜋

)p

an

⎫
⎪
⎬
⎪⎭

≤ 2 exp

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

− K2 ln n

2
⎧
⎪
⎨
⎪⎩

1 + 2
3

(
9

4
√
𝜋

)p
Ka1−1∕(1+𝛿)

n ∕

√

C0C1

(
3
4

√
3
𝜋

)p⎫⎪
⎬
⎪⎭

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

By an = o(1), (2∕3){9∕(4
√
𝜋)}pKa1−1∕(1+𝛿)

n ∕
√

C0C1{(3∕4)
√

3∕𝜋}p ≤ 1 for a sufficiently large n.
Then,

Pr
⎧
⎪
⎨
⎪⎩

|||||

n∑

i=1
𝜍̂ in(x)

|||||
> K

√√√√C0C1

(
3
4

√
3
𝜋

)p

an

⎫
⎪
⎬
⎪⎭

≤ 2 exp
{
− K2 ln n

2(1 + 1)

}
= 2n−

K2

4 .

In the end,

Pr
⎧
⎪
⎨
⎪⎩

max
1≤h≤Np

n

|||||

n∑

i=1
𝜍̂ in (xh)

|||||
> K

√√√√C0C1

(
3
4

√
3
𝜋

)p

an

⎫
⎪
⎬
⎪⎭

≤
Np

n∑

h=1
Pr
⎧
⎪
⎨
⎪⎩

|||||

n∑

i=1
𝜍̂ in (xh)

|||||
> K

√√√√C0C1

(
3
4

√
3
𝜋

)p

an

⎫
⎪
⎬
⎪⎭

≤ Np
n × max

1≤h≤Np
n

Pr
⎧
⎪
⎨
⎪⎩

|||||

n∑

i=1
𝜍̂ in (xh)

|||||
> K

√√√√C0C1

(
3
4

√
3
𝜋

)p

an

⎫
⎪
⎬
⎪⎭

= O
(

Np
nn−K2∕4

)
. (A11)

Pick K = 2
√

5p. Then, by the definitions of Nn and an,

Np
nn−

K2

4 = a
−p
(

1+ 1
1+𝛿

)

n

( p∏

j=1
bj𝜂j

)− p
2
( p∑

j=1

1
b2

j

)p

n−5p

=
⎡
⎢
⎢
⎢⎣
(ln n)−5a

8+ 𝛿

1+𝛿
n

( p∏

j=1
𝜂j

)2 ⎧
⎪
⎨
⎪⎩

p∑

j=1

( p∏

k=1,k≠j
bk

)2⎫
⎪
⎬
⎪⎭

⎤
⎥
⎥
⎥⎦

p

→ 0,
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as n →∞, which establishes that

max
1≤h≤Np

n

|||||

n∑

i=1
𝜍̂ in (xh)

|||||
= Op (an) . (A12)

The statement (A6) follows from (A9), (A10), and (A12). This completes the proof. ▪

Proof of Theorem 2. We keep using the notations in the proof of Theorem 1, whereas we redefine
𝜏n and Nn. Let

𝜏n ∶= n
1+𝜀
2+𝛿 and Nn ∶= n1+𝜀

( p∏

j=1
bj𝜂j

)− 1
2
( p∑

j=1

1
b2

j

)
,

for an arbitrarily small 𝜀 > 0. Then, the proof is boiled down to demonstrating that
supx∈SX

|ĝB(x) − E {ĝB(x)}| = O (an), a.s.
The proof again follows three steps of that of Theorem 1. First, it follows from (A7) and (A8)

that
|E {Rn(x)}| ≤ 𝜏−(1+𝛿)n C1 = n−(1+𝜀)

(
1+𝛿
2+𝛿

)

C1 ≤ O (an) .

Also by Markov’s inequality and Assumption 3,
∞∑

n=1
Pr (|Yn| > 𝜏n) <

∞∑

n=1

E|Y |2+𝛿

𝜏

2+𝛿
n

= E|Y |2+𝛿
∞∑

n=1

1
n1+𝜀 <∞.

Then, by the Borel–Cantelli lemma, for a sufficiently large n, |Yn| ≤ 𝜏n with probability 1. This
implies that |Yi| ≤ 𝜏n for any i ≤ n with probability 1 for a sufficiently large n. It follows that
Rn(x) = 0 with probability 1, that is,

|Rn(x) − E {Rn(x)}| =
|||||

n∑

i=1
𝜍in(x) −

n∑

i=1
𝜍̂ in(x)

|||||
= O (an) , a.s., (A13)

uniformly on x ∈ SX.
Second, observe that

𝜏nN−1
n

( p∏

j=1
bj𝜂j

)− 1
2
( p∑

j=1

1
b2

j

)
= n−(1+𝜀)

(
1+𝛿
2+𝛿

)

≤ O (an) .

Hence,

max
1≤h≤Np

n

sup
x∈Ah

|||||

n∑

i=1
𝜍̂ in(x) −

n∑

i=1
𝜍̂ in (xh)

|||||
= O

⎧
⎪
⎨
⎪⎩

𝜏nN−1
n

( p∏

j=1
bj𝜂j

)− 1
2
( p∑

j=1

1
b2

j

)⎫
⎪
⎬
⎪⎭

= O (an) . (A14)

Third, (A11) holds for a sufficiently large n. In addition, (3) implies that

( p∏

j=1
bj𝜂j

)− 1
2
( p∑

j=1

1
b2

j

)
= O

⎧
⎪
⎪
⎨
⎪
⎪⎩

n
1

1−𝜅

⎛
⎜
⎜
⎜⎝

(∏p
j=1bj𝜂j

) 𝜅

2

ln n

⎞
⎟
⎟
⎟⎠

1
1−𝜅
⎫
⎪
⎪
⎬
⎪
⎪⎭

≤ O
(

n
1

1−𝜅

)
,



HIRUKAWA et al. 1379

where the last inequality holds because
(∏p

j=1bj𝜂j

)
𝜅∕2
∕ ln n is convergent. Then, picking K =

2
√
(p + 1)(1 + 𝜀) + p∕(1 − 𝜅) yields Np

nn−K2∕4 = O
{

n−(1+𝜀)
}

so that

∞∑

n=1
Pr
⎧
⎪
⎨
⎪⎩

max
1≤h≤Np

n

|||||

n∑

i=1
𝜍̂ in (xh)

|||||
> K

√√√√C0C1

(
3
4

√
3
𝜋

)p

an

⎫
⎪
⎬
⎪⎭

≤
∞∑

n=1
O
( 1

n1+𝜀

)
< ∞.

Therefore, by the Borel–Cantelli lemma,

max
1≤h≤Np

n

|||||

n∑

i=1
𝜍̂ in (xh)

|||||
= O (an) , a.s. (A15)

The stated result is established by (A13), (A14), and (A15). ▪

Proof of Theorem 3. This theorem can be established by putting Yi ≡ 1 in Theorem 1. ▪

Proof of Theorem 4. The argument is the same as for Theorem 3, except that Theorem 2 is
employed so that the convergence holds almost surely. ▪

Proof of Theorem 5. For (4), the proof closely follows that of Theorem 8 in Hansen (2008). Let

a∗n ∶=
p∑

j=1
bj +

√√√√
ln n

n
√∏p

j=1bj𝜂j

.

Then, by Theorems 1 and 3 and Assumption 5,

sup
x∈SX

||||
ĝB(x)
f (x)

−m(x)
||||
≤

supx∈SX
|ĝB(x) − g(x)|

infx∈SX f (x)
= Op

(
r−1

n a∗n
)
, and (A16)

sup
x∈SX

|||||

̂f B(x)
f (x)

− 1
|||||
≤

supx∈SX

|||
̂f B(x) − f (x)|||

infx∈SX f (x)
= Op

(
r−1

n a∗n
)
. (A17)

The result is established by recognizing that m̂B(x) = {ĝB(x)∕f (x)} ∕
{
̂f B(x)∕f (x)

}
.

For (5), the proof requires to approximate the bias terms of S1(x), S2(x), and T1(x). The
approximations are based on the following facts:

1. It follows from the proof of Lemma 1 that E
(
𝜃xj − xj

)
=
(
1 − 2xj

)
bj + O

(
b2

j

)
and

E
(
𝜃xj − xj

)2
= xj

(
1 − xj

)
bj + O

(
b2

j

)
, where the O

(
b2

j

)
terms are uniform on xj ∈ (0, 1).

2. The property of a beta random variable also implies that supxj∈(0,1) E
(
𝜃xj − xj

)m
= O

(
b2

j

)
for

m ≥ 3.
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Using the notations an and a∗n, which are defined in the proofs of Theorems 1 and 4,
respectively, we start from approximating T1(x) = E {T1(x)} + [T1(x) − E {T1(x)}]. Observe that

E {T1(x)} = E {(𝛉x − x) g (𝛉x)} ∶= BT1(x) + O

( p∑

j=1
bj

)2

,

where BT1(x) is a (p × 1) vector of the leading term with its jth element being equal to[(
1 − 2xj

)
g(x) + xj

(
1 − xj

) {
𝜕g(x)∕𝜕xj

}]
bj, and the second term is uniform on [0, 1]p. It can be

also shown that

sup
x∈SX

‖T1(x) − E {T1(x)}‖ = Op

{( p∑

j=1
bj

)
an

}
,

and thus

T1(x) = BT1(x) + Op

{( p∑

j=1
bj

)
a∗n

}
.

Then, by uniform boundedness of derivatives of g and a∗n = o(1),

sup
x∈SX

‖‖‖‖
T1(x)
f (x)

‖‖‖‖
≤

supx∈SX
‖T1(x)‖

infx∈SX f (x)

= O

(
r−1

n

p∑

j=1
bj

)
+ Op

{
r−1

n

( p∑

j=1
bj

)
a∗n

}

= Op

(
r−1

n

p∑

j=1
bj

)
.

Replacing g in T1(x) with f also yields

sup
x∈SX

‖‖‖‖
S1(x)
f (x)

‖‖‖‖
≤ Op

(
r−1

n

p∑

j=1
bj

)
.

Moreover, S2(x) admits the expansion

S2(x) = BS2(x) + O

( p∑

j=1
bj

)2

+ Op

⎧
⎪
⎨
⎪⎩

( p∑

j=1
bj

)2

a∗n

⎫
⎪
⎬
⎪⎭

,

where BS2(x) is a (p × p) diagonal matrix of the leading term in E {S2(x)} with its jth diagonal
element being equal to xj

(
1 − xj

)
f (x)bj, and the second and third terms are uniform on SX. It

follows that
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sup
x∈SX

‖‖‖‖
S2(x)
f (x)

‖‖‖‖

−1
≤

1

infx∈SX

{
‖‖BS2(x)‖‖ ∕f (x) + Op

(∑p
j=1bj

)2
∕f (x)

}

= 1

O
(∑p

j=1bj𝜂j

)
+ Op

(∑p
j=1bj

)2 .

By the Cauchy–Schwarz inequality,
( p∑

j=1
bj

)2

=
⎛
⎜
⎜⎝

p∑

j=1

√
bj𝜂j

√
bj

𝜂j

⎞
⎟
⎟⎠

2

≤

( p∑

j=1
bj𝜂j

)( p∑

j=1

bj

𝜂j

)
,

and thus

sup
x∈SX

‖‖‖‖
S2(x)
f (x)

‖‖‖‖

−1
≤

1

O
{(∑p

j=1bj

)2
∕
(∑p

j=1

(
bj∕𝜂j

))}
+ Op

(∑p
j=1bj

)2

≤ Op

⎧
⎪
⎨
⎪⎩

∑p
j=1

(
bj∕𝜂j

)

(∑p
j=1bj

)2

⎫
⎪
⎬
⎪⎭

.

Therefore,

sup
x∈SX

‖‖‖‖‖
S1(x)⊤S2(x)−1T1(x)

f (x)

‖‖‖‖‖
≤ sup

x∈SX

‖‖‖‖
S1(x)
f (x)

‖‖‖‖
sup
x∈SX

‖‖‖‖
S2(x)
f (x)

‖‖‖‖

−1
sup
x∈SX

‖‖‖‖
T1(x)
f (x)

‖‖‖‖

≤ Op

(
r−2

n

p∑

j=1

bj

𝜂j

)
,

and

sup
x∈SX

‖‖‖‖‖
S1(x)⊤S2(x)−1S1(x)

f (x)

‖‖‖‖‖
≤ Op

(
r−2

n

p∑

j=1

bj

𝜂j

)
.

Using (A16) and (A17) finally yields

m̃B(x) =
ĝB(x)∕f (x) − S1(x)⊤S2(x)−1T1(x)∕f (x)
̂f B(x)∕f (x) − S1(x)⊤S2(x)−1S1(x)∕f (x)

=
m(x) + Op

(
r−1

n a∗n
)
+ Op

{
r−2

n
∑p

j=1

(
bj∕𝜂j

)}

1 + Op
(

r−1
n a∗n

)
+ Op

{
r−2

n
∑p

j=1

(
bj∕𝜂j

)}

= m(x) + Op

⎧
⎪
⎨
⎪⎩

r−2
n

⎛
⎜
⎜
⎜⎝

p∑

j=1

bj

𝜂j
+
√√√√

ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

⎫
⎪
⎬
⎪⎭

,

uniformly on x ∈ SX. ▪
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Proof of Theorem 6. The arguments are the same as for Theorem 5, except that Theorem 2 is
employed so that the convergence holds almost surely. ▪

Proof of Theorem 7. For the sample average estimator

ĝW (x, z) ∶=
1
n

n∑

i=1
YiW (Xi,Zi; x, z,b,𝝀) ,

consider that

sup
(x,z)∈S

|ĝW (x, z) − g(x, z)|

≤ sup
(x,z)∈S

|E {ĝW (x, z)} − g(x, z)| + sup
(x,z)∈S

|ĝW (x, z) − E {ĝW (x, z)}| .

Incorporating the arguments as in Lemmata A1 and A2 of Li and Ouyang (2005) into the proof
of Theorem 1 yields

sup
(x,z)∈S

|E {ĝW (x, z)} − g(x, z)| = O

( p∑

j=1
bj +

q∑

k=1
𝜆k

)
and

sup
(x,z)∈S

|ĝW (x, z) − E {ĝW (x, z)}| = Op

⎛
⎜
⎜
⎜⎝

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

,

respectively. Therefore,

sup
(x,z)∈S

|ĝW (x, z) − g(x, z)| = Op

⎛
⎜
⎜
⎜⎝

p∑

j=1
bj +

q∑

k=1
𝜆k +

√√√√
ln n

n
√∏p

j=1bj𝜂j

⎞
⎟
⎟
⎟⎠

.

Combining this with an argument in the proof for (4) of Theorem 5 leads to the desired result. ▪

Proof of Theorem 8. The argument is the same as for Theorem 7, except that Theorem 2 is
employed so that the convergence holds almost surely. ▪
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