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ABSTRACT

In this article,weextend the functional-coe�cient cointegrationmodel (FCCM)
to the cases in which nonstationary regressors contain both stochastic and
deterministic trends. A nondegenerate distributional theory on the local linear
(LL) regression smoother of the FCCM is explored. It is demonstrated that even
when integrated regressors are endogenous, the limiting distribution is the
sameas if theywere exogenous. Finite-sampleperformanceof the LL estimator
is investigated via Monte Carlo simulations in comparison with an alternative
estimationmethod. As an application of the FCCM, electricity demand analysis
in Illinois is considered.
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1. Introduction

Since the seminal work by Engle and Granger (1987), cointegration models have provided an appealing
framework for characterizing long-term equilibrium relationships among economic variables. However,
empirical works o�en report weak evidence of cointegration. To account for this phenomenon, many
authors have made a variety of attempts to patch up cointegrating regressions. One such attempt is to
model the exact quantitative relationships among economic variables as gradually varying, rather than
constant, over a long time horizon. In particular, Xiao (2009) incorporated a time-varying nature into
the cointegrating regression model by assuming that the cointegrating vector is an unknown smooth
function of another stationary variable. As a result, the model can be viewed as a variant of functional-
coe�cient models or varying-coe�cient models (VCMs). In this sense, Xiao’s (2009) model is called the
functional-coe�cient cointegration model (FCCM).

This article extends Xiao’s (2009) FCCM to the cases in which nonstationary regressors contain both
stochastic and deterministic trends, and establishes asymptotic theories on estimation and inference
in this class of FCCMs. Extending the FCCM in this direction is useful for the following reasons.
First, many macroeconomic variables that are commonly described as I(1) (e.g., income, output,
consumption, price level, and money stock) are actually best regarded as “I(1) with dri�” (West, 1988;
Hansen, 1992a,b) or thought to be generated by “randomwalks” using innovations with nonzero means
(Granger, 2012). Second, Hansen (1992a) demonstrates that when nonstationary regressors that enter
constant-coe�cient cointegration models appear to possess both stochastic and deterministic trends,
it is better, from the viewpoint of precision in estimation, to estimate the models without detrending
the regressors. There are also empirical applications in which cointegrating regressions are estimated
without detrending: examples include Engel’s law (Ogaki, 1992), money demand (Stock and Watson,
1993), and intertemporal elasticity of substitution of nondurable consumption (Ogaki and Park, 1997),
to name a few.

Because the FCCM studied in this article can be viewed as a varying-coe�cient version of (or a “time-
varying” analog to) Hansen’s (1992a,b) models, we naturally attempt to establish distributional theories
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on estimation and inference of the model without detrending. This article adopts kernel smoothing to
estimate functional-coe�cients in the FCCM consistently. Particular attention is paid to local linear
(LL) regression smoothing. As is the case with linear regressions with deterministic trends, the LL
estimator has a degenerate joint limiting distribution due to multiple convergence rates of coe�cient
estimates. Then, a nondegenerate distributional theory for LL estimation is explored. The nondegenerate
limiting distribution is shown to bemixed-normal. It is worth emphasizing that the limit theory remains
unchanged, regardless of whether regressors are exogenous or endogenous. In other words, the second-
order e�ect does not arise, unlike the least-squares estimation for constant-coe�cient cointegrating
regressions with endogenous regressors.

We also demonstrate that the convergence rate of the estimator of the cointegrating vector depends
crucially on the model speci�cation. For instance, when the limit process of regressors contains at least
one stochastic trend, LL estimators of the cointegrating vector and coe�cients on deterministic trends
have the same Th1/2 convergence rate, where T and h are the sample size and bandwidth, respectively.
The super-consistent nonparametric rate has been already uncovered in the literature; see Juhl (2005),
Cai et al. (2009) and Xiao (2009). In contrast, when the limit process consists only of deterministic
components, the convergence rate of the LL estimator for the cointegrating vector attains no slower than
T3/2h1/2. To implement LL estimation, inspired byRuppert et al. (1995), we propose a solve-the-equation
plug-in bandwidth choice rule. This type of implementation method is developed for the �rst time in
the literature on VCMs, to the best of our knowledge.

This article contributes to the literature on VCMs in two respects. First, while recently research
directions on VCMs have shi�ed toward those with nonstationary regressors, the assumption that the
regressors contain only stochastic trends has beenmaintained so far; see Juhl (2005), Cai et al. (2009) and
Xiao (2009), for instance. This article can be classi�ed as a complement to these earlier works in the sense
that it studies estimation and inference of VCMs including I(1) regressors with trends. Second, several
authors investigate consistency of local constant (LC) estimation for VCMs that includes deterministic
trends as regressors. For example, Liang and Li (2012) demonstrate that LC estimation for VCMs with
stationary regressors and a linear trend is inconsistent, and Li and Li (2013) establish that LC estimation
for VCMs with unit-root nonstationary regressors and a linear trend turns out to be consistent. It can be
shown that LC estimation of the FCCM considered in this article is still consistent.

The remainder of the article is organized as follows. Section 2 describes the FCCM that can
incorporate deterministic trends. In Section 3, a nondegenerate distributional theory on LL estimation
is developed. Section 4 delivers component-wise convergence rates of the LL estimator. Based on the
results, a plug-in bandwidth choice method is proposed. Section 5 studies hypothesis testing. Particular
focuses are on testing the null of constant coe�cients and that of no trends in the cointegrating
regression. In Section 6, �nite-sample performance of the LL estimator is examined via Monte Carlo
simulations. Section 7 applies the FCCM for electricity demand analysis in the State of Illinois. Section 8
concludes. Appendices provide all proofs and a brief description of the piecewise local linear regression
(PLLR) principle, which is proposed by Banerjee and Pitarakis (2012, 2014) as an alternative to kernel
estimation. Additionally, an online supplement that summarizes simulation results is made available on
the �rst author’s webpage.

This article adopts the following notational conventions: the symbol “⇒” signi�es weak convergence;

“
d=” is equality in distribution; ⌊·⌋ denotes the integer part; BM (�) is the vector Brownian motion with

covariance matrix �; ⊗ is used to represent the tensor (or Kronecker) product; 1 (·) is an indicator
function; µij

(

f
)

denotes the integral µij

(

f
)

=
∫

tif j (u) du; and g(i) (x) is the ith-order derivative

of g (x), i.e., g(i) (x) = dig (x) /dxi. For two random variables X and Y , “X q− Y” reads that X is
stochastically independent of Y . The Lp-norm for a random matrix X =

(

xij
)

is de�ned as ‖X‖p =

E
(

∑

i,j

∣

∣xij
∣

∣

p
)1/p

, where ‖X‖ ≡ ‖X‖2 for notational simplicity. Lastly, the expression ‘XT ∼ YT ’ is used

whenever XT/YT → 1 as T → ∞.
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2. The FCCMwhen regressors are I(1) with trends

The FCCM considered in this article largely follows the one in Hansen (1992b). We shall be working on

a (d2 + 2)-dimensional time series
(

yt , x
′
2t , zt

)′ ∈ R × R
d2 × R, where the scalar variable zt is assumed

to be stationary. Let the random variable yt be generated by a cointegrating regression

yt = x′
tβ (zt)+ u1t := x′

1tβ1 (zt)+ x′
2tβ2 (zt)+ u1t , (1)

where the regressor xt =
(

x′
1t , x

′
2t

)′
is determined by

x1t = k1t ,

x2t = 51k1t +52k2t + S2t ,

1S2t = u2t ,

and ut :=
(

u1t , u
′
2t

)′ ∈ R × R
d2 is a zero-mean stationary process, the statistical property of which is

described in Assumption 1 below. The system is initialized at time 0, and the initial value y0 may be any
random number.

We now present the de�nition of kt =
(

k′
1t , k

′
2t

)′
. It is an m-dimensional vector of powers of time

index t, and it can be further partitioned as

kt :=
(

tp1 , . . . , tpm
)′ =

(

(

tp1 , . . . , tpm1
)′
,
(

t
p(m1+1) , . . . , tpm

)′)′
:=
(

k′
1t , k

′
2t

)′

so that dim (k1t) = m1 and dim (k2t) = m − m1 := m2. The exponents pj, j = 1, . . . ,m are assumed
to be known integers that satisfy 0 ≤ p1 < · · · < pm. Observe that when p1 = 0, the levels regression
(1) contains an intercept term. We assume that whenever kt contains a constant, it is an element of
k1t and thus enters (1). In addition, the vectors of “trends” k1t and k2t (here we loosely speak of an
intercept as a trend term) can be viewed as those of included and excluded trends, respectively, in the
sense that while the former directly enters the cointegrating regression, the latter governs the behavior
of the integrated regressor x2t but is not included in the regression. Furthermore, following Hansen
(1992a), we can consider two special cases of the regression model (1), namely, the unrestricted FCCM
(FCCM-U) and the restricted FCCM (FCCM-R). These can be speci�ed by settingm2 = 0 (i.e., FCCM
with all trends included) andm1 = 0 (i.e., FCCM with all trends excluded), respectively.

For notational convenience, we write d1 = m1 and d = d1 + d2 hereina�er. We may use d1 and
m1 interchangeably from statement to statement. Accordingly, the coe�cient matrices in x2t are 51 ∈
R
d2×d1 and52 ∈ R

d2×m2 .
The FCCM (1) is motivated because in many macroeconomic applications the integrated regressor

x2t can be described more suitably as “I(1) with dri�”, as stated in West (1988) and Hansen (1992a,b).
Even if there is no deterministic trend in the system, it is a common practice to include an intercept term
in the cointegrating regression. In most applications, m tends to be small. Typical choices of kt would
therefore include 1, t, (1, t),

(

t, t2
)

, and
(

1, t, t2
)

.
A notable di�erence of our system from the one in Hansen (1992b) is that while the integrated

regressor x2t includes deterministic trends, the cointegrating vector in our system is not constant but
a functional controlled by a stationary variable zt . Observe that zt plays a similar role to the threshold
variable in threshold autoregressive (TAR) models or the transition variable in smooth transition
autoregressive (STAR) models. From the viewpoint that the coe�cient vector β (zt) is assumed to vary
smoothly with zt as in STAR, rather than in an abrupt manner as in TAR, we may also refer to zt
as the transition variable. Following the convention in the TAR and STAR literature and avoiding the
curse of dimensionality, we assume that the transition variable is a scalar. An extension to a vector zt is
straightforward, but for simplicity we do not pursue this. In the closely related literature, Cai et al. (2009)
and Xiao (2009) consider a similar system to ours. However, in each of these two articles integrated
regressors are assumed to be free of deterministic trends (i.e., d1 = 0 and51 = 52 = 0 aremaintained).
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3. Estimation theory

3.1. LL estimation

To estimate the functional-coe�cient β (·) in (1) consistently, we adopt kernel smoothing. In particular,
LL estimation is known to possess appealing properties such as high statistical e�ciency in an asymptotic
minimax sense, design-adaptation, and automatic boundary correction. For a given design point z,

T observations
{

(

yt , x
′
2t , zt

)′}T

t=1
, the kernel function K (·), and the bandwidth parameter h, the LL

estimator of β (z) is de�ned as β̂ (z) in
[

β̂ (z)

β̂(1) (z)

]

= arg min
(θ0,θ1)

T
∑

t=1

{

yt − θ ′
0xt − (zt − z) θ ′

1xt
}2

K

(

zt − z

h

)

=
{

T
∑

t=1

[

xt
(zt − z) xt

]

[

x′
t (zt − z) x′

t

]

K

(

zt − z

h

)

}−1 T
∑

t=1

[

xt
(zt − z) xt

]

ytK

(

zt − z

h

)

.

In fact, the LL estimator β̂ (z) admits the concise expression

β̂ (z) =
{

S0 (z)− S1 (z) S2 (z)
−1 S1 (z)

}−1 {
T0 (z)− S1 (z) S2 (z)

−1 T1 (z)
}

, (2)

where

Si (z) :=
T
∑

t=1

xtx
′
t (zt − z)i K

(

zt − z

h

)

and Ti (z) :=
T
∑

t=1

xtyt (zt − z)i K

(

zt − z

h

)

for i ≥ 0.

3.2. Regularity conditions

To describe the convergence properties on β̂ (z), we make the following assumptions.

Assumption 1. The random sequence vt :=
(

u′
t , zt

)′
is a strictly stationary, strong mixing process with

the mixing coe�cient α (k) of size−δγ / (δ − γ ) and ‖vt‖δ < ∞ for some δ > γ > 2. Also, ut satis�es

E (ut) = 0, and its long-run variance � =
∑∞

j=−∞ E
(

utu
′
t−j

)

> 0. Moreover, vt satis�es one of the

following: (i) zt(:= ςt−j for some j ≥ 1) is predetermined, u1t is independent and identically distributed
(iid), and u1t q− F t−1, where Ft = σ (νt , νt−1, . . .) is the smallest σ -�eld containing current and past

νt :=
(

u′
t , ςt

)′
; (ii) u1t q−

(

u′
2s, zs

)′
,∀t, s; or (iii) zt q− us,∀t, s.

Assumption 2. The kernel function K (·) is a symmetric, continuous probability density function with
support [−1, 1].

Assumption 3. The nonnegative sequence of bandwidth h = hT satis�es h → 0 and Th → ∞ as
T → ∞.

Assumption 4. f (z) (the marginal density of zt) and fs (z0, zs) (the joint density of (z0, zs) for s ≥ 1)
satisfy supz f (z) < ∞ and supz0,zs,s fs (z0, zs) < ∞. In addition, f (z) is continuously di�erentiable with
a uniformly bounded derivative, and f (z) > 0 for a given design point z.

Assumption 5. β (z) is twice continuously di�erentiable for all z ∈ R.
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Assumption 6. Each column of51 contains a nonzero element, and rank (52) = m2 ≤ d2.

Assumption 1 is very similar to the one in the literature on unit-root TAR models (e.g., Caner and
Hansen, 2001, Assumption 2) or threshold cointegration models (e.g., Gonzalo and Pitarakis, 2006,
Assumptions A1–A3 and A5). It follows from this assumption that the elements of S2t are not mutually
cointegrated. The mixing condition is the same as the one in Assumption 1 of Hansen (1992c), which
in turn establishes the following functional central limit theorem (FCLT) for the partial sum process

St =
(

S1t , S
′
2t

)′
:=
∑t

s=1 us

1√
T
S⌊Tr⌋ = 1√

T

[

S1⌊Tr⌋
S2⌊Tr⌋

]

⇒
[

BS1 (r)
BS2 (r)

]

:= BS (r)
d= BM (�) , r ∈ [0, 1] ,

where� can be partitioned as

� =
[

ω11 �′
21

�21 �22

]

.

Furthermore, condition (i) in Assumption 1 is commonly imposed in the aforementioned articles as well
as in Juhl (2005). Condition (ii) is taken from Xiao (2009, Assumption A). These conditions allow for
standard choices of the transition variable in STAR such as zt = x2,t−1,l − x2,t−1−j,l or zt = 1x2,t−j,l

for some j ≥ 1, where x2,t,l, the lth element of x2t , is assumed to have up to a linear trend. Also
note that while �21 = 0 under condition (ii), conditions (i) and (iii) each allow for endogeneity in
the cointegrating regression (1) so that �21 6= 0 in general. However, unlike least-squares estimation
of constant-coe�cient cointegrating regressions, local averaging does not cause the so-called second-
order e�ect; see Remark 1 below for discussion. In their functional-coe�cient model with integrated
regressors, Sun et al. (2011) do not even assume the independence of zt and us, and derive a nonstandard
convergence result. Because our aim is to develop a mixed-normal limit theorem for standard inference,
the independence assumption is maintained throughout.

Assumptions 2–5 are standard in the literature on kernel regression. The assumption of the compact
support in Assumption 2 is made solely for brevity of the exposition. It can be relaxed to allow for
kernels with support on the entire real line, at the expense of lengthier proofs. Lastly, the condition
on51 in Assumption 6 restates that the integrated regressor x2t contains a full set of included trends k1t .
While Theorem 1 below holds even when51 = 0 and nonetheless the regression contains deterministic

trends, the condition plays a key role in determining the convergence rate of each component of β̂ (z);
see Section 4 for details. The rank condition in Assumption 6 is also required for the asymptotic result,
as in Hansen (1992b). The assumption also implies that the number of excluded trends is small relative
to the number of integrated regressors.

3.3. A nondegenerate distributional theory

To deliver the distributional theory on β̂ (z), we need to derive the multivariate invariance principle
including the kernel-weighted partial sum process. Following Xiao (2009), de�ne

Kt (z) := K

(

zt − z

h

)

− E

{

K

(

zt − z

h

)}

.

For Kt (·), let the kernel-weighted partial sum process be Ut (z) :=
∑t

s=1 Ks (z) u1s. Then, we have the

following multivariate invariance principle for
(

S′
t ,Ut (z)

)′
.

Lemma 1. If Assumptions 1–4 hold, then
[

1√
T
S⌊Tr⌋

1√
Th
U⌊Tr⌋ (z)

]

⇒
[

BS (r)
BU(z) (r)

]

d= BM {�U (z)} , r ∈ [0, 1] ,
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where
(

BS (r)
′ ,BU(z) (r)

)′
is a (d2 + 2)-dimensional Brownian motion with covariance matrix

�U (z) =
[

� 0
0 µ02 (K) σ11f (z)

]

,

and σ11 = E
(

u21t
)

.

It is well known that when the regressors have deterministic trends in a constant-coe�cient cointe-
grating regression, or when we run a linear regression with deterministic trends as a part of regressors,
the joint limiting distribution of the least-squares estimators becomes degenerate. Our FCCM is not
free of this issue, either. Therefore, we adopt a key trick employed in Hansen (1992a,b) to establish a
nondegenerate asymptotic result in LL estimation. Let DT := diag

{

Tp1 , . . . ,Tpm
}

. Then, as shown in
Hansen (1992a, p. 90),

D−1
T k⌊Tr⌋ → k (r) =

(

rp1 , . . . , rpm
)′

(3)

uniformly over r ∈ [0, 1], where 00 ≡ 1 by convention. Again, for notational convenience, DT and k (r)
are partitioned as DT := diag {D1T ,D2T} = diag

{

diag
{

Tp1 , . . . ,Tpm1
}

, diag
{

Tp(m1+1) , . . . ,Tpm
}}

, and

k (r) :=
(

k1 (r)
′ , k2 (r)′

)′ =
(

(

rp1 , . . . , rpm1
)′
,
(

rp(m1+1) , . . . , rpm
)′)′

.

We consider the linear transformation of the partial sum process x⌊Tr⌋ using a d × d standardizing
matrix

ŴT =
[

D1T 0

51D1T Ŵ−1
2T

]−1

=
[

D−1
1T 0

−Ŵ2T51 Ŵ2T

]

,

where

Ŵ2T =
[

D−1
2T

(

5′
252

)−1
5′

2

T−1/2
(

5∗′
2 �225

∗
2

)−1/2
5∗′

2

]

,

and thematrix5∗
2 ∈ R

d2×(d2−m2) spans the null space of52. Observe that5
∗
2 annihilates k2t , the vector

of excluded deterministic trends, from x2t . Then, it is straightforward to see that

ŴTx⌊Tr⌋ ⇒ J (r) :=





k1 (r)
k2 (r)

Wd2−m2 (r)



 , r ∈ [0, 1] , (4)

whereWd2−m2 (r) :=
(

5∗′
2 �225

∗
2

)−1/2
5∗′

2 B2 (r)
d= BM

(

Id2−m2

)

.
Additionally, by Lemma A2 of Phillips and Hansen (1990), J (r) is a full-ranked process in the sense

that
∫ 1
0 J (r) J (r)′ dr > 0 almost surely. This fact and the weak convergence result (4) jointly demonstrate

thatŴT is an appropriate weightingmatrix for xt.We can also see from (4) that the d-dimensional process
xt is asymptotically dominated by the d1-dimensional trend process k1 (r), the m2-dimensional trend
process k2 (r), and the (d2 − m2)-dimensional stochastic trendWd2−m2 (r).

We now present the following nondegenerate distributional theory on the LL estimator of β (·) for a
given design point z.

Theorem 1. If Assumptions 1–6 hold, then

√
ThŴ′−1

T

{

β̂ (z)− β (z)− 1

2
µ21 (K) β

(2) (z) h2 + op
(

h2
)

}

⇒ MN (0,6 (z)) , (5)
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where

6 (z) := µ02 (K) σ11

f (z)

{∫ 1

0
J (r) J (r)′ dr

}−1

.

Remark 1. The limiting distribution remains unchanged, regardless of whether integrated regressors
are exogenous or endogenous in (1). The invariance of the limit theory in the presence of endogeneity
(condition (iii) in Assumption 1) is attributed to the fact that smoothing is made on the range of the
weakly dependent process zt . Weak dependence implies that when we pick the observations zt that
are close to the design point z and take a local average over the range, the selected observations are
not necessarily close to each other in time and thus likely to behave as if they were independent. As a
result, together with the independence between zt and the error process ut , the second-order e�ect does
not arise even when the regressors are endogenous. Accordingly, there is no need for a second-order
correction in the estimation of our FCCM, unlike the least-squares estimation for constant-coe�cient
cointegrating regressions with endogenous regressors.

In the related literature, Sun et al. (2011) allow zt andut to be correlated, at the expense of nonstandard
asymptotic results. Our aim is to demonstrate that under some regularity conditions, it is possible to
obtain a normal limit theorem without a second-order bias correction even when integrated regressors
are endogenous. Furthermore, it is not hard to see that replacing LL with LC estimation in our FCCM
does not lose consistency, unlike the results in Liang and Li (2012), who study VCMs with stationary
regressors and a linear trend. Extra variability of I(1) components in nonstationary regressors restores
consistency, as explained in Li and Li (2013), who establish consistency for LC estimation of VCMs with
unit-root nonstationary regressors and a linear trend.

Remark 2. We also �nd similarity of Theorem 1 to Theorem 1 of Hansen (1992a). For a fair com-
parison, we concentrate on the case in which all the regressors in the constant-coe�cient cointe-
grating regression are exogenous. Theorem 1 of Hansen (1992a) demonstrates that the least-squares
estimators of unrestricted and restricted regressions, a�er being standardized suitably in the same

manner as (4), are asymptotically mixed-normal with covariance matrices ω11

{

∫ 1
0 JU (r) JU (r)

′ dr
}−1

and ω11

{

∫ 1
0 JR (r) JR (r)

′ dr
}−1

, respectively, for some processes JU (r) and JR (r) that contain both

deterministic and stochastic trends. Intuitively, because of kernel smoothing, our result can be obtained

by slowing down the expansion rate from
√
T in Theorem 1 of Hansen (1992a) to

√
Th, including the

O
(

h2
)

leading bias term, and replacing ω11 (the long-run variance of u1t) with
{

µ02 (K) /f (z)
}

-times
its instantaneous variance σ11.

4. Component-wise convergence results

4.1. Bias-variance trade-o�

Theorem 1 resolves the issue of degeneration in the limiting distribution due to multiple convergence

rates of the components of the LL estimator β̂ (z) by considering the limiting behavior of linear
combinations of the components. However, it is o�en desirable to know the convergence rate of each
component, especially for implementation purposes of the nonparametric estimators, as described
shortly.

Here we consider the mean integrated squared error (MISE) of β̂ (z). Because β̂ (z) is multidimen-
sional in general, for a d-dimensional symmetric positive de�nite weighting matrixW (z), the MISE of
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β̂ (z) is de�ned as

MISE
{

β̂ (z)
}

=
∫

E

[

{

β̂ (z)− β (z)
}′
W (z)

{

β̂ (z)− β (z)
}

]

dz. (6)

For simplicity, we chooseW (z) = ψ (z) Id for some nonnegative scalar weighting functionψ (·). Then,
(6) reduces to

MISE
{

β̂ (z)
}

=
∫

∥

∥

∥
β̂ (z)− β (z)

∥

∥

∥

2
ψ (z) dz

=
∫

∥

∥

∥
Bias

{

β̂ (z)
}
∥

∥

∥

2
ψ (z) dz +

∫

tr
[

Var
{

β̂ (z)
}]

ψ (z) dz, (7)

where ψ (·) is assumed to ensure �niteness of integrals.
The integrated squared bias (�rst) and integrated variance (second) terms in (7) can now be

approximated. It immediately follows from Theorem 1 that the integrated squared bias term can be
approximated by

∫

∥

∥

∥
Bias

{

β̂ (z)
}
∥

∥

∥

2
ψ (z) dz ∼ h4

4
{µ21 (K)}2

∫

∥

∥

∥
β(2) (z)

∥

∥

∥

2
ψ (z) dz = O

(

h4
)

. (8)

To approximate the integrated variance term, we need to examine orders of magnitude in the diagonal

elements of Var
{

β̂ (z)
}

∼ (Th)−1 Ŵ′
T6 (z) ŴT . A simple calculation yields the order of magnitude in

the variance of each component of the LL estimator β̂ (·).
Table 1 displays that the order of magnitude in each variance term depends on whether d2 > m2 (i.e.,

at least one stochastic trend remains in the limit process J (r)) or d2 = m2 (i.e., J (r) consists only of
deterministic components). In particular, the expression Op (rather than O) when d2 > m2 re�ects that

because
∫ 1
0 J (r) J (r)′ dr is stochastic, 6 (z) = Op (1). In contrast, when d2 = m2, deterministic trends

asymptotically dominate in the transformed process ŴTxt , and as a consequence, 6 (z) = O (1). In
addition,multiple convergence rates appear in general. A single convergence rate applies to the estimator
of each coe�cient only if (1) satis�es either d2 > m2, p1 > 0 (no intercept) or d2 = m2,m1 = 0 (a special
case of the FCCM-R). Table 1 also reports that when d2 > m2, the LL estimator of the cointegrating
vector, as well as the one of the coe�cient on each trend, attains a super-consistent nonparametric rate
of Th1/2. This convergence rate has been already uncovered in the related literature; see Juhl (2005),
Cai et al. (2009), and Xiao (2009), for instance. In contrast, when d2 = m2, the LL estimator of the
cointegrating vector reaches a further super-consistent nonparametric rate of T

p(m1+1)+1/2
h1/2, which

depends on the slowest element of the excluded trend vector k2t and is no slower than T3/2h1/2.
Based on (8) and Table 1, Table 2 reports the MISE-optimal bandwidth and optimal MISE of each

component of β̂ (·). The implementation method for LL estimation below is built on this result. As
suggested there, LL estimation in general requires multi-step (or component-wise) smoothing with
di�erent bandwidths employed for di�erent components.

Table 1. Order of magnitude in Var
{

β̂k (·)
}

, k = 1, . . . , d.

Regressor d2 > m2 d2 = m2

Intercept (if any) Op

{

(Th)−1
}

O
{

(Th)−1
}

Trend (if any) Op

{

(

T2h
)−1

}

O

{

(

T2pk+1h
)−1

}

,

k = 1, . . . ,m1

Integrated Regressor Op

{

(

T2h
)−1

}

O

{

(

T
2p(m1+1)+1

h
)−1

}
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Table 2. MISE-optimal bandwidth and optimal MISE of β̂k (·) , k = 1, . . . , d.

d2 > m2 d2 = m2

Regressor h∗ MISE∗ h∗ MISE∗

Intercept (if any) Op

(

T−1/5
)

Op

(

T−4/5
)

O
(

T−1/5
)

O
(

T−4/5
)

Trend (if any) Op

(

T−2/5
)

Op

(

T−8/5
)

O
{

T−(2pk+1)/5
}

O
{

T−4(2pk+1)/5
}

for k = 1, . . . ,m1

Integrated Regressor Op

(

T−2/5
)

Op

(

T−8/5
)

O

{

T
−
(

2p(m1+1)+1
)

/5

}

O

{

T
−4
(

2p(m1+1)+1
)

/5

}

4.2. An expositional example:West’s (1988) regressionwith a single “randomwalk with drift”

regressor

Before introducing an implementation method, it is worth illustrating how component-wise conver-
gence results di�er depending on model speci�cations. West (1988) investigates the linear regression
without detrendingwhen a single regressor obeys a randomwalkwith dri�. In our context, an equivalent
model can be obtained by setting m = 2, m1 = 1, d2 = m2 = 1, and

(

p1,p2
)

= (0, 1) in the levels
regression (1) so that

yt = β0 (zt)+ β2 (zt) x2t + u1t , (9)

where x1t = k1t = 1, x2t = π0 + π1t + S2t (π0,π1 6= 0), and 1S2t = u2t . Note that (9) is not the
FCCM-R in that an intercept term is included in the regression. Now, by Theorem 1,

√
Th

[

1 π0
0 π1T

]{

β̂ (z)− β (z)− 1

2
µ21 (K) β

(2) (z) h2 + op
(

h2
)

}

⇒ N (0,6 (z)) ,

where β (z) = (β0 (z) ,β2 (z))
′ and

6 (z) = µ02 (K) σ11

f (z)

[

1 1/2
1/2 1/3

]−1

= µ02 (K) σ11

f (z)

[

4 −6
−6 12

]

.

Note that the limiting distribution is normal, not mixed-normal, because the asymptotic variance is free

of random components. The intercept estimator β̂0 (z) has a usual nonparametric convergence rate of√
Th, whereas the estimator of the cointegrating vector β̂2 (z) has the following asymptotic distribution:

T3/2h1/2
{

β̂2 (z)− β2 (z)− 1

2
µ21 (K) β

(2)
2 (z) h2 + op

(

h2
)

}

⇒ N

(

0,
12µ02 (K) σ11

π2
1 f (z)

)

.

Observe that the convergence rate of β̂2 (z) is unusually rapid T
3/2h1/2, which is analogous to the result

in West (1988).
Including a linear trend t in (9), we can reformulate the regression to the FCCM-U

yt = β0 (zt)+ β1 (zt) t + β2 (zt) x2t + u1t . (10)

Becausem1 = 2,m2 = 0, and d2 = 1 in this model, it follows from Theorem 1 that

√
Th





1 0 π0
0 T π1T

0 0 �
1/2
22

√
T





{

β̂ (z)− β (z)− 1

2
µ21 (K) β

(2) (z) h2 + op
(

h2
)

}

⇒ MN (0,6 (z)) ,

where β (z) = (β0 (z) ,β1 (z) ,β2 (z))
′ and

6 (z) = µ02 (K) σ11

f (z)







1 1/2
∫ 1
0 W (r) dr

1/2 1/3
∫ 1
0 rW (r) dr

∫ 1
0 W (r) dr

∫ 1
0 rW (r) dr

∫ 1
0 W (r)2 dr







−1

.
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The result implies that while β̂0 (z) is asymptotically
√
Th-mixed normal, both β̂1 (z) and β̂2 (z) are

asymptotically T
√
h-mixed normal. In particular, the asymptotic distribution of β̂2 (z) reduces to

Th1/2
{

β̂2 (z)− β2 (z)− 1

2
µ21 (K) β

(2)
2 (z) h2 + op

(

h2
)

}

⇒ MN

(

0,
µ02 (K) σ11

�22f (z)

{∫ 1

0
Wτ (r)2 dr

}−1
)

,

whereWτ (r) := W (r)− (4 − 6r)
∫ 1
0 W (s) ds− (12r − 6)

∫ 1
0 sW (s) ds is the demeaned and detrended

Brownian motion.

4.3. A solve-the-equation plug-in bandwidth choicemethod

The bandwidth choice is always an important practical question in kernel smoothing. Before proceeding,
it is worth noting that except for the cases with d2 > m2, p1 > 0, and d2 = m2,m1 = 0, we must make
a multistep LL smoothing for a full estimation of the levels regression (1). For this purpose, we could
extend a two-step smoothing as in Cai et al. (2009). In the �rst step, we should compute the LL estimator
with the fastest convergence rate. Table 2 suggests that the estimator of the cointegrating vector attains
the fastest rate, regardless of whether d2 > m2 or d2 = m2. Once the LL estimate of the cointegrating
vector is obtained, we subtract the estimated part from yt and then compute the LL estimator with the
second fastest convergence rate using the residual, and so on. A detailed discussion is found in Cai et al.
(2009, Section 2.4).

The plug-in approach considered here closely follows the idea in Ruppert et al. (1995, Section 5). Our
bandwidth choice rule can be viewed as a variant of the solve-the-equation plug-in (SP) approach, which
is classi�ed as a second-generation bandwidth selector in Jones et al. (1996). The SP rule originates from
kernel density estimation (Park andMarron, 1990; Sheather and Jones, 1991), and it is also applied to the
long-run variance estimation (Hirukawa, 2010). A noticeable di�erence in our approach is that while
a nonparametric estimate of the second-order derivative of the quantity of interest (either density or
conditional expectation) plays a key role in the aforementioned articles, our approach �ts a polynomial
model to the derivative, as explained shortly. Furthermore, the SP rule is readily applicable to the
implementation of Xiao’s (2009) FCCM with a minor modi�cation.

The SP rule is built on theMISE-optimal bandwidth for the LL estimator of interest. Because the same
convergence rates of the estimators of the coe�cients on trends and the cointegrating vector apply when
d2 > m2, we can obtain these LL estimators using a single bandwidth. In light of this, de�ne the selector
matrix S as

S :=







[

0(d−1)×1 Id−1

]′
if d2 > m2, p1 = 0

Id if d2 > m2, p1 > 0
[

0d2×d1 Id2
]′

if d2 = m2

.

For this S and a suitably chosen exponent α, it can be shown that as T → ∞, TαŴTS converges to a
nonzero constant matrix S∗ (say), as in Lemma 2 in Section 5. Speci�cally, put

α =
{

1/2 if d2 > m2

p(m1+1) if d2 = m2
,

and write

6S′β = S∗′
{∫ 1

0
J (r) J (r)′ dr

}−1

S∗.

The next proposition delivers an approximation to the MISE of the LL estimator for selected
coe�cients S′β̂ (z) and the MISE-optimal bandwidth. This is a direct outcome from Theorem 1, (7),
(8), and the results in Table 2.



ECONOMETRIC REVIEWS 517

Proposition 1. If Assumptions 1–6 hold, then MISE
{

S′β̂ (z)
}

can be approximated by

MISE
{

S′β̂ (z)
}

= h4

4
{µ21 (K)}2

∫

∥

∥

∥
S′β(2) (z)

∥

∥

∥

2
ψ (z) dz

+ µ02 (K) σ11

T2α+1h

∫

tr
(

6S′β
) ψ (z)

f (z)
dz + o

(

h4 + 1

T2α+1h

)

,

The MISE-optimal bandwidth is

h∗ =
[

µ02 (K) σ11
∫

tr
(

6S′β
) {

ψ (z) /f (z)
}

dz

{µ21 (K)}2
∫ ∥

∥S′β(2) (z)
∥

∥

2
ψ (z) dz

]1/5

T−(2α+1)/5. (11)

The right-hand side of (11) contains three unknown quantities, namely, σ11,
∫ ∥

∥S′β(2) (z)
∥

∥

2
ψ (z) dz

and
∫

tr
(

6S′β
) {

ψ (z) /f (z)
}

dz. We “estimate” (or �nd proxies of) these quantities in the following
manner.

On σ11. Suppose that h
∗ is known. Then, we have the functional-coe�cient estimates

{

β̂ (zt ; h
∗)
}T

t=1
,

where β̂ (·; h) signi�es the LL estimate of β (·) using the bandwidth h. A natural estimator of σ11 is
σ̂ ∗
11 = σ̂11 (h

∗), where

σ̂11 = σ̂11 (h) :=
1

T

T
∑

t=1

{

û1t (h)
}2 −

{

û1 (h)
}2

, (12)

û1t (h) = yt − x′
tβ̂ (zt ; h) , and

û1 (h) = 1

T

T
∑

t=1

û1t (h) .

On
∫ ∥

∥S′β(2) (z)
∥

∥

2
ψ (z) dz. Following Ruppert et al. (1995, p. 1259), put ψ (z) = f (z) 1 (z ∈ [a, b])

for a prespeci�ed compact interval [a, b] (− ∞< a< b<∞). Then, a natural estimator of
∫ ∥

∥S′β(2) (z)
∥

∥

2

1 (z ∈ [a, b]) f (z) dz is

∑

i

1

T

T
∑

t=1

1t

(

β̂
∗(2)
it

)2
=























∑d
i=2

1
T

∑T
t=1 1t

(

β̂
∗(2)
it

)2
if d2 > m2, p1 = 0

∑d
i=1

1
T

∑T
t=1 1t

(

β̂
∗(2)
it

)2
if d2 > m2, p1 > 0

∑d
i=d1+1

1
T

∑T
t=1 1t

(

β̂
∗(2)
it

)2
if d2 = m2

, (13)

where 1t = 1 (zt ∈ [a, b]), and β̂
∗(2)
it = β̂

(2)
i (zt ; h

∗) is an estimate (or a proxy) of β
(2)
i (zt). We can

obtain

{

{

β̂
(2)
it

}d

i=1

}T

t=1

in the following manner. For each i, we regress the LL estimate β̂∗
it = β̂i (zt ; h

∗)

on a pth order polynomial in zt , i.e., β̂
∗
it =

∑p
j=0 δijz

j
t + et for some prespeci�ed p (≥ 2). Let δ̂ij be the

least-squares estimate of δij. Then, β̂
∗(2)
it is given by

β̂
∗(2)
it = β̂

(2)
i

(

zt ; h
∗) =

p
∑

j=2

j
(

j − 1
)

δ̂ijz
j−2
t .

On
∫

tr
(

6S′β
){

ψ(z)/f (z)
}

dz. Setting ψ(z) = f (z)1(z ∈ [a, b]) gives
∫

tr
(

6S′β
){

ψ (z) /f (z)
}

dz =
tr
(

6S′β
)

(b − a). Because it is not hard to see that6S′β may be estimated by T2α+1S′
(

∑T
t=1 xtx

′
t

)−1
S,
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a proxy of
∫

tr
(

6S′β
)

dz can be obtained as

tr







T2α+1S′
(

T
∑

t=1

xtx
′
t

)−1

S







(b − a) . (14)

Substituting σ̂ ∗
11, (13), and (14) into (11) establishes the �xed-point problem

h∗ =









µ02 (K) σ̂
∗
11tr

{

T2α+1S′
(

∑T
t=1 xtx

′
t

)−1
S

}

(b − a)

{µ21 (K)}2
∑

i (1/T)
∑T

t=1 1t

(

β̂
∗(2)
it

)2









1/5

T−(2α+1)/5. (15)

Solving this equation numerically for h∗ yields the SP bandwidth ĥSP.
A few issues remain in implementing �xed-point equation (15). First, we must choose the compact

interval [a, b] and the order of polynomial p. Our preliminary Monte Carlo studies indicate that p = 4
works well. On the other hand, the interval [a, b] should depend on the range of the transition variable zt .
If the support of itsmarginal density is known a priori to be compact (as in PLLR estimation), the interval
should match the support. Additionally, it is o�en the case that zt takes the form of a percentage change
(e.g., zt is de�ned as the di�erence of a log-transformed integrated regressor). In this situation, [a, b] =
[0, 1] or [−1, 1] may be a reasonable choice. Second, the right-hand side of (15) is a highly nonlinear
function of h∗, and there may be multiple roots. In case of multiple roots, we follow the suggestion in

Park and Marron (1990) and de�ne ĥSP as the largest root that solves (15).

5. Hypothesis testing

Belowwe provide a brief discussion on hypothesis testing. Hypothesis tests of interest include testing the
null of parameter constancy and testing the null of no trends in the cointegrating regression. The basic
idea for each testing closely follows Xiao (2009) and Cai and Xiao (2012).

5.1. Testing for parameter constancy

We �rst study the testing problem for the null of constant coe�cients in (1), i.e.,

H0 : β (z) = β .

To testH0 againstH1 : at least one element of β (z) is varying, we may follow the idea of Sun et al. (2008)
and construct an L2-type test statistic. However, their test statistic is built on a somewhat restrictive
assumption on the regression error u1t , which does not admit our Assumption 1(iii). Although it could
be possible to relax the assumption, an extension in this direction is beyond the scope of this article.

Instead, we adopt the approach taken by Xiao (2009) and Cai and Xiao (2012). The test statistic is the

maximum of Wald statistics using β̂ (·) on q distinct design points {zi}qi=1. Observe that under H0, the
regression model (1) collapses to a usual constant-coe�cient cointegrating regression

yt = x′
tβ + u1t . (16)

Because the value ofβ is le� unspeci�ed, theWald statistic using the estimator β̂ (zi) requires a consistent
estimator of β in (16). What matters is the convergence rate of the estimator, not its e�ciency, and thus

we consider the ordinary least squares (OLS) estimator of β . Given the OLS estimator β̂OLS and the set
of design points {zi}qi=1, we consider the Wald statistic

W1 (zi) =
{

β̂ (zi)− β̂OLS

}′


µ02 (K) σ̂11

{

T
∑

t=1

xtx
′
tK

(

zt − zi

h

)

}−1




−1
{

β̂ (zi)− β̂OLS

}

,

where σ̂11 is de�ned in (12).
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Because Theorem 1 of Hansen (1992b) implies that
√
TŴ′−1

T

(

β̂OLS − β
)

= Op (1), we have

√
ThŴ′−1

T

{

β̂ (z)− β̂OLS

}

=
√
ThŴ′−1

T

{

β̂ (z)− β
}

+ Op

(√
h
)

⇒ MN (0,6 (z)) .

A standard argument on kernel smoothing then establishes that {W1 (zi)}qi=1 is a set of mutually
asymptotically independent χ2 random variables. De�ne the test statistic as T1q := max1≤i≤qW1 (zi).
The next theorem refers to the distributional theory on T1q.

Theorem 2. If Assumptions 1–6 hold, then T1q ⇒ max1≤i≤q χ
2
i (d) under H0, where χ

2
1 (d) , . . . ,χ

2
q (d)

are independent χ2 random variables with d degrees of freedom.

We can reject H0 if T1q takes a very large value. Because its limiting distribution is free of nuisance
parameters, it is easy to tabulate the critical values. The critical values for the distribution of the
maximum of q independent χ2 random variables with d degrees of freedom can be obtained by solving
the nonlinear equation {Fd (x)}q = 1−α numerically for x, where Fd (x) = Pr

{

χ2 (d) ≤ x
}

is the cdf of
χ2 distribution with d degrees of freedom, and α is the nominal size of this test. The remaining question
is how to choose the design points {zi}qi=1. As in Cai and Xiao (2012, Example 4), we may consider a set
of equally spaced grid points over a prespeci�ed compact interval.

5.2. Testing for no trends in the cointegrating regression

Restricted coe�cient estimation is more e�cient than unrestricted estimation, as indicated in Section
4.2, for instance. Accordingly, we next consider the test of an exclusion restriction

H0 : R
′β (z) = 0

against H1 : R
′β (z) 6= 0 in (1). Speci�cally, the selector matrix R takes the form of

R =
[

R1
0

]

∈
{

R
d×(d1−1) if p1 = 0

R
d×d1 if p1 > 0

,

where

R1 =
{
[

0 Id1−1

]′
if p1 = 0

Id1 if p1 > 0
.

Observe that R selects all coe�cients on trends but an intercept in the levels regression (1). The reason
why the exclusion restriction is not imposed on an intercept is that in many applications an intercept is
introduced in cointegrating regressions, whether there may be trends as extra regressors or not.

As in the previous section, the test statistic takes the form of the maximum of Wald statistics. To
deliver the distributional theory of this test statistic, we �rst strengthen Assumptions 3 and 6 as follows.

Assumption 3’. The nonnegative sequence of bandwidth h = hT satis�es h → 0, Th → ∞, and
T2pm+1h5 → 0 as T → ∞.

Assumption 6’. Each column of51 contains a nonzero element, rank (52) = m2, and d2 ≥ m.
The additional condition “T2pm+1h5 → 0” in Assumption 3’ makes the leading bias term asymptoti-

cally negligible by undersmoothing. The FCCM-U, for instance, satis�es pm = 1 so that the bandwidth
for LL should be h = O

(

T−α), α ∈ (3/5, 1). Moreover, d2 ≥ m in Assumption 6’means that the number
of integrated regressors is at least as many as the number of trends. The condition d2 ≥ m establishes
the lemma below, which determines the degrees of freedom in the limiting null distribution of the test
statistic.
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Lemma 2. If Assumption 6’ holds, then

R∗ := lim
T→∞

√
TŴTR (17)

is of the same rank as R.

For the set of design points {zi}qi=1, again the Wald statistic

W2 (zi) =
{

R′β̂ (zi)
}′


µ02 (K) σ̂11R
′
{

T
∑

t=1

xtx
′
tK

(

zt − zi

h

)

}−1

R





−1
{

R′β̂ (zi)
}

is utilized, where σ̂11 is again given in (12). De�ne the test statistic as T2q := max1≤i≤qW2 (zi).
The next theorem refers to the distributional theory on T2q. For the implementation of this test (e.g.,
obtaining critical values and choosing design points), the discussion in the previous section directly
applies.

Theorem 3. If Assumptions 1, 2, 3’, 4, 5, and 6’ hold, then

T2q ⇒
{

max1≤i≤q χ
2
i (d1 − 1) if p1 = 0

max1≤i≤q χ
2
i (d1) if p1 > 0

under H0, where χ
2
1 (s) , . . . ,χ

2
q (s) are independent χ

2 random variables with s degrees of freedom.

Remark 3. Each of the two tests above is built on the �rst-order asymptotic theory described in Theorem
1. Asymptotic tests have the advantage of freedom of nuisance parameters in the limiting distributions.
In �nite samples, however, we cannot ignore the e�ect of the second-order bias due to endogenous
regressors and/or serial dependence of the transition variable zt . As a result, relying simply on �rst-
order approximations to the distributions of test statistics may not provide a satisfactory solution to
inference based on the levels regression (1). As an alternative, we could consider bootstrap-based tests,
which may achieve some �nite-sample improvement.

Moreover, in some applications, each test might lead to di�erent conclusions across di�erent choices
of the number of design points q or di�erent sets of design points {zi}qi=1. This is due to the fact that
the distributional theory on which Theorems 2 and 3 are grounded is pointwise in z. Then, a referee
suggested that we consider the Wald statistic W1 (z) (or W2 (z)) as a process over the whole range of
z and conduct inference in a similar manner to the sup-Wald test for structural breaks. We �nd this
extension appealing, and it would be worthwhile to investigate the properties of test statistics based on
the Wald process as a future research topic.

6. Finite-sample performance

6.1. Setup

Our primary focus is on the precision of LL estimators of functional coe�cients in �nite samples.
Recently Banerjee and Pitarakis (2012, 2014) have applied PLLR estimation (Banerjee, 2007) for esti-
mating the FCCMwith a single pure I(1) regressor and reported that PLLR estimators o�en outperform
kernel estimators in �nite samples. From this viewpoint, our Monte Carlo study compares �nite-sample
performance of LL and PLLR. Additionally, in Appendix Bwe develop the distributional theory on PLLR
estimation when multiple I(1) regressors with trends enter the FCCM.

We generate the data
{(

yt , x2t , zt
)}T

t=1
∈ R × R × R from two regression speci�cations (9) and (10)

with the initial value S20 = 0 and π0 = π1 = 0.3. The error process ut = (u1t , u2t)
′ obeys the VAR(1)
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model

ut = 8ut−1 + ǫt , 8 =
[

φ11 0
0 0

]

, φ11 ∈ {0.0,±0.4,±0.8} ,

where

ǫt =
[

ǫ1t
ǫ2t

]

iid∼ N (0,V) , V =
[

1 σ21
σ21 1

]

, σ21 ∈ {0.0,±0.4,±0.8} .

A maintained assumption on PLLR is that the marginal density of the transition variable zt is compact.
In order for zt to have a marginal density with compact support, we �rst generate z∗t from the AR(1)

model z∗t = ρz∗t−1 + wt , ρ ∈ {0.0,±0.4,±0.8}, where wt
iid∼ N (0, 2) is independent of ǫt . Then, z

∗
t is

transformed to zt = 28
(

z∗t
)

− 1, where 8(·) is the cdf of N (0, 1).1 Observe that zt ∈ [−1, 1]. The
functional coe�cients are set equal to β0 (z) = β1 (z) = β2 (z) = β (z), where β (z) takes the following
functional forms. The following functional forms B-D are taken from Banerjee and Pitarakis (2012):

A: β (z) = 1.

B: β (z) = 0.3 − 0.5 exp
(

−1.25z2
)

.

C: β (z) = 0.5/
{

1 + exp (−4z)
}

− 0.75.

D: β (z) = 0.25 exp
(

−z2
)

.

For each combination of the regression and the functional coe�cient, 1,000 Monte Carlo samples
with the sample size T = 100 or 250 are simulated. For each Monte Carlo sample, the functional-
coe�cient (or the cointegrating vector) β2 (z) is estimated by LL and PLLR. LL estimation employs
the Epanechnikov kernel K (u) = (3/4)

(

1 − u2
)

1 (|u| ≤ 1). The bandwidth is chosen via the solve-
the-equation plug-in method in Section 4. This bandwidth is denoted by SP, and the LL estimator using
the bandwidth is referred to as LL-SP. To compute the bandwidth, we set the compact interval and the
order of the polynomial equal to [a, b] = [−1, 1] and p = 4 so that the interval matches the support
of the marginal density of zt . O�en a very simple bandwidth formula is applied in the literature (e.g.,
Juhl, 2005; Xiao, 2009). In light of this, a “rule-of-thumb” bandwidth is also employed. Speci�cally,

ĥROT,R = 2σ̂zT
−3/5 for (9) and ĥROT,U = 2σ̂zT

−2/5 for (10) are considered, where σ̂z is the sample
standard deviation of observations {zt}Tt=1. Each bandwidth is denoted by ROT, and the LL estimator
using the bandwidth is referred to as LL-ROT. Our aim is to compare the gain in accuracy from the SP
bandwidth with the one from the ROT bandwidth. It is not hard to see that for PLLR estimation, the
MISE-optimal bin length for β̃2 (z) for d2 > m2 is ℓ∗ = O

(

T−2/3
)

, and thus we set the number of

bins equal to N = 10
⌊

T2/3/10
⌋

so that ℓ = O
(

T−2/3
)

is preserved.2 This rule roughly mimics the
bin numbers chosen in Banerjee and Pitarakis (2012, 2014). In our setup, N = 20 (or ℓ = 0.100) for
T = 100 and N = 30 (or ℓ = 0.067) for T = 250.

As in Banerjee and Pitarakis (2012, 2014), midpoints of the bins are used as the design points for both
LL and PLLR. For a nonparametric estimator β̄2 (z), we employ the root mean squared error (RMSE)

RMSE
{

β̄2 (z)
}

=

√

√

√

√

√

1

N

N
∑

j=1

{

β̄2
(

zj
)

− β2
(

zj
)}2

as its performance measure, where the design points are
{

zj
}N

j=1
=
{(

HL
j + HU

j

)

/2
}N

j=1
. Medians of

RMSEs over 1,000 replications are taken and reported for performance evaluation.

1It appears that the dependent structure of z∗
t
is well transmitted to zt . Averages of the �rst-order sample autocorrelations of

zt over 1,000 replications are typically −0.74,−0.37,−0.00, 0.36, 0.73 for ρ = −0.8,−0.4, 0.0, 0.4, 0.8, respectively.
2It may not be a good idea to apply the MISE-optimal bin length for β̃2 (z) for d2 = m2

(

ℓ∗ = O

(

T
−1
))

to the regression

(9). If we put N = T and zt is uniformly distributed, then the number of observations falling into each bin will be only one
on average.
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6.2. Results

Simulation results can be found on the �rst author’s webpage (http://www.setsunan.ac.jp/∼hirukawa/).
For each combination of β (z), the sample size, and the estimation method, the estimate from the
restricted model (9) tends to yield a smaller RMSE than the one from the unrestricted model (10). This
re�ects a slower convergence rate and a stochastic component in the asymptotic variance of the estimator
for the latter. A closer examination also reveals that as ρ or φ11 moves away from zero, the performance
measure becomes larger, o�en drastically. This may suggest necessity for an alternative approximation
to the estimator in the presence of a persistent regression error or transition variable.

Results also indicate that inmost cases, LL-SP performs better than LL-ROT and PLLR. Improvement
in the performance measure by LL-SP is o�en substantial. To be more precise, LL-SP performs best for
all restricted models and for most unrestricted models. Even though it is outperformed for T = 100,
it performs best for T = 250 except in only a few examples. In other words, given typical numbers of
observations for cointegration analysis, the SP bandwidth is expected to work reasonably well.

In contrast, the performance of PLLR is typically as good as that of LL-ROT at best, as opposed
to the results provided in Banerjee and Pitarakis (2012, 2014). Additionally, PLLR exhibits substantial
variability, and its instability is not resolved even a�er the sample size is increased. We may attribute
the contradictory PLLR results between Banerjee and Pitarakis (2012, 2014) and us to the following
two aspects. First, they estimate Xiao’s (2009) version of the FCCM using a higher-order kernel
and/or an ad hoc bandwidth including ROT and the reciprocal of the number of bins. These may be
disadvantages to the kernel estimator because nonparametric estimators employing higher-order kernels
tend to yield unstable estimates in �nite samples and �nite-sample behavior of kernel estimators is also
a�ected considerably by bandwidth selectors. Second, they consider much larger sample sizes (e.g.,
T = 500, 1,000, 2,000). PLLR appears to work well in such a data-rich environment, whereas ourMonte
Carlo design adopts typical sample sizes for cointegration analysis using low-frequency data. It could be
the case that PLLR �ts well with medium- to high-frequency data.

7. An application: Estimating electricity demand functions in the state of Illinois

We now apply the FCCM to electricity demand analysis in Illinois. Our primary focus is how price or
income elasticity of electricity demand varies with the level of temperature. For this purpose, we specify
the FCCM to be estimated as

log qt = β0 (zt)+ β1 (zt) t + β2 (zt) log pt + β3 (zt) log yt + u1t , (18)

where, with a slight abuse of notation, qt and pt are the consumption and price of electricity, yt is
income or output, and zt is temperature. We work with 288 monthly observations from January 1990
to December 2013. For each of the end-use sectors in Illinois — namely, the residential, commercial,
and industrial sectors — electricity consumption and price data are obtained from the US Energy
Information Administration. Electricity prices are then converted into relative prices by dividing them
by the consumer price index of energy in the Chicago–Gary–Kenosha area. Real disposable personal
income and industrial production index are chosen as measures of income (for the residential sector)
and output (for the commercial and industrial sectors), respectively.3 These are taken from the Federal
Reserve Economic Data at the Federal Reserve Bank of St. Louis. Finally, CustomWeather provides
monthly average temperature in Illinois. Table 3 reports the results of augmented Dickey-Fuller (ADF)
unit root tests andKwiatkowski et al. (1992) (KPSS) stationarity tests.We can�nd evidence of stationarity
in zt . The ADF test fails to reject the null of a unit root a�er detrending for most of the remaining
variables; the only exception is log pt for the commercial sector. Moreover, results from the KPSS tests

3Because there is no statewidemonthly income or output available, we employ nationwide income and output measures by
assuming that income and output levels in Illinois are constant proportions of the corresponding nationwide ones over the
entire sample period.

http://www.setsunan.ac.jp/~hirukawa/
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Table 3. Results of unit root and stationarity tests.

ADF KPSS

Variable demeaned detrended level stationary trend stationary

log qt Residential −1.578 −3.423 2.306∗ 0.287∗
Commercial −1.606 −1.145 2.197∗ 0.436∗
Industrial −2.128 −2.424 1.135∗ 0.100

log pt Residential −0.586 −2.977 2.191∗ 0.209∗
Commercial −0.510 −3.763∗ 2.274∗ 0.181∗
Industrial −1.022 −3.139 2.055∗ 0.109

log yt Disposable Income −2.263 −0.041 2.473∗ 0.527∗
Industrial Production −2.167 −1.956 1.897∗ 0.510∗

zt Temperature −3.118∗ −3.138 0.131 0.058
Critical Value (5%) −2.879 −3.429 0.463 0.146

The ADF tests are based on regression with 12 lags. The Bartlett kernel and the Newey and West (1994) automatic bandwidth are
employed for the long-run variance estimate in the KPSS test. “∗” indicates signi�cance at the 5% level.

Table 4. Results of speci�cation tests.

Sector Cointegration Parameter constancy No trends

Residential 1.35 160.48∗ 7.78
Commercial −0.30 291.20∗ 68.45∗
Industrial −1.23 87.61∗ 7.17
Critical Value (5%) 1.65 16.37 9.10

The Bartlett kernel and the Newey and West (1994) automatic bandwidth are employed for the long-run variance estimate in the
cointegration test by Xiao (2009). Critical values at the 5% level for nulls of parameter constancy, and no trends are calculated from

the distributions of max1≤i≤20 χ
2
i (4) and max1≤i≤20 χ

2
i (1), respectively. “∗” indicates signi�cance at the 5% level.

Figure 1. Estimated price elasticity of electricity demand against temperature β̂2 (z).
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Figure 2. Estimated income elasticity of electricity demand against temperature β̂3 (z).

con�rm that these variables are likely to be I(1) with a linear trend, except log qt and log pt for the
industrial sector. All in all, the data set appears to �t with the framework of the FCCM.

LL estimation of (18) employs the Epanechnikov kernel and the SP bandwidth. Plots of LL estimates

β̂2 (z) and β̂3 (z) and their 95% con�dence bands for each of three sectors are presented in Figures 1
and 2. Additionally, results from the tests for cointegration, parameter constancy, and no trends are
reported in Table 4, where the cointegration test is a direct application of the one proposed inXiao (2009)
and equi-spaced 20 design points (i.e., q = 20) are chosen for the second and third tests. Xiao’s (2009)
test does not reject the null of cointegration for any sector. As the �gures indicate, the null of parameter
constancy is strongly rejected for all sectors. On the other hand, there is evidence of the linear trend term
in (18) for the commercial sector alone.

Figure 1 indicates that price elasticity for each sector is very small in magnitude, demonstrating that
electricity is a necessity. The elasticity for the residential and industrial sectors is U-shaped. This comes
from the fact that price sensitivity tends to increase at the temperature at which there is little demand
for heating or cooling. In contrast, the price elasticity for the commercial sector is upward sloping. A
rationale could be that at low temperature commercial customers are willing to switch to other heating
apparatuses, such as ones fueled by gas, when �nding the electricity price high. Furthermore, Figure 2
indicates that income elasticity is upward sloping for each sector. It may be the case that because high-
income people tend to live in larger houses or high-production �rms are likely to use larger buildings,
their electricity demand for cooling becomes higher on hot summer days.

8. Conclusion

This paper has extended Xiao’s (2009) FCCM to the cases in which nonstationary regressors have both
stochastic and deterministic trends. LL estimation is employed to estimate the FCCM consistently, and a



ECONOMETRIC REVIEWS 525

nondegenerate distributional theory for the LL estimator is explored. It is demonstrated that endogeneity
in integrated regressors does not cause a second-order e�ect. In addition, the convergence rate of the
nonparametric estimator of each coe�cient is shown to depend on the model speci�cation. In any case,
the convergence rate on the estimator of the cointegrating vector becomes no slower than Th1/2. We also
study hypothesis tests for the null of constant coe�cients and for the null of no trends in the regression.
A solve-the-equation plug-in bandwidth choice rule is proposed as an implementation method for LL
estimation, and its better �nite-sample property is con�rmed by Monte Carlo simulations. Finally, the
FCCM is applied for estimating electricity demand functions in Illinois, and changes in price and income
elasticity of electricity demand due to temperature are investigated.

Appendix A: Technical proofs

All the proofs are based on condition (iii) in Assumption 1. Proofs for all other cases are quite similar
and thus omitted.

A.1. Proof of Lemma 1

The set of assumptions allows us to apply the FCLT (see, for example, Hansen, 1992c), and thus our
remaining task is to specify the long-run variance matrix �U (z). To do so, we only need to show the
following two statements:

Var

{

1√
Th

UT (z)

}

= µ02 (K) σ11f (z)+ o (1) , (A1)

Cov

{

1√
T
ST ,

1√
Th

UT (z)

}

= o (1) . (A2)

Proof of (A1). Observe that

Var

{

1√
Th

UT (z)

}

= 1

h

T−1
∑

k=−(T−1)

(

1 − |k|
T

)

E
{

Kt (z) u1tKt−k (z) u1t−k

}

= E

{

1

h
K2
t (z) u

2
1t

}

+ 2

h

T−1
∑

k=1

(

1 − |k|
T

)

E
{

Kt (z) u1tKt−k (z) u1t−k

}

= A1 + 2A2 (say).

A1 can be approximated by

A1 =
[

E

{

1

h
K2

(

zt − z

h

)}

− hE2
{

1

h
K

(

zt − z

h

)}]

E
(

u21t
)

=
[

µ02 (K)
{

f (z)+ o (1)
}

+ O (h)
]

σ11

→ µ02 (K) f (z) σ11.

Hence, (A1) is established if A2 = o (1). Now, |A2| is bounded by

∞
∑

k=1

1

h

∣

∣E
{

Kt (z) u1tKt−k (z) u1t−k

}∣

∣ =





dT
∑

k=1

+
∞
∑

k=dT+1





1

h

∣

∣E
{

Kt (z) u1tKt−k (z) u1t−k

}∣

∣

= A21 + A22 (say),

where the increasing sequence dT is speci�ed shortly. We evaluate A22 �rst. By Davydov’s lemma (see,
for example, Corollary A.2 of Hall and Heyde, 1980) and the stationarity of (zt , u1t),

∣

∣E
{

Kt (z) u1tKt−k (z) u1t−k

}
∣

∣ ≤ 8
(
∥

∥Kt (z) u1t
∥

∥

δ

)2
α (k)1−2/δ . (A3)
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Because ‖u1t‖δ < ∞ and E
∣

∣Kt (z)
∣

∣

δ ≤ O (h) by Cr-inequality, we have

∥

∥Kt (z) u1t
∥

∥

δ
=
∥

∥Kt (z)
∥

∥

δ
‖u1t‖δ ≤ O

(

h1/δ
)

. (A4)

The size of the mixing coe�cient also implies that

α (k) ≤ ck−{δγ /(δ−γ )+ǫ} (A5)

for some ǫ > 0. Substituting (A4)–(A5) into (A3) yields

1

h

∣

∣E
{

Kt (z) u1tKt−k (z) u1t−k

}
∣

∣ ≤ ch−(1−2/δ)k−{δγ /(δ−γ )+ǫ}(1−2/δ).

For such ǫ, de�ne dT :=
⌊

h−a
⌋

for some a ∈ (a1, 1), where a1 = {δγ / (δ − γ )+ ǫ − 1/ (1 − 2/δ)}−1

and 0 < a1 < 1 is ensured by δ > γ > 2. Then,

A22 ≤ ch−(1−2/δ)
∞
∑

k=dT+1

k−{δγ /(δ−γ )+ǫ}(1−2/δ).

It follows from δ > γ > 2 that {δγ / (δ − γ )+ ǫ} (1 − 2/δ) > 2. As a result,

∞
∑

k=dT+1

k−{δγ /(δ−γ )+ǫ}(1−2/δ) ≤
∫ ∞

dT

x−{δγ /(δ−γ )+ǫ}(1−2/δ)dx = cd
−(1−2/δ)/a1
T = O

{

h(a/a1)(1−2/δ)
}

,

and thus A22 ≤ O
{

h(a/a1−1)(1−2/δ)
}

→ 0.
Wenow turn toA21. Notice that

∣

∣E
{

Kt (z) u1tKt−k (z) u1t−k

}
∣

∣ =
∣

∣E
{

Kt (z)Kt−k (z)
}
∣

∣

∣

∣E
(

u1tu1t−k

)
∣

∣,
where

∣

∣E
(

u1tu1t−k

)
∣

∣ < ∞ by Cauchy–Schwarz inequality and the stationarity of u1t . Moreover,

∣

∣E
{

Kt (z)Kt−k (z)
}
∣

∣ ≤ E

∣

∣

∣

∣

K

(

zt − z

h

)

K

(

zt−k − z

h

)
∣

∣

∣

∣

+ E

∣

∣

∣

∣

K

(

zt − z

h

)
∣

∣

∣

∣

E

∣

∣

∣

∣

K

(

zt−k − z

h

)
∣

∣

∣

∣

.

Uniform boundedness of the joint density for
(

zt , zt−k

)

in Assumption 4 implies that the �rst term is
O
(

h2
)

, whereas the second term is also O
(

h2
)

. In conclusion,
∣

∣E
{

Kt (z) u1tKt−k (z) u1t−k

}
∣

∣ ≤ O
(

h2
)

.
Therefore, A21 ≤ O (dTh) = O

(

h1−a
)

→ 0 is also established.

Proof of (A2). The le�-hand side of (A2) reduces to

1√
h

T−1
∑

k=−(T−1)

(

1 − |k|
T

)

E
{

utKt−k (z) u1t−k

}

.

For k = 0,
∥

∥

∥
E
{

Kt (z) utu1t
}

/
√
h
∥

∥

∥
≤
{

E
∣

∣Kt (z)
∣

∣ /
√
h
}

E ‖utu1t‖ = O
(√

h
)

→ 0, whereas absolute

convergence of the sum to zero for |k| ≥ 1 can be shown in a similar manner to the proof of (A1).

A.2. Proof of Theorem 1

This proof requires the following lemma.

Lemma A1. If Assumptions 1–4 and 6 hold, then

1√
Th

T
∑

t=1

ŴTxtK

(

zt − z

h

)

u1t ⇒
∫ 1

0
J (r) dBU(z) (r) ,

where BU(z) (r) is independent of J (r).
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A.2.1. Proof of Lemma A1.
Notice that

1√
Th

T
∑

t=1

ŴTxtK

(

zt − z

h

)

u1t

= 1√
Th

T
∑

t=1

ŴTxtKt (z) u1t + 1√
Th

T
∑

t=1

ŴTxtE

{

K

(

zt − z

h

)}

u1t

= B1 + B2 (say).

By Theorem 4.1 of Hansen (1992c) and Lemma 1, we have

B1 =





1√
Th

∑T
t=1 D

−1
T ktKt (z) u1t + op (1)

1√
Th

∑T
t=1

(

5∗′
2 �225

∗
2

)−1/2
5∗′

2

(

S2t/
√
T
)

Kt (z) u1t





⇒
[

∫ 1
0 k (r) dBU(z) (r)

(

5∗′
2 �225

∗
2

)−1/2
5∗′

2

∫ 1
0 BS2 (r) dBU(z) (r)

]

=
∫ 1

0
J (r) dBU(z) (r) ,

where J (r) and BU(z) (r) are uncorrelated and thus independent due to Gaussianity. On the other hand,

B2 =
√
h

1√
T

T
∑

t=1

ŴTxtE

{

1

h
K

(

zt − z

h

)}

u1t =
√
h

(

1√
T

T
∑

t=1

ŴTxtu1t

)

{

f (z)+ o (1)
}

.

It follows from Theorem 3(c) of Hansen (1992b) that

1√
T

T
∑

t=1

ŴTxtu1t ⇒
∫ 1

0
J (r) dBS1 (r)+

[

0
3∗

21
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,

where 3∗
21 :=

(

5∗′
2 �225

∗
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2 321, and 321 :=
∑∞

j=0 E
(

u2tu1t+j

)

. Therefore, B2 =
√
hOp(1)

O (1) = Op

(√
h
)

p→ 0, and thus the lemma is established.

A.2.2. Proof of Theorem 1.

The numerator of β̂ (z) can be rewritten as

T0 (z)− S1 (z) S2 (z)
−1 T1 (z)

=
{

T
∑

t=1

xtx
′
tβ (zt)K

(

zt − z

h

)

− S1 (z) S2 (z)
−1

T
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xtx
′
tβ (zt) (zt − z)K

(
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h

)

}

+
{

T
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t=1

xtu1tK

(

zt − z

h

)

− S1 (z) S2 (z)
−1

T
∑

t=1

xtu1t (zt − z)K

(

zt − z

h

)

}

= G1 (z)+ G2 (z) (say). (A6)

Using a second-order Taylor expansion of β (zt) around zt = z, we have

G1 (z) =
{

S0 (z)− S1 (z) S2 (z)
−1 S1 (z)

}

β (z)

+ 1

2

{

S2 (z)− S1 (z) S2 (z)
−1 S3 (z)

}

β(2) (z)+ R (z) , (A7)
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where

R (z) =
T
∑

t=1

xtx
′
tξt (z)K

(

zt − z

h

)

− S1 (z) S2 (z)
−1

T
∑

t=1

xtx
′
tξt (z) (zt − z)K

(

zt − z

h

)

,

ξt (z) = β (zt)−
{

β (z)+ β(1) (z) (zt − z)+ 1

2
β(2) (z) (zt − z)2

}

.

Substituting (A6) and (A7) into (2) yields
√
Th
[

Ŵ′−1
T

{

β̂ (z)− β (z)
}

− 1

2
Ŵ′−1
T

{

S0 (z)− S1 (z) S2 (z)
−1 S1 (z)

}−1 {
S2 (z)− S1 (z) S2 (z)

−1 S3 (z)
}

β(2) (z)

−Ŵ′−1
T

{

S0 (z)− S1 (z) S2 (z)
−1 S1 (z)

}−1
R (z)

]

= Ŵ′−1
T

{

S0 (z)− S1 (z) S2 (z)
−1 S1 (z)

}−1 √
ThG2 (z) . (A8)

Notice that

Ŵ′−1
T

{

S0 (z)− S1 (z) S2 (z)
−1 S1 (z)

}−1 {
S2 (z)− S1 (z) S2 (z)

−1 S3 (z)
}

=
[

1

Th
ŴT
{

S0 (z)− S1 (z) S2 (z)
−1 S1 (z)

}

Ŵ′
T

]−1 [ 1

Th
ŴT
{

S2 (z)− S1 (z) S2 (z)
−1 S3 (z)

}

Ŵ′
T

]

Ŵ′−1
T

= G3 (z)
−1 G4 (z) Ŵ

′−1
T (say). (A9)

Now,

G3 (z) = 1

Th
ŴTS0 (z) Ŵ

′
T −

{

1

Th2
ŴTS1 (z) Ŵ

′
T

}{

1

Th3
ŴTS2 (z) Ŵ

′
T

}−1 { 1

Th2
ŴTS1 (z) Ŵ

′
T

}

.

In particular,

1

Th
ŴTS0 (z) Ŵ

′
T = 1

T

T
∑

t=1

ŴTxt (ŴTxt)
′ E

{

1

h
K

(

zt − z

h

)}

+ 1

Th

T
∑

t=1

ŴTxt (ŴTxt)
′ Kt (z) .

It can be shown in a similar manner to the proof of Lemma A.3 of Sun et al. (2011) that
(

1/
√
Th
)

∑T
t=1 ŴTxt (ŴTxt)

′ Kt (z) = Op (1). Therefore,

1

Th
ŴTS0 (z) Ŵ

′
T =

{∫ 1

0
J (r) J (r)′ dr + op (1)

}

{

f (z)+ o (1)
}

+ Op

{

(Th)−1/2
}

= f (z)

∫ 1

0
J (r) J (r)′ dr + op (1) .

A similar argument establishes that

1

Th3
ŴTS2 (z) Ŵ

′
T = µ21 (K) f (z)

∫ 1

0
J (r) J (r)′ dr + op (1) .

Symmetry of K (·) implies that
(

T1/2h3/2
)−1

ŴTS1 (z) Ŵ
′
T = Op (1). Hence,

G3 (z) = f (z)

∫ 1

0
J (r) J (r)′ dr + op (1) . (A10)



ECONOMETRIC REVIEWS 529

Similarly, it can be shown that
(

T1/2h7/2
)−1

ŴTS3 (z) Ŵ
′
T = Op (1), and thus

h−2G4 (z) = 1

Th3
ŴTS2 (z) Ŵ

′
T −

{

1

Th2
ŴTS1 (z) Ŵ

′
T

}{

1

Th3
ŴTS2 (z) Ŵ

′
T

}−1 { 1

Th4
ŴTS3 (z) Ŵ

′
T

}

= µ21 (K) f (z)

∫ 1

0
J (r) J (r)′ dr + op (1) . (A11)

Furthermore, it is not hard to see that

Ŵ′−1
T

{

S0 (z)− S1 (z) S2 (z)
−1 S1 (z)

}−1
R (z) = G3 (z)

−1

{

1

Th
ŴTR (z) Ŵ

′
T

}

Ŵ′−1
T , (A12)

where

1

Th
ŴTR (z) Ŵ

′
T = op

(

h2
)

. (A13)

It follows from (A9), (A11), (A12), and (A13) that the le�-hand side of (A8) reduces to

√
ThŴ′−1

T

{

β̂ (z)− β (z)− 1

2
µ21 (K) β

(2) (z) h2 + op
(

h2
)

}

. (A14)

On the other hand, the right-hand side of (A8) becomes G3 (z)
−1
(

1/
√
Th
)

ŴTG2 (z). Notice that

1√
Th
ŴTG2 (z) = 1√

Th

T
∑

t=1

ŴTxtK

(

zt − z

h

)

u1t − 1√
Th

T
∑

t=1

ŴTxt (zt − z)K

(

zt − z

h

)

u1t ,

where the second term is at most Op (h). Then, by Lemma A1,

1√
Th
ŴTG2 (z) =

∫ 1

0
J (r) dBU(z) (r)+ op (1) .

Therefore,

G3 (z)
−1 1√

Th
ŴTG2 (z) ⇒

{

f (z)

∫ 1

0
J (r) J (r)′ dr

}−1 ∫ 1

0
J (r) dBU(z) (r)

d= MN

(

0,
µ02 (K) σ11

f (z)

{∫ 1

0
J (r) J (r)′ dr

}−1
)

. (A15)

Finally, combining (A14) and (A15) with (A8) establishes the distributional theory.

A.3. Proof of Theorem 2.
Notice thatW1 (zi) can be rewritten as

[√
ThŴ′−1

T

{

β̂ (zi)− β̂OLS

}]′


µ02 (K) σ̂11

{

1

Th

T
∑

t=1

(ŴTxt) (ŴTxt)
′ K

(

zt − z

h

)

}−1




−1

×
[√

ThŴ′−1
T

{

β̂ (zi)− β̂OLS

}]

.

It can be shown that σ̂11
p→ σ11, and thus

µ02 (K) σ̂11

{

1

Th

T
∑

t=1

(ŴTxt) (ŴTxt)
′ K

(

zt − z

h

)

}−1

⇒ µ02 (K) σ11

f (z)

{∫ 1

0
J (r) J (r)′ dr

}−1

= 6 (z) .
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Therefore, W1 (zi) ⇒ χ2 (d). Moreover, W1 (z1) , . . . ,W1

(

zq
)

are asymptotically independent χ2

random variables, and thus the stated result immediately follows.

A.4. Proof of Lemma 2.
A straightforward calculation yields

R∗ =
[

0
R∗
1

]

∈
{

R
d×(d1−1) if p1 = 0

R
d×d1 if p1 > 0

,

where

R∗
1 := −

(

5∗′
2 �225

∗
2

)−1/2
5∗′

2 51R1 ∈
{

R
(d2−m2)×(d1−1) if p1 = 0

R
(d2−m2)×d1 if p1 > 0

.

Invoking d1 = m1 and using d2 ≥ m, we have d2 − m2 ≥ m1 = d1 > d1 − 1. Therefore, R∗ is of full
column rank regardless of p1, and thus

rank
(

R∗) = rank (R) =
{

d1 − 1 if p1 = 0
d1 if p1 > 0

.

A.5. Proof of Theorem 3.
Under H0,

T
√
hR′β̂ (z) = T

√
hR′

{

β̂ (z)− β (z)
}

=
(√

TŴTR
)′ [√

ThŴ′−1
T

{

β̂ (z)− β (z)
}]

. (A16)

By Assumption 3’ and Ŵ′−1
T = O

(

Tpm
)

, Theorem 1 can be now rewritten as

√
ThŴ′−1

T

{

β̂ (z)− β (z)
}

⇒
{

f (z)

∫ 1

0
J (r) J (r)′ dr

}−1 ∫ 1

0
J (r) dBU(z) (r) . (A17)

Substituting (17) and (A17) into (A16) yields

T
√
hR′β̂ (z) ⇒ R∗′

{

f (z)

∫ 1

0
J (r) J (r)′ dr

}−1 ∫ 1

0
J (r) dBU(z) (r)

d= MN
(

0,R∗′6 (z)R∗) . (A18)

On the other hand,

T2h



µ02 (K) σ̂11R
′
{

T
∑

t=1

xtx
′
tK

(

zt − zi

h

)

}−1

R





=
(√

TŴTR
)′


µ02 (K) σ̂11

{

1

Th

T
∑

t=1

(ŴTxt) (ŴTxt)
′ K

(

zt − zi

h

)

}−1




(√
TŴTR

)

⇒ R∗′
[

µ02 (K) σ11

f (z)

{∫ 1

0
J (r) J (r)′ dr

}−1
]

R∗

= R∗′6 (z)R∗. (A19)
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Combining (A18) and (A19) with Lemma 2 gives

W2 (zi) =
{

R′β̂ (zi)
}′


µ02 (K) σ̂11R
′
{

T
∑

t=1

xtx
′
tK

(

zt − z

h

)

}−1

R





−1
{

R′β̂ (zi)
}

⇒
{

χ2 (d1 − 1) if p1 = 0
χ2 (d1) if p1 > 0

.

BecauseW2 (z1) , . . . ,W2

(

zq
)

are asymptotically independent χ2 random variables, the stated result is
immediately established.

Appendix B: PLLR estimation

B.1. The estimator

As an alternative to LL, Banerjee and Pitarakis (2012, 2014) advocate PLLR to estimate β (·) in (1)
consistently. To implement PLLR, assume that the support of f (z) is a compact intervalH =

[

HL,HU
]

,

−∞ < HL < HU < ∞. Then,H is partitioned into N disjoint bins
{

Hj

}N

j=1
with an equal length ℓ, i.e.,

Hj =
(

HL
j ,H

U
j

]

=
(

HL +
(

j − 1
)

ℓ,HL + jℓ
]

. Using the observations
{

(

yt , x
′
2t , zt

)′}T

t=1
for all zt ∈ Hj,

the levels regression (1) is estimated as a linear one of yt on xt by OLS. The OLS estimator constitutes the
PLLR estimator of β (z) for a design point z as long as z also falls into Hj. Formally, the PLLR estimator

β̃ (z) is de�ned as

β̃ (z) = argmin
θ

N
∑

j=1

T
∑

t=1

(

yt − x′
tθ
)2
1j (zt) 1j (z) =

N
∑

j=1

{

T
∑

t=1

xtx
′
t1j (zt)

}−1 T
∑

t=1

xtyt1j (zt) 1j (z) ,

where 1j (·) = 1
(

· ∈ Hj

)

.

B.2. Distributional theory

To derive the asymptotic properties of β̃ (z), Assumptions 3 and 4 are modi�ed as follows.

Assumption 3”. The nonnegative sequence of bin length ℓ = ℓT satis�es ℓ → 0 and Tℓ → ∞ as
T → ∞.

Assumption 4”. H, the support of f (z), is compact, and f (z) is �rst-order Lipschitz continuous overH.
In addition, supz0,zs,s fs (z0, zs) < ∞ and f (z) > 0 for a given design point z.

Assumption 3” suggests that the bin length ℓ in PLLR plays a similar role to the bandwidth in kernel
smoothing. Di�erentiability of f (z) in Assumption 4 is relaxed to Lipschitz continuity in Assumption
4”, which su�ces for approximating the leading bias term of the PLLR estimator. Boundedness of f from
above (or existence of max f (z), to be precise) is ensured by compactness of H and continuity of f .

The nondegenerate distributional theory on β̃ (z) is provided below. The proof is similar to the one
of Theorem 1 and thus omitted.

Theorem B1. If Assumptions 1, 3”, 4”, 5, and 6 hold, then

√
TℓŴ′−1

T

{

β̃ (z)− β (z)− B (z) ℓ+ op (ℓ)
}

⇒ MN (0,V (z)) ,
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where

B (z) :=
N
∑

j=1

(

HU
j − z

ℓ
− 1

2

)

β(1) (z) 1j (z) , V (z) :=
σ11

f (z)

{∫ 1

0
J (r) J (r)′ dr

}−1

,

and
(

HU
j − z

)

/ℓ ∈ [0, 1].

Remark B1. Banerjee and Pitarakis (2012, 2014) allow zt and ut to be correlated. As a consequence, they
derive only the convergence rate of β̃ (z). In contrast, we again attain a mixed-normal limit without a
second-order bias correction in the presence of endogenous integrated regressors. Moreover, the leading
bias term isO (ℓ) rather thanO

(

ℓ2
)

. This comes from the fact that the “kernel” 1j (·) is asymmetric with
respect to the design point z unless it is the midpoint of the bin.
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