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ABSTRACT KEYWORDS

In this article, we extend the functional-coefficient cointegration model (FCCM) Cointegration; deterministic
to the cases in which nonstationary regressors contain both stochastic and trend; endogenous regressor;
deterministic trends. A nondegenerate distributional theory on the local linear kernel smoothing; local
(LL) regression smoother of the FCCM is explored. It is demonstrated that even "€ r?grfss'ﬂ.smomhmg;
when integrated regressors are endogenous, the limiting distribution is the 2;2::;2?] gfi?]d'gleear

same as if they were exogenous. Finite-sample performance of the LL estimator

is investigated via Monte Carlo simulations in comparison with an alternative JEL CLASSIFICATION
estimation method. As an application of the FCCM, electricity demand analysis C13;C14; €22

in lllinois is considered.

1. Introduction

Since the seminal work by Engle and Granger (1987), cointegration models have provided an appealing
framework for characterizing long-term equilibrium relationships among economic variables. However,
empirical works often report weak evidence of cointegration. To account for this phenomenon, many
authors have made a variety of attempts to patch up cointegrating regressions. One such attempt is to
model the exact quantitative relationships among economic variables as gradually varying, rather than
constant, over a long time horizon. In particular, Xiao (2009) incorporated a time-varying nature into
the cointegrating regression model by assuming that the cointegrating vector is an unknown smooth
function of another stationary variable. As a result, the model can be viewed as a variant of functional-
coeflicient models or varying-coefficient models (VCMs). In this sense, Xiao’s (2009) model is called the
functional-coefficient cointegration model (FCCM).

This article extends Xiao’s (2009) FCCM to the cases in which nonstationary regressors contain both
stochastic and deterministic trends, and establishes asymptotic theories on estimation and inference
in this class of FCCMs. Extending the FCCM in this direction is useful for the following reasons.
First, many macroeconomic variables that are commonly described as I(1) (e.g., income, output,
consumption, price level, and money stock) are actually best regarded as “I(1) with drift” (West, 1988;
Hansen, 1992a,b) or thought to be generated by “random walks” using innovations with nonzero means
(Granger, 2012). Second, Hansen (1992a) demonstrates that when nonstationary regressors that enter
constant-coefficient cointegration models appear to possess both stochastic and deterministic trends,
it is better, from the viewpoint of precision in estimation, to estimate the models without detrending
the regressors. There are also empirical applications in which cointegrating regressions are estimated
without detrending: examples include Engel’s law (Ogaki, 1992), money demand (Stock and Watson,
1993), and intertemporal elasticity of substitution of nondurable consumption (Ogaki and Park, 1997),
to name a few.

Because the FCCM studied in this article can be viewed as a varying-coeflicient version of (or a “time-
varying” analog to) Hansen’s (1992a,b) models, we naturally attempt to establish distributional theories
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on estimation and inference of the model without detrending. This article adopts kernel smoothing to
estimate functional-coefficients in the FCCM consistently. Particular attention is paid to local linear
(LL) regression smoothing. As is the case with linear regressions with deterministic trends, the LL
estimator has a degenerate joint limiting distribution due to multiple convergence rates of coeflicient
estimates. Then, a nondegenerate distributional theory for LL estimation is explored. The nondegenerate
limiting distribution is shown to be mixed-normal. It is worth emphasizing that the limit theory remains
unchanged, regardless of whether regressors are exogenous or endogenous. In other words, the second-
order effect does not arise, unlike the least-squares estimation for constant-coeflicient cointegrating
regressions with endogenous regressors.

We also demonstrate that the convergence rate of the estimator of the cointegrating vector depends
crucially on the model specification. For instance, when the limit process of regressors contains at least
one stochastic trend, LL estimators of the cointegrating vector and coefficients on deterministic trends
have the same Th'/? convergence rate, where T and h are the sample size and bandwidth, respectively.
The super-consistent nonparametric rate has been already uncovered in the literature; see Juhl (2005),
Cai et al. (2009) and Xiao (2009). In contrast, when the limit process consists only of deterministic
components, the convergence rate of the LL estimator for the cointegrating vector attains no slower than
T3/2h1/2, To implement LL estimation, inspired by Ruppert et al. (1995), we propose a solve-the-equation
plug-in bandwidth choice rule. This type of implementation method is developed for the first time in
the literature on VCMs, to the best of our knowledge.

This article contributes to the literature on VCMs in two respects. First, while recently research
directions on VCMs have shifted toward those with nonstationary regressors, the assumption that the
regressors contain only stochastic trends has been maintained so far; see Juhl (2005), Cai et al. (2009) and
Xiao (2009), for instance. This article can be classified as a complement to these earlier works in the sense
that it studies estimation and inference of VCMs including I(1) regressors with trends. Second, several
authors investigate consistency of local constant (LC) estimation for VCMs that includes deterministic
trends as regressors. For example, Liang and Li (2012) demonstrate that LC estimation for VCMs with
stationary regressors and a linear trend is inconsistent, and Li and Li (2013) establish that LC estimation
for VCMs with unit-root nonstationary regressors and a linear trend turns out to be consistent. It can be
shown that LC estimation of the FCCM considered in this article is still consistent.

The remainder of the article is organized as follows. Section 2 describes the FCCM that can
incorporate deterministic trends. In Section 3, a nondegenerate distributional theory on LL estimation
is developed. Section 4 delivers component-wise convergence rates of the LL estimator. Based on the
results, a plug-in bandwidth choice method is proposed. Section 5 studies hypothesis testing. Particular
focuses are on testing the null of constant coefficients and that of no trends in the cointegrating
regression. In Section 6, finite-sample performance of the LL estimator is examined via Monte Carlo
simulations. Section 7 applies the FCCM for electricity demand analysis in the State of Illinois. Section 8
concludes. Appendices provide all proofs and a brief description of the piecewise local linear regression
(PLLR) principle, which is proposed by Banerjee and Pitarakis (2012, 2014) as an alternative to kernel
estimation. Additionally, an online supplement that summarizes simulation results is made available on
the first author’s webpage.

This article adopts the following notational conventions: the symbol “=” signifies weak convergence;

«

LN equality in distribution; | -] denotes the integer part; BM (2) is the vector Brownian motion with
covariance matrix €2; ® is used to represent the tensor (or Kronecker) product; 1 (-) is an indicator
function; w;j (f) denotes the integral u;; (f) = [ t'fl (u) du; and g(i) (x) is the ith-order derivative
of g (x), i.e, g (x) = dig(x)/dx'. For two random variables X and Y, “X 1 Y” reads that X is
stochastically independent of Y. The LP-norm for a random matrix X = (x,]) is defined as || X]|| =

1/p
E (Zl j |x,~j‘p ) , where || X|| = ||X]|, for notational simplicity. Lastly, the expression ‘Xt ~ Y7’ is used

whenever X7/Yr — las T — oc.
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2. The FCCM when regressors are I(1) with trends

The FCCM considered in this article largely follows the one in Hansen (1992b). We shall be working on
a (dy + 2)-dimensional time series (yt,x/Zt, z,)/ € R x R%2 x R, where the scalar variable z; is assumed
to be stationary. Let the random variable y; be generated by a cointegrating regression

yi = x,B () + u1r == X1, 81 (20) + %y B2 (20) + ure (1

/. .
where the regressor x; = (x/,,x},)  is determined by

x1t = Kits
Kot = ik + Takos + Sa,
ASyt = uyy,

and u; == (u1 ”/2t)/ € R x R®% is a zero-mean stationary process, the statistical property of which is
described in Assumption 1 below. The system is initialized at time 0, and the initial value yo may be any
random number.

We now present the definition of k; = (K/,, /Zt)/. It is an m-dimensional vector of powers of time
index t, and it can be further partitioned as

ko= (0 m) = (0 m ) (o, enY ) = (K k)

so that dim (ki;) = mj and dim (ky;) = m — m; := m;. The exponents pj, j = 1,...,m are assumed
to be known integers that satisfy 0 < p; < --- < py,. Observe that when p; = 0, the levels regression
(1) contains an intercept term. We assume that whenever k; contains a constant, it is an element of
ki; and thus enters (1). In addition, the vectors of “trends” kj; and ky; (here we loosely speak of an
intercept as a trend term) can be viewed as those of included and excluded trends, respectively, in the
sense that while the former directly enters the cointegrating regression, the latter governs the behavior
of the integrated regressor xy; but is not included in the regression. Furthermore, following Hansen
(1992a), we can consider two special cases of the regression model (1), namely, the unrestricted FCCM
(FCCM-U) and the restricted FCCM (FCCM-R). These can be specified by setting m; = 0 (i.e., FCCM
with all trends included) and m; = 0 (i.e., FCCM with all trends excluded), respectively.

For notational convenience, we write d; = mj and d = d; + d hereinafter. We may use d; and
m; interchangeably from statement to statement. Accordingly, the coefficient matrices in xy; are Iy €
R%*d1 and 1, € RA2xm2,

The FCCM (1) is motivated because in many macroeconomic applications the integrated regressor
xy¢ can be described more suitably as “I(1) with drift’, as stated in West (1988) and Hansen (1992a,b).
Even if there is no deterministic trend in the system, it is a common practice to include an intercept term
in the cointegrating regression. In most applications, m tends to be small. Typical choices of k; would
therefore include 1, t, (1, t), (t, tz), and (1, t, tz).

A notable difference of our system from the one in Hansen (1992b) is that while the integrated
regressor xy; includes deterministic trends, the cointegrating vector in our system is not constant but
a functional controlled by a stationary variable z;. Observe that z; plays a similar role to the threshold
variable in threshold autoregressive (TAR) models or the transition variable in smooth transition
autoregressive (STAR) models. From the viewpoint that the coefficient vector B (z;) is assumed to vary
smoothly with z; as in STAR, rather than in an abrupt manner as in TAR, we may also refer to z;
as the transition variable. Following the convention in the TAR and STAR literature and avoiding the
curse of dimensionality, we assume that the transition variable is a scalar. An extension to a vector z; is
straightforward, but for simplicity we do not pursue this. In the closely related literature, Cai et al. (2009)
and Xiao (2009) consider a similar system to ours. However, in each of these two articles integrated
regressors are assumed to be free of deterministic trends (i.e., d; = 0 and I1; = I, = 0 are maintained).
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3. Estimation theory
3.1. LL estimation

To estimate the functional-coeflicient 8 (-) in (1) consistently, we adopt kernel smoothing. In particular,
LL estimation is known to possess appealing properties such as high statistical efficiency in an asymptotic
minimax sense, design-adaptation, and automatic boundary correction. For a given design point z,

T
T observations {(yt,x’zp Zr)/ } ’ the kernel function K (-), and the bandwidth parameter A, the LL
=

estimator of B (z) is defined as 3 (z) in
[ﬁ@]
BV ()
T

Zt — 2
= —0lx — (2t — 2)Olx: ) K
= arg é?le?)t {ye — 0x — (2 — 2) O1x:} < - )

T -l
_ Xt , _ ’ Zr —Z Zr —Z
-5 le Jor ok ()] g e (5,

t

In fact, the LL estimator 3 (z) admits the concise expression

@ =[(%@ -2 @) {Th@ -5 @%@ ' T @), @)

where

r T
Si(2) == thx; (z —2)'K (Zt ; Z) and Tj(z) := th% (zt—2)'K <—Zt ; Z)

t=1 t=1

fori > 0.

3.2. Regularity conditions

To describe the convergence properties on B (2), we make the following assumptions.

Assumption 1. The random sequence v, := (u}, z,)/ is a strictly stationary, strong mixing process with
the mixing coefficient « (k) of size —§y/ (§ — y) and ||v¢||s < oo for some § > y > 2. Also, u; satisfies

E(u;) = 0, and its long-run variance @ = >.2° _E (utu

i——o0 ) > 0. Moreover, v; satisfies one of the

t=j
following: (i) z;(:= ¢—j for some j > 1) is predetermined, u; is independent and identically distributed
(iid), and uy; L Fi_1, where F; = o (v, Vi—1, .. .) is the smallest o-field containing current and past

I .. /
Vp o= (u/t, §t) ; (i) uyy L (u/zs,zs) , Vi, s; or (iii) z; L ug, Vi, s.

Assumption 2. The kernel function K (-) is a symmetric, continuous probability density function with
support [—1,1].

Assumption 3. The nonnegative sequence of bandwidth & = hy satisfies h — 0 and Th — o0 as
T — oo.

Assumption 4. f (z) (the marginal density of z;) and f; (20, z;) (the joint density of (z, z;) for s > 1)
satisfy sup, f (z) < oo and SUP,, 7.6 fs (z0,25) < oo. In addition, f (2) is continuously differentiable with

a uniformly bounded derivative, and f (z) > 0 for a given design point z.

Assumption 5. B (z) is twice continuously differentiable for all z € R.
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Assumption 6. Each column of I1; contains a nonzero element, and rank (IT,) = my < d,.

Assumption 1 is very similar to the one in the literature on unit-root TAR models (e.g., Caner and
Hansen, 2001, Assumption 2) or threshold cointegration models (e.g., Gonzalo and Pitarakis, 2006,
Assumptions A1-A3 and A5). It follows from this assumption that the elements of Sy; are not mutually
cointegrated. The mixing condition is the same as the one in Assumption 1 of Hansen (1992c), which
in turn establishes the following functional central limit theorem (FCLT) for the partial sum process

S = (1) = Ly

1 _ L[ Sim } [ Bs, (1) ] . d
ﬁSLm = JT [ SaL1v) = By, (0 |~ Bs(r) =BM (2), re][0,1],

where 2 can be partitioned as

a=| o %
Q1 Q2

Furthermore, condition (i) in Assumption 1 is commonly imposed in the aforementioned articles as well
as in Juhl (2005). Condition (ii) is taken from Xiao (2009, Assumption A). These conditions allow for
standard choices of the transition variable in STAR such as z; = xp4-1) — X24—1-j1 Or 2t = Axpj)
for some j > 1, where x5, the Ith element of x5, is assumed to have up to a linear trend. Also
note that while €,; = 0 under condition (ii), conditions (i) and (iii) each allow for endogeneity in
the cointegrating regression (1) so that €2,; # 0 in general. However, unlike least-squares estimation
of constant-coeflicient cointegrating regressions, local averaging does not cause the so-called second-
order effect; see Remark 1 below for discussion. In their functional-coefficient model with integrated
regressors, Sun et al. (2011) do not even assume the independence of z; and u;, and derive a nonstandard
convergence result. Because our aim is to develop a mixed-normal limit theorem for standard inference,
the independence assumption is maintained throughout.

Assumptions 2-5 are standard in the literature on kernel regression. The assumption of the compact
support in Assumption 2 is made solely for brevity of the exposition. It can be relaxed to allow for
kernels with support on the entire real line, at the expense of lengthier proofs. Lastly, the condition
on IT; in Assumption 6 restates that the integrated regressor x» contains a full set of included trends kj;.
While Theorem 1 below holds even when IT; = 0 and nonetheless the regression contains deterministic
trends, the condition plays a key role in determining the convergence rate of each component of f ();
see Section 4 for details. The rank condition in Assumption 6 is also required for the asymptotic result,
as in Hansen (1992b). The assumption also implies that the number of excluded trends is small relative
to the number of integrated regressors.

3.3. Anondegenerate distributional theory

To deliver the distributional theory on f (z), we need to derive the multivariate invariance principle
including the kernel-weighted partial sum process. Following Xiao (2009), define

s (7)o (557

For K, (-), let the kernel-weighted partial sum process be U; (z) := Zt K. (2) u1s. Then, we have the

s=1=xs
I

following multivariate invariance principle for (S}, U; (2))

Lemma 1. If Assumptions 1-4 hold, then

Ls
7oL [ Bs(r) ] d
[ 75U () } = | Buw () BM{Qu (2)}, rel[0,1],
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where (Bs (n',Buw) (r))/ is a (dy + 2)-dimensional Brownian motion with covariance matrix

Q 0
Qu(2) = [ 0 woz (K)oiif (2) ]

ando;; = E (u%t)

It is well known that when the regressors have deterministic trends in a constant-coefficient cointe-
grating regression, or when we run a linear regression with deterministic trends as a part of regressors,
the joint limiting distribution of the least-squares estimators becomes degenerate. Our FCCM is not
free of this issue, either. Therefore, we adopt a key trick employed in Hansen (1992a,b) to establish a
nondegenerate asymptotic result in LL estimation. Let Dy := diag {T?*, ..., T?}. Then, as shown in
Hansen (1992a, p. 90),

Dk — k() = (rpl,...,rp’”)/ (3)

uniformly over r € [0, 1], where 00=1 by convention. Again, for notational convenience, Dy and k (r)
are partitioned as Dy := diag {Dy7, Dor} = diag {diag {T?!,...,TPm },diag {TPm+D, ..., TPm}1, and

k(r) = (ky (1)  ka (1)) = ((rpl, L) (o ,er)/)/.

We consider the linear transformation of the partial sum process x| 7| using a d x d standardizing

matrix
—1 1
I'r= Dir 0 — Dir 0
Dir Ty ~Torlly Tor |7

where

—1 -1
o = D,y (H/ZHZ) II[/ZZ
T2 (13 Qo 113) ™2 Ty

and the matrix IT5 € R%*(©=m2) spans the null space of IT,. Observe that IT} annihilates ky;, the vector
of excluded deterministic trends, from x,;. Then, it is straightforward to see that

ky (r)
Crx\m) = J(r) := ko (1) , relo1], (4)
Wa,—m, (1)
where W, m, (r) = (TT¥'Q211%) "2 T1¥'B; (r) £ BM (I, my)-
Additionally, by Lemma A2 of Phillips and Hansen (1990), J (r) is a full-ranked process in the sense
that fol J(r)] (r)' dr > 0almost surely. This fact and the weak convergence result (4) jointly demonstrate
that I'r is an appropriate weighting matrix for x;. We can also see from (4) that the d-dimensional process
x; is asymptotically dominated by the d;-dimensional trend process k; (r), the m;-dimensional trend
process k; (r), and the (d, — m,)-dimensional stochastic trend Wy, _, (7).
We now present the following nondegenerate distributional theory on the LL estimator of 8 (-) for a
given design point z.

Theorem 1. If Assumptions 1-6 hold, then

VThT) 1{ B(2) — ﬂ(Z)—%le (K)ﬂ<2>(z)h2+op(h2)}:MN(o,mz)), (5)
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where

_ pe Ko | ! 7
2 (2) = f(—z) {/0 J()J(r) d”} .

Remark 1. The limiting distribution remains unchanged, regardless of whether integrated regressors
are exogenous or endogenous in (1). The invariance of the limit theory in the presence of endogeneity
(condition (iii) in Assumption 1) is attributed to the fact that smoothing is made on the range of the
weakly dependent process z;. Weak dependence implies that when we pick the observations z; that
are close to the design point z and take a local average over the range, the selected observations are
not necessarily close to each other in time and thus likely to behave as if they were independent. As a
result, together with the independence between z; and the error process u;, the second-order effect does
not arise even when the regressors are endogenous. Accordingly, there is no need for a second-order
correction in the estimation of our FCCM, unlike the least-squares estimation for constant-coefficient
cointegrating regressions with endogenous regressors.

In the related literature, Sun et al. (2011) allow z; and u, to be correlated, at the expense of nonstandard
asymptotic results. Our aim is to demonstrate that under some regularity conditions, it is possible to
obtain a normal limit theorem without a second-order bias correction even when integrated regressors
are endogenous. Furthermore, it is not hard to see that replacing LL with LC estimation in our FCCM
does not lose consistency, unlike the results in Liang and Li (2012), who study VCMs with stationary
regressors and a linear trend. Extra variability of I(1) components in nonstationary regressors restores
consistency, as explained in Li and Li (2013), who establish consistency for LC estimation of VCMs with
unit-root nonstationary regressors and a linear trend.

Remark 2. We also find similarity of Theorem 1 to Theorem 1 of Hansen (1992a). For a fair com-
parison, we concentrate on the case in which all the regressors in the constant-coefficient cointe-
grating regression are exogenous. Theorem 1 of Hansen (1992a) demonstrates that the least-squares
estimators of unrestricted and restricted regressions, after being standardized suitably in the same

-1
manner as (4), are asymptotically mixed-normal with covariance matrices wy; { fol Ju()Ju () dr}

-1
and w1 { fol JR(N Jr (1) dr] , respectively, for some processes Jy (r) and Jr (r) that contain both
deterministic and stochastic trends. Intuitively, because of kernel smoothing, our result can be obtained
by slowing down the expansion rate from +/T in Theorem 1 of Hansen (1992a) to +/Th, including the

(0] (hz) leading bias term, and replacing w; (the long-run variance of u;;) with {pcoz (K) /f (2) }—times
its instantaneous variance oy;.

4. Component-wise convergence results
4.1. Bias-variance trade-off

Theorem 1 resolves the issue of degeneration in the limiting distribution due to multiple convergence
rates of the components of the LL estimator § (z) by considering the limiting behavior of linear
combinations of the components. However, it is often desirable to know the convergence rate of each
component, especially for implementation purposes of the nonparametric estimators, as described
shortly.

Here we consider the mean integrated squared error (MISE) of ,3 (2). Because ﬁ (2) is multidimen-
sional in general, for a d-dimensional symmetric positive definite weighting matrix W (z), the MISE of
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ﬂA (z) is defined as
mise{f @) = [ & [{B @-p@f walie-s (z)]] d. ©)

For simplicity, we choose W (z) = ¥ (z) I; for some nonnegative scalar weighting function v (-). Then,
(6) reduces to

A~ ~ 2
MISE{ 2] =/Hﬁ(2)—ﬁ(Z)H ¥ (2) dz

-/

where ¥ (+) is assumed to ensure finiteness of integrals.

The integrated squared bias (first) and integrated variance (second) terms in (7) can now be
approximated. It immediately follows from Theorem 1 that the integrated squared bias term can be
approximated by

Bias {ﬁ (z)} ”2 v (2) dz + / tr [Var {3 (z)}] v (2) dz, @)

[ [ias{g @] v @z~ 2 (O [ls? @ vad=om).  ®

To approximate the integrated variance term, we need to examine orders of magnitude in the diagonal
elements of Var [ ,3 (z)} ~ (Th)™! '3 (z) 'r. A simple calculation yields the order of magnitude in

the variance of each component of the LL estimator /§ ).

Table 1 displays that the order of magnitude in each variance term depends on whether d, > mj (i.e.,
at least one stochastic trend remains in the limit process J (1)) or d» = mjy (i.e., J (r) consists only of
deterministic components). In particular, the expression Oy, (rather than O) when d; > mj reflects that

because fol J (r) ] (r) dr is stochastic, T (z) = Oy (1). In contrast, when d, = m;, deterministic trends
asymptotically dominate in the transformed process I'Tx;, and as a consequence, X (z) = O(1). In
addition, multiple convergence rates appear in general. A single convergence rate applies to the estimator
of each coefficient only if (1) satisfies either dy > m3, p1 > 0 (no intercept) or dy = mj, m; = 0 (a special
case of the FCCM-R). Table 1 also reports that when d, > m;, the LL estimator of the cointegrating
vector, as well as the one of the coefficient on each trend, attains a super-consistent nonparametric rate
of Th/2. This convergence rate has been already uncovered in the related literature; see Juhl (2005),
Cai et al. (2009), and Xiao (2009), for instance. In contrast, when d, = my, the LL estimator of the
cointegrating vector reaches a further super-consistent nonparametric rate of 77 e TY2p172 yhich
depends on the slowest element of the excluded trend vector ky; and is no slower than T3/211/2,

Based on (8) and Table 1, Table 2 reports the MISE-optimal bandwidth and optimal MISE of each
component of A (-). The implementation method for LL estimation below is built on this result. As
suggested there, LL estimation in general requires multi-step (or component-wise) smoothing with
different bandwidths employed for different components.

Table 1. Order of magnitude in Var {ﬁk (~)} L k=1,..., d.

Regressor dy > my dy =my
Intercept (if any) Op {(Th)*1 0 {(Th)*1
—1 —1
Trend (if any) Op { <T2h) } 0 { (TZPk-H h) } ,
k=1,..., my

-1 -1
Integrated Regressor Op { (Tzh) } 0 {(sz(nn +1)H h) }
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Table 2. MISE-optimal bandwidth and optimal MISE of 3,( (), k=1,..., d.

dy > my dy=m
Regressor h* MISE* h* MISE*
Intercept (if any) o (r—1/5) 0y (7—4/5) o(r-1/5 o0 (1-4/5
Trend (if any) Op (T*Z/s) Op (T*8/5) 0 {T* (2pc+1)/5 } 0 {T*4(2Pk+1)/5 }
fork=1,..., m
Integrated Regressor Op (T*2/5) Op (T*B/S) 0 HT(ZP(’"””H)/S} 0 {TA(Zp('W“)H)/S}

4.2. An expositional example: West’s (1988) regression with a single “random walk with drift”
regressor

Before introducing an implementation method, it is worth illustrating how component-wise conver-
gence results differ depending on model specifications. West (1988) investigates the linear regression
without detrending when a single regressor obeys a random walk with drift. In our context, an equivalent
model can be obtained by settingm = 2, m; = 1,d, = mp = 1, and (p1,p2) = (0,1) in the levels
regression (1) so that

vt = Bo (z1) + B2 (z¢) X2t + U1y, 9

where x1; = ki = 1, Xy = 7o + w1t + Sy (79, w1 # 0),and ASy; = uy;. Note that (9) is not the
FCCM-R in that an intercept term is included in the regression. Now, by Theorem 1,

| o B -pe - Jum s @i 4o ()} 5 Nz @),

where 8 (z) = (Bo (2), B2 (2))’ and
E(z)——'uOZ(K)G“[ 1 1/2]_1_M02(K)011[ 4 —6:|
) 12 1/3 | ~ f(@ 6 12 |

Note that the limiting distribution is normal, not mixed-normal, because the asymptotic variance is free
of random components. The intercept estimator Sy (z) has a usual nonparametric convergence rate of
~/ Th, whereas the estimator of the cointegrating vector f, (z) has the following asymptotic distribution:

12102 (K) 011)
nif @ )

Observe that the convergence rate of B, (z) is unusually rapid T3/2h'/2, which is analogous to the result
in West (1988).
Including a linear trend ¢ in (9), we can reformulate the regression to the FCCM-U

vt = Bo (z1) + B1 (z0) t + B2 (2¢) X2t + U1z, (10)

Because m; = 2, my = 0, and d, = 1 in this model, it follows from Theorem 1 that

T3/2p1/2 {Bz (2) — B2 (2) — %ml (K) By (2) K + op (hz)} =N (o,

1 0 )
JTh| 0 T =T {3(2)—,3(2)—%le(K)ﬂ(z)(Z)hz—l-op(hz)}=>MN(0,E(Z)),
00 QT

where g (2) = (Bo (2), p1 (2), B2 (2))" and

1 1/2 f(fl W (r) dr
1/2 1/3 o TW(r)dr
fol W (r)dr fol W (r) dr fol W (r)? dr

o2 (K) o1
N(z) = 22/
(2) e
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The result implies that while 30 (z) is asymptotically +/ Th-mixed normal, both Bl (z) and ,32 (2) are
asymptotically T+/h-mixed normal. In particular, the asymptotic distribution of j; (z) reduces to

1 -1
Th'/? {Bz () — 22) — 2121 (K) B2 @) B+, (hz)} = mn o, 2o { f W* (r)? dr} ,
2 Quf @) Jo

where W7 (r) := W (r) — (4 — 61) fol W (s)ds— (12r — 6) fol sW (s) ds is the demeaned and detrended
Brownian motion.

4.3. Asolve-the-equation plug-in bandwidth choice method

The bandwidth choice is always an important practical question in kernel smoothing. Before proceeding,
it is worth noting that except for the cases with d, > m3, p1 > 0, and dy = my, m; = 0, we must make
a multistep LL smoothing for a full estimation of the levels regression (1). For this purpose, we could
extend a two-step smoothing as in Cai et al. (2009). In the first step, we should compute the LL estimator
with the fastest convergence rate. Table 2 suggests that the estimator of the cointegrating vector attains
the fastest rate, regardless of whether d, > m; or dy = m;. Once the LL estimate of the cointegrating
vector is obtained, we subtract the estimated part from y; and then compute the LL estimator with the
second fastest convergence rate using the residual, and so on. A detailed discussion is found in Cai et al.
(2009, Section 2.4).

The plug-in approach considered here closely follows the idea in Ruppert et al. (1995, Section 5). Our
bandwidth choice rule can be viewed as a variant of the solve-the-equation plug-in (SP) approach, which
is classified as a second-generation bandwidth selector in Jones et al. (1996). The SP rule originates from
kernel density estimation (Park and Marron, 1990; Sheather and Jones, 1991), and it is also applied to the
long-run variance estimation (Hirukawa, 2010). A noticeable difference in our approach is that while
a nonparametric estimate of the second-order derivative of the quantity of interest (either density or
conditional expectation) plays a key role in the aforementioned articles, our approach fits a polynomial
model to the derivative, as explained shortly. Furthermore, the SP rule is readily applicable to the
implementation of Xiao’s (2009) FCCM with a minor modification.

The SP rule is built on the MISE-optimal bandwidth for the LL estimator of interest. Because the same
convergence rates of the estimators of the coefficients on trends and the cointegrating vector apply when
dy > m;y, we can obtain these LL estimators using a single bandwidth. In light of this, define the selector
matrix S as

[ 0@—1x1 Ta—1 ]/ ifdy > mp, p1 =0
S=1 I ifdy > my, p1 >0 .
[ Od,xdy, 1a, ]/ ifd, = my
For this S and a suitably chosen exponent «, it can be shown that as T — oo, T*I'rS converges to a
nonzero constant matrix S* (say), as in Lemma 2 in Section 5. Specifically, put
1/2 if dz > myp
a= . ,
Pom+1y ifdy = my

and write

1 -1
Tgp=S" {/ ](r)](r)’dr} S*.
0

The next proposition delivers an approximation to the MISE of the LL estimator for selected
coefficients §'B (z) and the MISE-optimal bandwidth. This is a direct outcome from Theorem 1, (7),
(8), and the results in Table 2.
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Proposition 1. If Assumptions 1-6 hold, then MISE ES/ B (z)} can be approximated by

82 @[ v @

X Iz
MISE {s/ﬁ (z)} = lun (K)}Z/

oz (K) o1 (2 )W(Z)

1
4
+W r(Zgp f(z)dz+0<h +m>,

The MISE-optimal bandwidth is

1/5
W= |:M02 (K)on ftr (ES’ﬁ) {1/[ (2 /f (Z)} dZ:| T—Qa+1)/5 11)

{un )P [S8? @) ¥ (2) dz

The right-hand side of (11) contains three unknown quantities, namely, 011, [ || B (2) “ 2 v (2)dz
and [ tr (Z g ﬁ) {w @ /f (z)} dz. We “estimate” (or find proxies of) these quantities in the following
manner.

. T
On oy;. Suppose that h* is known. Then, we have the functional-coefficient estimates { B (z4; h*) ] ,

where ,é (+; h) signifies the LL estimate of S (-) using the bandwidth h. A natural estimator of o7, is
61y = 611 (h*), where

T

1 — 2
61 =061 ==Y {un (h)}2 -1y, (12)
T

t=1
i1t (h) = yr — x,B (zi:h), and

T
1
i () = = 3 e (h).
t=1

On [ ||S/,3(2) (2) ||2 ¥ (z) dz. Following Ruppert et al. (1995, p. 1259), put ¥ (z) = f (2) 1 (z € [a, b])

for a prespecified compactinterval [a, b] (— 00 < a < b < 00). Then, a natural estimator of | ”S’ BP (z) ||2

1(z € [a,b])f (2)dzis

N 2
T Z;jzz % Zthl lt (/3:;(2)) lfdz > mz,pl =0
1 Asx(2 2 ~ 2 .
Z 7_' Z lt (/3:;( )> = Z?:l % Zthl lt (,3:;(2)) lfdz > mz,pl >0 , (13)
i t=1 d 1 T ~x2)\2 .
Zi:d1+1 T 2im1 Lo ( By ifd, =my

*(2)

where 1; = 1(z; € [a, b]), and ,éit = ,31.(2) (z; 1*) is an estimate (or a proxy) of ,Bi(z) (z¢t). We can

i=1

wnnd T . n
obtain { { 1.(t2) . } in the following manner. For each i, we regress the LL estimate 8} = B; (z;; h*)
=1

on a pth order polynomial in z;, i.e., ,é; = 25:0 8,]zi + e; for some prespecified p (> 2). Let 3,] be the
least-squares estimate of §;. Then, B;(z) is given by

P .
IBA;;(Z) _ 3;2) (Zt;h*) _ Z] (] _ 1) Sijzlt_z.
=2
On [ tr(Zgp){v (2)/f (2) }dz. Setting ¥ (2) = f(2)1(z € [a,b]) gives [ tr(Zgp){V (2) /f (2)}dz =
-1
tr (Zgp) (b — a). Because it is not hard to see that S 4 may be estimated by T2* 1§’ (ZtT:I xtx;> S,



518 M. HIRUKAWA AND M. SAKUDO

a proxy of [ tr (Sg4) dz can be obtained as

T -1
tr { T2 Tl¢ (Z xtx;) St(b—a). (14)
t=1
Substituting 67, (13), and (14) into (11) establishes the fixed-point problem
1 1/5
Mmuo&ﬁu{ﬂaHy(zid%g) s}w—a)

W= T_(ZOH_I)/S. (15)

(wa (OP /D S 1 (B9

Solving this equation numerically for h* yields the SP bandwidth hsp.

A few issues remain in implementing fixed-point equation (15). First, we must choose the compact
interval [a, b] and the order of polynomial p. Our preliminary Monte Carlo studies indicate that p = 4
works well. On the other hand, the interval [a, b] should depend on the range of the transition variable z;.
If the support of its marginal density is known a priori to be compact (as in PLLR estimation), the interval
should match the support. Additionally, it is often the case that z; takes the form of a percentage change
(e.g., z; is defined as the difference of a log-transformed integrated regressor). In this situation, [a, b] =
[0,1] or [—1, 1] may be a reasonable choice. Second, the right-hand side of (15) is a highly nonlinear
function of #*, and there may be multiple roots. In case of multiple roots, we follow the suggestion in
Park and Marron (1990) and define flsp as the largest root that solves (15).

5. Hypothesis testing

Below we provide a brief discussion on hypothesis testing. Hypothesis tests of interest include testing the
null of parameter constancy and testing the null of no trends in the cointegrating regression. The basic
idea for each testing closely follows Xiao (2009) and Cai and Xiao (2012).

5.1. Testing for parameter constancy

We first study the testing problem for the null of constant coefficients in (1), i.e.,

Hy: B (2) = B.

To test Hy against H; : at least one element of 8 (z) is varying, we may follow the idea of Sun et al. (2008)
and construct an L*-type test statistic. However, their test statistic is built on a somewhat restrictive
assumption on the regression error uy;, which does not admit our Assumption 1(iii). Although it could
be possible to relax the assumption, an extension in this direction is beyond the scope of this article.

Instead, we adopt the approach taken by Xiao (2009) and Cai and Xiao (2012). The test statistic is the
maximum of Wald statistics using /3 (+) on ¢ distinct design points {zl} 1- Observe that under Hy, the
regression model (1) collapses to a usual constant-coeflicient comtegratlng regression

yi = X8 + . (16)

Because the value of 8 is left unspecified, the Wald statistic using the estimator j (z;) requires a consistent
estimator of 8 in (16). What matters is the convergence rate of the estimator, not its efficiency, and thus
we consider the ordinary least squares (OLS) estimator of 8. Given the OLS estimator ﬁOLS and the set
of design points {Zi}iq=1> we consider the Wald statistic

-1

T -1
Wi (@) = B @) — Bous} m«%%me@;ﬂ} {8 @ — Pows}.
t=1

where 0711 is defined in (12).



ECONOMETRIC REVIEWS (&) 519

Because Theorem 1 of Hansen (1992b) implies that JTIT ’T_l (ﬁOLS — ﬂ) = Oy (1), we have
JThr! {B (2) — 30Ls} = VThrj! {B (2) — ,3} +0, (\/ﬁ) = MN (0, % (2)).

A standard argument on kernel smoothing then establishes that {W; (Z,-)}?:1 is a set of mutually
asymptotically independent x* random variables. Define the test statistic as Tj4 := max;<j<q W1 ().
The next theorem refers to the distributional theory on T,.

Theorem 2. If Assumptions 1-6 hold, then T4 = maxi<i<q Xiz (d) under Hy, where X12 d,..., X; (d)
are independent x* random variables with d degrees of freedom.

We can reject Hy if T4 takes a very large value. Because its limiting distribution is free of nuisance
parameters, it is easy to tabulate the critical values. The critical values for the distribution of the
maximum of g independent x? random variables with d degrees of freedom can be obtained by solving
the nonlinear equation {F4 (x)}7 = 1 — & numerically for x, where Fy (x) = Pr {x* (d) < x} is the cdf of
x? distribution with d degrees of freedom, and « is the nominal size of this test. The remaining question
is how to choose the design points {zi}?zl. As in Cai and Xiao (2012, Example 4), we may consider a set
of equally spaced grid points over a prespecified compact interval.

5.2. Testing for no trends in the cointegrating regression

Restricted coeflicient estimation is more efficient than unrestricted estimation, as indicated in Section
4.2, for instance. Accordingly, we next consider the test of an exclusion restriction

Hy:RB(2)=0

against H; : R'B (z) # 0in (1). Specifically, the selector matrix R takes the form of

re| B R&@=D ifp; =0
1o RAxd ifpy >0’

where

R = [0 I ] ifpr=0
Iy, ifpy >0 °

Observe that R selects all coefficients on trends but an intercept in the levels regression (1). The reason
why the exclusion restriction is not imposed on an intercept is that in many applications an intercept is
introduced in cointegrating regressions, whether there may be trends as extra regressors or not.

As in the previous section, the test statistic takes the form of the maximum of Wald statistics. To
deliver the distributional theory of this test statistic, we first strengthen Assumptions 3 and 6 as follows.

Assumption 3’. The nonnegative sequence of bandwidth h = hr satisfies h — 0, Th — o0, and
TP H1p> — 0as T — oo.

Assumption 6’. Each column of IT; contains a nonzero element, rank (IT,) = m;,, and d, > m.

The additional condition “T?»*1h> — 07 in Assumption 3’ makes the leading bias term asymptoti-
cally negligible by undersmoothing. The FCCM-U, for instance, satisfies p,, = 1 so that the bandwidth
for LL shouldbeh = O ( T“"), a € (3/5,1). Moreover, d, > m in Assumption 6’ means that the number
of integrated regressors is at least as many as the number of trends. The condition d, > m establishes
the lemma below, which determines the degrees of freedom in the limiting null distribution of the test
statistic.
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Lemma 2. If Assumption 6’ holds, then
R*:= lim ~/TI'tR (17)
T—o00
is of the same rank as R.

For the set of design points {zi}l-qzl, again the Wald statistic

-1

T -1
W2 () = R @) uoz(K)(}llR’{thx;K(%)} R (KB @)
t=1

is utilized, where 611 is again given in (12). Define the test statistic as Ty := maxi<i<q W2 (z).
The next theorem refers to the distributional theory on Ty,. For the implementation of this test (e.g.,
obtaining critical values and choosing design points), the discussion in the previous section directly
applies.

Theorem 3. If Assumptions 1, 2, 3’, 4, 5, and 6 hold, then

2 .
maxi<j<g X; (d1 —1) ifp1 =0
Tag = =14 ;
2 { max, <i<q X7 (d1) ifp1 >0
under Hy, where X12 )y...s X; (s) are independent x? random variables with s degrees of freedom.

Remark 3. Each of the two tests above is built on the first-order asymptotic theory described in Theorem
1. Asymptotic tests have the advantage of freedom of nuisance parameters in the limiting distributions.
In finite samples, however, we cannot ignore the effect of the second-order bias due to endogenous
regressors and/or serial dependence of the transition variable z;. As a result, relying simply on first-
order approximations to the distributions of test statistics may not provide a satisfactory solution to
inference based on the levels regression (1). As an alternative, we could consider bootstrap-based tests,
which may achieve some finite-sample improvement.

Moreover, in some applications, each test might lead to different conclusions across different choices
of the number of design points q or different sets of design points {Zi}?:y This is due to the fact that
the distributional theory on which Theorems 2 and 3 are grounded is pointwise in z. Then, a referee
suggested that we consider the Wald statistic W; (z) (or W5 (z)) as a process over the whole range of
z and conduct inference in a similar manner to the sup-Wald test for structural breaks. We find this
extension appealing, and it would be worthwhile to investigate the properties of test statistics based on
the Wald process as a future research topic.

6. Finite-sample performance
6.1. Setup

Our primary focus is on the precision of LL estimators of functional coeflicients in finite samples.
Recently Banerjee and Pitarakis (2012, 2014) have applied PLLR estimation (Banerjee, 2007) for esti-
mating the FCCM with a single pure I(1) regressor and reported that PLLR estimators often outperform
kernel estimators in finite samples. From this viewpoint, our Monte Carlo study compares finite-sample
performance of LL and PLLR. Additionally, in Appendix B we develop the distributional theory on PLLR
estimation when multiple I(1) regressors with trends enter the FCCM.

We generate the data { (y1, X1, ) }thl € R x R x R from two regression specifications (9) and (10)
with the initial value S0 = 0 and 7y = 77 = 0.3. The error process u; = (u1s, uz;) obeys the VAR(1)



ECONOMETRIC REVIEWS (&) 521

model

o1

=<I>ut1—|—et,d>=|: 0

8 } é11 € {0.0,£0.4, 208},
where

id
a=| U MNov), v=| ! | o €(00,404,408).
€ o1 1
A maintained assumption on PLLR is that the marginal density of the transition variable z; is compact.
In order for z; to have a marginal density with compact support, we first generate z; from the AR(1)

model zj = pz | + w;, p € {0.0,10.4, £0.8}, where w; iid N (0,2) is independent of €;. Then, z} is
transformed to z; = 2® (zf) — 1, where ® (-) is the cdf of N (0,1).! Observe that z; € [—1,1]. The
functional coefficients are set equal to By (z) = B1 (z) = B2 (z) = B (), where B (z) takes the following
functional forms. The following functional forms B-D are taken from Banerjee and Pitarakis (2012):

A:B(z) =1.

B: B (z) = 0.3 — 0.5exp (—1.252%).

C:B(2) = 0.5/ {1+ exp (—42)} — 0.75.

D: B (z) = 0.25exp (—2%).
For each combination of the regression and the functional coefficient, 1,000 Monte Carlo samples
with the sample size T = 100 or 250 are simulated. For each Monte Carlo sample, the functional-
coefficient (or the cointegrating vector) B (z) is estimated by LL and PLLR. LL estimation employs
the Epanechnikov kernel K (1) = (3/4) (1 — u*) 1 (Ju| < 1). The bandwidth is chosen via the solve-
the-equation plug-in method in Section 4. This bandwidth is denoted by SP, and the LL estimator using
the bandwidth is referred to as LL-SP. To compute the bandwidth, we set the compact interval and the
order of the polynomial equal to [a,b] = [—1,1] and p = 4 so that the interval matches the support
of the marginal density of z;. Often a very simple bandwidth formula is applied in the literature (e.g.,
Juhl, 2005; Xiao, 2009). In light of this, a “rule-of-thumb” bandwidth is also employed. Specifically,
hROT,R = 26,T73/% for (9) and hROT U = 26,T%/5 for (10) are considered, where &, is the sample
standard deviation of observations {z;}L_,. Each bandwidth is denoted by ROT, and the LL estimator
using the bandwidth is referred to as LL-ROT. Our aim is to compare the gain in accuracy from the SP
bandwidth with the one from the ROT bandwidth. It is not hard to see that for PLLR estimation, the
MISE-optimal bin length for ﬁz (2) fordy, > myis€* = O (T_z/ 3), and thus we set the number of
bins equal to N = 10| T%3/10] so that £ = O (T_Z/ 3) is preserved.? This rule roughly mimics the
bin numbers chosen in Banerjee and Pitarakis (2012, 2014). In our setup, N = 20 (or £ = 0.100) for
T =100 and N = 30 (or £ = 0.067) for T = 250.

As in Banerjee and Pitarakis (2012, 2014), midpoints of the bins are used as the design points for both

LL and PLLR. For a nonparametric estimator B (z), we employ the root mean squared error (RMSE)

N
RMSE{B (2)} = IZ {B2(z) — B2 ()’
j=1

N
as its performance measure, where the design points are {zj }]Zil = {(I—IJL + HJU) / 2]' R Medians of
]:

RMSEs over 1,000 replications are taken and reported for performance evaluation.

'It appears that the dependent structure of z;' is well transmitted to z;. Averages of the first-order sample autocorrelations of
z¢ over 1,000 replications are typically —0.74, —0.37, —0.00, 0.36, 0.73 for p = —0.8, —0.4, 0.0, 0.4, 0.8, respectively.

2|t may not be a good idea to apply the MISE-optimal bin length for §; () for dy = m, (ﬁ* =0 (T*1 )) to the regression

(9). If we put N = T and z; is uniformly distributed, then the number of observations falling into each bin will be only one
on average.
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6.2. Results

Simulation results can be found on the first author’s webpage (http://www.setsunan.ac.jp/~hirukawa/).
For each combination of B (z), the sample size, and the estimation method, the estimate from the
restricted model (9) tends to yield a smaller RMSE than the one from the unrestricted model (10). This
reflects a slower convergence rate and a stochastic component in the asymptotic variance of the estimator
for the latter. A closer examination also reveals that as p or ¢;; moves away from zero, the performance
measure becomes larger, often drastically. This may suggest necessity for an alternative approximation
to the estimator in the presence of a persistent regression error or transition variable.

Results also indicate that in most cases, LL-SP performs better than LL-ROT and PLLR. Improvement
in the performance measure by LL-SP is often substantial. To be more precise, LL-SP performs best for
all restricted models and for most unrestricted models. Even though it is outperformed for T = 100,
it performs best for T = 250 except in only a few examples. In other words, given typical numbers of
observations for cointegration analysis, the SP bandwidth is expected to work reasonably well.

In contrast, the performance of PLLR is typically as good as that of LL-ROT at best, as opposed
to the results provided in Banerjee and Pitarakis (2012, 2014). Additionally, PLLR exhibits substantial
variability, and its instability is not resolved even after the sample size is increased. We may attribute
the contradictory PLLR results between Banerjee and Pitarakis (2012, 2014) and us to the following
two aspects. First, they estimate Xiaos (2009) version of the FCCM using a higher-order kernel
and/or an ad hoc bandwidth including ROT and the reciprocal of the number of bins. These may be
disadvantages to the kernel estimator because nonparametric estimators employing higher-order kernels
tend to yield unstable estimates in finite samples and finite-sample behavior of kernel estimators is also
affected considerably by bandwidth selectors. Second, they consider much larger sample sizes (e.g.,
T = 500, 1,000, 2,000). PLLR appears to work well in such a data-rich environment, whereas our Monte
Carlo design adopts typical sample sizes for cointegration analysis using low-frequency data. It could be
the case that PLLR fits well with medium- to high-frequency data.

7. An application: Estimating electricity demand functions in the state of lllinois

We now apply the FCCM to electricity demand analysis in Illinois. Our primary focus is how price or
income elasticity of electricity demand varies with the level of temperature. For this purpose, we specify
the FCCM to be estimated as

log g; = Po (z) + B1 (z0) t + B2 (z) log py + B3 (21) log yr + uy, (18)

where, with a slight abuse of notation, g; and p; are the consumption and price of electricity, y; is
income or output, and z; is temperature. We work with 288 monthly observations from January 1990
to December 2013. For each of the end-use sectors in Illinois — namely, the residential, commercial,
and industrial sectors — electricity consumption and price data are obtained from the US Energy
Information Administration. Electricity prices are then converted into relative prices by dividing them
by the consumer price index of energy in the Chicago—Gary-Kenosha area. Real disposable personal
income and industrial production index are chosen as measures of income (for the residential sector)
and output (for the commercial and industrial sectors), respectively.> These are taken from the Federal
Reserve Economic Data at the Federal Reserve Bank of St. Louis. Finally, CustomWeather provides
monthly average temperature in Illinois. Table 3 reports the results of augmented Dickey-Fuller (ADF)
unit root tests and Kwiatkowski et al. (1992) (KPSS) stationarity tests. We can find evidence of stationarity
in z¢. The ADF test fails to reject the null of a unit root after detrending for most of the remaining
variables; the only exception is log p; for the commercial sector. Moreover, results from the KPSS tests

3Because there is no statewide monthly income or output available, we employ nationwide income and output measures by
assuming thatincome and output levels in lllinois are constant proportions of the corresponding nationwide ones over the
entire sample period.
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Table 3. Results of unit root and stationarity tests.
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ADF KPSS
Variable demeaned detrended level stationary trend stationary

log gt Residential —1.578 —3.423 2.306x% 0.287%
Commercial —1.606 —1.145 2.197x% 0.436%

Industrial —2.128 —2.424 1.135x% 0.100
log pt Residential —0.586 —2977 2.191% 0.209x%
Commercial —0.510 —3.763% 2.274% 0.181x%

Industrial —1.022 —3.139 2.055x% 0.109
log yt Disposable Income —2.263 —0.041 2.473% 0.527x
Industrial Production —2.167 —1.956 1.897 0.510%

Zt Temperature —3.118x% —3.138 0.131 0.058

Critical Value (5%) —2.879 —3.429 0.463 0.146

The ADF tests are based on regression with 12 lags. The Bartlett kernel and the Newey and West (1994) automatic bandwidth are
employed for the long-run variance estimate in the KPSS test. “x” indicates significance at the 5% level.

Table 4. Results of specification tests.

Sector Cointegration Parameter constancy No trends
Residential 1.35 160.48: 7.78
Commercial —0.30 291.20x% 68.45x
Industrial —1.23 87.61x% 7.17
Critical Value (5%) 1.65 16.37 9.10

The Bartlett kernel and the Newey and West (1994) automatic bandwidth are employed for the long-run variance estimate in the
cointegration test by Xiao (2009). Critical values at the 5% level for nulls of parameter constancy, and no trends are calculated from

«, »

the distributions of max; <j<0 X;z (4) and max1<j<20 X,~2 (1), respectively. “x

indicates significance at the 5% level.
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Figure 1. Estimated price elasticity of electricity demand against temperature ﬁz (2).
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Figure 2. Estimated income elasticity of electricity demand against temperature ,33 ().

confirm that these variables are likely to be I(1) with a linear trend, except log g, and logp; for the
industrial sector. All in all, the data set appears to fit with the framework of the FCCM.

LL estimation of (18) employs the Epanechnikov kernel and the SP bandwidth. Plots of LL estimates
/§2 () and ,33 (z) and their 95% confidence bands for each of three sectors are presented in Figures 1
and 2. Additionally, results from the tests for cointegration, parameter constancy, and no trends are
reported in Table 4, where the cointegration test is a direct application of the one proposed in Xiao (2009)
and equi-spaced 20 design points (i.e., ¢ = 20) are chosen for the second and third tests. Xiao’s (2009)
test does not reject the null of cointegration for any sector. As the figures indicate, the null of parameter
constancy is strongly rejected for all sectors. On the other hand, there is evidence of the linear trend term
in (18) for the commercial sector alone.

Figure 1 indicates that price elasticity for each sector is very small in magnitude, demonstrating that
electricity is a necessity. The elasticity for the residential and industrial sectors is U-shaped. This comes
from the fact that price sensitivity tends to increase at the temperature at which there is little demand
for heating or cooling. In contrast, the price elasticity for the commercial sector is upward sloping. A
rationale could be that at low temperature commercial customers are willing to switch to other heating
apparatuses, such as ones fueled by gas, when finding the electricity price high. Furthermore, Figure 2
indicates that income elasticity is upward sloping for each sector. It may be the case that because high-
income people tend to live in larger houses or high-production firms are likely to use larger buildings,
their electricity demand for cooling becomes higher on hot summer days.

8. Conclusion

This paper has extended Xiao’s (2009) FCCM to the cases in which nonstationary regressors have both
stochastic and deterministic trends. LL estimation is employed to estimate the FCCM consistently, and a
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nondegenerate distributional theory for the LL estimator is explored. It is demonstrated that endogeneity
in integrated regressors does not cause a second-order effect. In addition, the convergence rate of the
nonparametric estimator of each coeflicient is shown to depend on the model specification. In any case,
the convergence rate on the estimator of the cointegrating vector becomes no slower than Th!/2. We also
study hypothesis tests for the null of constant coeflicients and for the null of no trends in the regression.
A solve-the-equation plug-in bandwidth choice rule is proposed as an implementation method for LL
estimation, and its better finite-sample property is confirmed by Monte Carlo simulations. Finally, the
FCCM is applied for estimating electricity demand functions in Illinois, and changes in price and income
elasticity of electricity demand due to temperature are investigated.

Appendix A: Technical proofs

All the proofs are based on condition (iii) in Assumption 1. Proofs for all other cases are quite similar
and thus omitted.

A.1. Proof of Lemma 1

The set of assumptions allows us to apply the FCLT (see, for example, Hansen, 1992c), and thus our
remaining task is to specify the long-run variance matrix Qg (z). To do so, we only need to show the
following two statements:

1
Var {EUT (Z)} = o2 (K) o11f (2) + 0 (1), (A1)

{f \/—UT (Z)} =o(l). (A2)

Proof of (A1). Observe that
T—1

[l
> (1= ) ElK @Ky @) e

k=—(T—1)

T-1
2
{ ;2 ult} +EZ< ) {K; (2) urK, g (2) 1)

=1

Var{«/lT_hUT(z)} = -

= A + 2A; (say).

e ()] e e (50
= [1o2 ®) {f @ + 0 ()} + O (W] ons

— o2 (K) f (2) o11.
Hence, (A1) is established if Ay = 0 (1). Now, |A;| is bounded by

A can be approximated by

Ay

%) 1 d o) 1
ZE {Ki @uuK,  @upi| =D+ Y K @) K (2) i}
k=1 k=dr+1

= Ay + Ay (say),

where the increasing sequence dr is specified shortly. We evaluate A, first. By Davydov’s lemma (see,
for example, Corollary A.2 of Hall and Heyde, 1980) and the stationarity of (z, u1¢),

E{K, @) K, @) ur—i}| < 8 (|K, @) ure] ) o (01722 (A3)
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Because ||uy]ls < oo and E ‘Kt (2) ’6 < O (h) by C,-inequality, we have
|K, @) ure] 5 = | K, @] lurells < O (7). (A4)
The size of the mixing coefficient also implies that
a (k) < ck—0v/@E=y)+el (A5)

for some € > 0. Substituting (A4)-(A5) into (A3) yields
1 (- _ _ _
E|E{5t (@) unK,  (2) 1} < ch™ (2O~ Or/G=11+a10-2/5)

For such ¢, define dt := th“J for some a € (aj, 1), where a; = {8y /(8 —y)+e—1/(1 —2/8)}7!
and 0 < a; < 1lisensured by § > y > 2. Then,

o0

Ay < ch™172/% Z v/ 6=y)+e)1-2/8)
k=dr+1
It follows from § > y > 2 that {§y/(§ — y) + €} (1 —2/8) > 2. Asaresult,

o o)
S klor/Goprea-2 o /

k=dr+1 dr

and thus Ay < O {h(“/“lfl)(l’z/‘s)} — 0.
We now turn to A,;. Notice that |E {K, (2) u1K,_j (2) uii—}| = |[E{K, @) K,_; @ }| |E (uret410—¢)
where ’E (uuun_k)‘ < 00 by Cauchy-Schwarz inequality and the stationarity of u;;. Moreover,

Zr —Z2 Zi— 2 Zi — 2 Z 1 — 2
ot oo = (3 e (3575 o (3509 e (3575)]

Uniform boundedness of the joint density for (z;,z;—) in Assumption 4 implies that the first term is
O (hz), whereas the second term is also O (hz). In conclusion, }E {Kt (@) u1tK,_4 (2) ult,kH <0 (hz).
Therefore, Ay1 < O (dth) = O (hl_“) — 0 is also established.

X BY/CreA=2/8) g — g 120/ _ g { h(a/al)(l—Z/a)} ,

>

Proof of (A2). The left-hand side of (A2) reduces to
T-1

1 k
ﬁ Z (1 — %) E {uth_k (2) Mlt—k} .

k=—(T—1)

Fork = 0, ||E {Kt (2) utult} /\/EH < {E |Kt (Z)} /\/E} E|lusuis] = O (ﬁ) — 0, whereas absolute
convergence of the sum to zero for |k| > 1 can be shown in a similar manner to the proof of (A1). O

A.2. Proof of Theorem 1

This proof requires the following lemma.

Lemma Al. If Assumptions 1-4 and 6 hold, then

Zt —Z

T 1
1
—E I'rx:K = dBy(, >
VTh = e ( h )u” /o](r) ve ()

where Byz) (r) is independent of ] ().




ECONOMETRIC REVIEWS (&) 527

A.2.1. Proof of Lemma Al.
Notice that

T
1 1 2t — 2
:—E I'rxK, (2) u —i——E I"TxE{K< )}u
N RV, T R no )
= B1 + B (say).
By Theorem 4.1 of Hansen (1992c) and Lemma 1, we have

B «/1T71 Zz:l D;kagt (2) urr +0p (1)
1= , B /
LS My 2tt) 1y (S2/VT) K, @ s

. f°11k2(” dBy( (1)
(M3 2,115) ™2 113’ f) B, (r) dBuce) (1)

1
=/ J (r)dBy(y) (1),
0

where J (r) and By (r) are uncorrelated and thus independent due to Gaussianity. On the other hand,

T T
= \/E%ZFTxtE{%K<Zt;Z>}uU = ( ZFTx,uH) (z)+0(1)}.
t=1 =1

It follows from Theorem 3(c) of Hansen (1992b) that

T 1
1 0
ﬁ ; Crxiuyy = /0 J (r)dBs, (r) + |: A, ] ,

1/2

where A}, = (H;’szl'[;)_ I3’ Az, and Ay == Z;ﬁoE(uz,ulHj). Therefore, B, = \/EOP(I)
o) =0, (x/ﬁ) ES 0, and thus the lemma is established. O

A.2.2. Proof of Theorem 1.
The numerator of ,3 (2) can be rewritten as

To(2) — $1(2)$2(2) ' T1 (2)

T T
= {Zmiﬁ () K (Zt - Z) ~S1@S @'Y 1B (@) (@ — DK (Zt - Z) }

t=1

{meK( )—sl @8 (27! me(a—z)K( - Z)}

= G1(2) + G2 (2) (say). (A6)

Using a second-order Taylor expansion of § (z;) around z; = z, we have
G1(2) = {S () = $1(2) 207" 1 (D} B (2)
1
+5{9@-95@%@7' @} @ +R@), (A7)
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where

T T
R(@) =) xxif (@)K <Zt p Z) ~ S @%@ Y XKk @) (@ - DK (Zf Z),

t=1 t=1 h

£ (2) = B (z1) — {ﬁ @ +8Y (@ (2 —2) + %ﬂ@) @) (2 — z)z} :
Substituting (A6) and (A7) into (2) yields
V[t {p @ - @)
- %r’;l (50 -5 @8H@7'S1@) {0 -1 @%@ 7@} Y 2)
IS (@) = $1 (2 (271 S (z)}_l R (z)]

=T S (2 = $1 (@S (7" 8 (Z)}_1 VThG, (2). (A8)
Notice that

IS @) =S @%@ S @) {2 =81 @8 @7 S @)

— i _ -1 / - L _ -1 ’ /—1
= I {So(2) =81 (@S (7' S1 @} I'; ThFT{Sz (2 =81 (@%@ 'S @)} |IF

Th
=G3(2) ' Gy (2) T} (say). (A9)
Now,
1 1 1 !
Gs (2) = T80 (2) I — {T_hZFTSl (2) F/T} {T—WFTSZ (2) F/T} {T_I’IZFTSI (2) F’T} :

In particular,

T T
1 , 1 , 1 zZt—z 1 ,
TS0 @ T = ; Urx; (Crx;) E {EK ( p ) } + = ; Trxe (Drxe) K, (2)

It can be shown in a similar manner to the proof of Lemma A.3 of Sun et al. (2011) that
(1 /«/Th) Y, Prx (Trx) K, (2) = O, (1). Therefore,

1
TihrTso ()T = {/0 ](r)](r)’dr+op(1)} If @ +oM}+0, {(Thy™?}

1
=f(z)f0 T ] dr + 0y (1).

A similar argument establishes that

1

1
i L1S2 (2) T = pa1 (K) f (Z)/0 J(N] () dr+o0p (1).

Symmetry of K (-) implies that (T1/2h3/2)_1 I'781 (2) T = O, (1). Hence,

1
Gy (@) =f(2) / T () dr+ 0y (1). (A10)
0



ECONOMETRIC REVIEWS (&) 529

Similarly, it can be shown that (T1/2h7/2)_1 I'7S3 (z) ' = Oy (1), and thus

h2Gy(2) = h3 — T8 () Ty — { Tz 81 @) FT} { 182 (@) FT}_I { 7;14 I'1S; (2) FT}
= pa1 (K) f (2) /01 J () () dr+o0,(1). (A11)
Furthermore, it is not hard to see that
I S (2) = $1(2)S2(2) 7' S (z)}’1 R(z) = G3(2)! {ﬁI‘TR (2) FT} , (A12)
where
o LR (@) T =0, (h?). (A13)

It follows from (A9), (A11), (A12), and (A13) that the left-hand side of (A8) reduces to

VThr! {B (&) —B(2) — %/Lzl (K) B? (2) W* + 0, (hz)} : (A14)

On the other hand, the right-hand side of (A8) becomes G3 ()7t (1 /N Th) I'rG; (2). Notice that

) Ui,

T
1
Tra @ = ; mK( ) e — Z Trx; (2 — 2) K(

where the second term is at most O, (h). Then, by Lemma A1,

1 1
——=IrGy(2) = f J (r) dBugz) (1) 4+ 0p (1)
0

VTh
Therefore,
1 -1 .1
Gs(2)~! —FTGz (2) => {f(z)/ J(J @) dr} / J (r) dBy(z) (1)
0 0
1 -1
4 N (o, Pz Bon {/ (@) dr} . (A15)
f @ 0

Finally, combining (A14) and (A15) with (A8) establishes the distributional theory. O

A.3. Proof of Theorem 2.
Notice that W7 (z;) can be rewritten as

19—l
[V 16 @ — fous}] |:M02 (K61, i% 5 e (T K (ZtT_Z)} }
t=1
X [\/ﬁr}_l {,3 (zi) — 3OLS}] .

It can be shown that 67 L o011, and thus

T 1 —1
1 — K
pox (K) 611 {T—h §1: (Crxy) (rm)/K(Zt - Z)} = % { /0 ](r)l(r)/dr} =3 ().
(=
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Therefore, Wi (zi) = x?2 (d). Moreover, W (z1),..., Wi (zq) are asymptotically independent x?2
random variables, and thus the stated result immediately follows. O

A.4. Proof of Lemma 2.
A straightforward calculation yields

| 9 1c RXE=D if p; =0
RAxd1 ifpy >0’

where

R@2—m2)x(d1—1) ifpy =0

— / -1/2 /
R} := — (T3 QI15) I;'TIHR; € { R (d2—m2)xdy itp1 >0

Invoking d; = m; and using d, > m, we have dy — my > m; = d; > d; — 1. Therefore, R* is of full
column rank regardless of p;, and thus

dl—l ifp1=0

rank (R*) =rank (R) = { dy ifpy >0 °

A.5. Proof of Theorem 3.
Under Hy,

VAR B (z) = TVHR' {B (2) — B (z)} - (ﬁI‘TR>/ [mr;—l { B -8 (z)” . (A16)

By Assumption 3’ and F;-_l =0 ( TP ’”), Theorem 1 can be now rewritten as

1 -1
VThr! [/3(2)—/3(2)}=>{f(2) /0 1(r)1<r)/dr} /0 J(dBue (. (A7)

Substituting (17) and (A17) into (A16) yields

1 -1
TVhR B (z) = RY {f(z) / ](r)](r)’dr} / J (1) dBuc) (1) < MN (0,R¥S (2) R¥).  (A18)
0 0

On the other hand,

T -1
Tzh |:[,L02 (K) 6’11R/ {thx;K (Z[ ; Zl) } R:|
t=1

/ T ] !
= (VTT1R) |:M02 (K) 611 !% 2 (M) (P K (Zt - Z)} } (VTTR)

o | o K ory [ 1 A
=R [f(—z){/o J()] (r) dr} ]R

= RY3Z (z) R*. (A19)
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Combining (A18) and (A19) with Lemma 2 gives

T -1
W2 (@) = {RP ) uoz(lo&uR/{thx;K(Zt;Z)} R| R
t=1

N x> —1) ifp1=0
x2 (d1) ifp; >0 °

Because W (z1),..., W> (zq) are asymptotically independent x? random variables, the stated result is
immediately established. O

Appendix B: PLLR estimation
B.1. The estimator

As an alternative to LL, Banerjee and Pitarakis (2012, 2014) advocate PLLR to estimate 8 (-) in (1)
consistently. To implement PLLR, assume that the support of f (z) is a compact interval H = [H%, HY],

—o00 < HY < HY < co. Then, H is partitioned into N disjoint bins {HJ}JI\L1 with an equal length ¢, i.e.,
T
Hj = (HjL, HJ.U] = (HL + (j— 1) ¢, HE +j€]. Using the observations {(yt,x/zpzt)/}t:l for all z; € Hj,

the levels regression (1) is estimated as a linear one of y; on x; by OLS. The OLS estimator constitutes the
PLLR estimator of 8 (z) for a design point z as long as z also falls into H;. Formally, the PLLR estimator

B (z) is defined as

N T T -y
B(z) = argmeinz Z 1] (z) 1 () = Z {thxilj (Zt)} th}’tlj (z0) 15 (2),
j t=1

j=1 t=1 j=1 t=1

where 1; (1) =1 ( € H])

B.2. Distributional theory

To derive the asymptotic properties of 8 (z), Assumptions 3 and 4 are modified as follows.

Assumption 3”. The nonnegative sequence of bin length ¢ = £ satisfies ¢ — 0 and T¢ — o0 as
T — oo.

Assumption 4”. H, the support of f (), is compact, and f (z) is first-order Lipschitz continuous over H.
In addition, sup, , . fs (20,2s) < coandf (z) > 0 for a given design point z.

Assumption 3” suggests that the bin length ¢ in PLLR plays a similar role to the bandwidth in kernel
smoothing. Differentiability of f (z) in Assumption 4 is relaxed to Lipschitz continuity in Assumption
4”, which suffices for approximating the leading bias term of the PLLR estimator. Boundedness of f from
above (or existence of max f (2), to be precise) is ensured by compactness of H and continuity of f.

The nondegenerate distributional theory on f (2) is provided below. The proof is similar to the one
of Theorem 1 and thus omitted.

Theorem B1. If Assumptions 1, 3%, 47, 5, and 6 hold, then

VT {,3(2) B (2) — B(z)z+op(z)}:>MN(0V(z))
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where
N HU

z 1 1 -1
B@:=) (“——3 ﬂ<1>(z>11<z),V<z):=;‘r(—lzl){/() 1<r>1<r)/dr} ,

j=1

and (HjU - z) /L € [0,1].

Remark B1. Banerjee and Pitarakis (2012, 2014) allow z; and u; to be correlated. As a consequence, they
derive only the convergence rate of 8 (z). In contrast, we again attain a mixed-normal limit without a
second-order bias correction in the presence of endogenous integrated regressors. Moreover, the leading
bias term is O (£) rather than O (62). This comes from the fact that the “kernel” 1; (-) is asymmetric with
respect to the design point z unless it is the midpoint of the bin.
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