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Unlike symmetric kernels, so far exploring asymptotics on asymmetric kernels has relied on diversified
approaches. This paper proposes a family of the generalised gamma (GG) kernels that is built on the
probability density function of the GG distribution [Stacy, E.W. (1962), ‘A Generalization of the Gamma
Distribution’, Annals of Mathematical Statistics, 33, 1187–1192] and a few common conditions. The
family can generate asymmetric kernels that share appealing properties with the modified gamma ker-
nel [Chen, S.X. (2000), ‘Probability Density Function Estimation Using Gamma Kernels’, Annals of the
Institute of Statistical Mathematics, 52, 471–480]. Asymptotics on the kernels generated from the family
can be delivered by manipulating the conditions directly, as with symmetric kernels.

Keywords: asymmetric kernel; boundary correction; density estimation; kernel smoothing; generalised
gamma kernels

MSC 2010: 62G07; 62G20

1. Introduction

Researchers and policy-makers are often interested in the distributions of nonnegative economic
and financial variables including incomes, wages, short-term interest rates, and insurance claims.
The distributions are empirically characterised by two stylised facts, namely, (i) a natural bound-
ary at the origin and (ii) concentration of observations near the boundary and a long tail with
sparse data. When their parametric specifications are found to be inappropriate, we resort to non-
parametric density estimation. However, in estimating the distributions with symmetric kernels,
we must make two distinct modifications for the standard smoothing technique simultaneously.
For (i), boundary correction methods should be employed; see, for instance, Section 3 of Karuna-
muni and Alberts (2005) for a concise review of the methods. For (ii), adaptive smoothing such
as variable bandwidth methods (e.g. Abramson 1982) would be a remedy.

Recently, asymmetric kernels with support on [0, ∞) (e.g. Chen 2000; Jin and Kawczak 2003;
Scaillet 2004) have emerged as a viable alternative that can accommodate the stylised facts.
Although the kernels are relatively new in the literature, several papers report favourable evi-
dence from applying them to empirical models in economics and finance; see, for instance,
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Section 1 of Gospodinov and Hirukawa (2012) for a non-exhaustive list of the papers. The rea-
son why asymmetric kernels tend to work well for the distributions with two stylised facts is
their property as a combination of a boundary correction device and adaptive smoothing that has
effect similar to the variable bandwidth methods.

A cumbersome aspect of asymmetric kernels, however, is that so far exploring their asymptotic
properties has relied on kernel-specific and thus diversified approaches. In contrast, symmetric
kernels are built on a set of common conditions, and their asymptotic properties can be implied
straightforwardly by the conditions. Then, this paper proposes a new class of asymmetric kernels
that consists of a specific functional form and a set of common conditions. Our aim is that as long
as an asymmetric kernel is generated from this class, we can deliver its asymptotic properties by
manipulating the conditions directly, rather than employing the techniques peculiar to the kernel.

A key issue of establishing the new class of asymmetric kernels is to choose the shape or func-
tional form. While an apparent shape restriction (i.e. symmetry about the origin) is imposed on
symmetric kernels, there is no guidance on shapes of asymmetric kernels; actually, any shapes
are admissible as long as the kernels have support on [0, ∞). Recognising that most of the papers
on asymmetric kernels report superior finite sample performance of the modified gamma (MG)
kernel by Chen (2000), we consider the kernel a reasonable benchmark of the functional form.
Accordingly, among ‘close-cousins’ of the gamma probability density function (pdf), the pdf of
the generalised gamma (GG) distribution (Stacy 1962) is chosen as the functional form. Com-
bining the pdf with a set of common conditions, we finally define a family of the GG kernels. As
special cases, the GG kernels nest not only the MG kernel but also the newly proposed Weibull
and Nakagami-m kernels, which are built on the Weibull and Nakagami-m (Nakagami 1943,
1960) pdfs, respectively.

The GG kernels are designed to preserve all appealing properties that the MG kernel pos-
sesses. First, by construction, the GG kernels are free of boundary bias and always generate
nonnegative density estimates everywhere. Second, when best implemented, each GG density
estimator attains Stone’s (1980) optimal convergence rate in the mean integrated squared error
(MISE) within the class of nonnegative kernel density estimators. Third, the leading bias over
the interior region for each GG density estimator contains only the second-order derivative of
the true density over the interior region, whereas the one for density estimators using some other
asymmetric kernels (e.g. the gamma kernel by Chen 2000) consists of terms involving the first-
and second-order density derivatives. Fourth, the variance of the GG estimator tends to decrease
as the design point moves away from the boundary. This property is particularly advantageous
to estimating the distributions that have a long tail with sparse data. It is worth emphasising that
these properties can be demonstrated by manipulating the common conditions directly.

This paper also demonstrates three additional properties of the GG density estimator. While
the first property, applicability of two multiplicative bias correction (MBC) techniques studied in
Hirukawa (2010) and Hirukawa and Sakudo (2014), is based on random sampling, the remain-
ing two properties allow for dependent sampling. After the GG density estimator using weakly
dependent data are shown to admit the same first-order bias and variance approximations as those
using independent observations, it is proven that the density estimator is consistent even when
the true density becomes unbounded at the boundary. The gamma and MG kernels are known to
share all three properties, and thus it is demonstrated that all in all, the GG kernels are endowed
with the same attractive properties.

The remainder of this paper is organised as follows. Section 2 provides the definition of a
family of the GG kernels and introduces three special cases. Convergence properties of the GG
density estimator are also provided. Section 3 investigates three appealing properties of the GG
density estimator. Section 4 conducts Monte Carlo simulations to examine finite sample proper-
ties of the GG density estimator. Section 5 summarises the main results of the paper and suggests
some research extensions. Proofs of Theorems 1 and 2 are given in the Appendix. Besides,
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proofs of Theorems 4–6 and comprehensive simulation results are available on the first author’s
webpage.

This paper adopts the following notational conventions: �(a) = ∫∞
0 ya−1 exp(−y) dy (a > 0)

is the gamma function; and 1{·} signifies an indicator function. The expression ‘X
d= Y ’ reads

‘A random variable X obeys the distribution Y .’ The expression ‘Xn ∼ Yn’ is used whenever
Xn/Yn → 1 as n → ∞. Lastly, in order to describe different asymptotic properties of an asym-
metric kernel estimator across positions of the design point x > 0, we denote by ‘interior x’ and
‘boundary x’ a design point x that satisfies x/b → ∞ and x/b → κ for some 0 < κ < ∞ as
n → ∞, respectively.

2. A family of the GG kernels

2.1. Definition

Let Y be distributed by the GG distribution GG(α, β, γ ). Then, Y has the pdf

p(y; α, β, γ ) = γ yα−1 exp{−(y/β)γ }
βα�(α/γ )

1{y ≥ 0}. (1)

It is known that the mth uncentred moment of Y is given by

E(Ym) = βm �{(α + m)/γ }
�(α/γ )

. (2)

We now provide the definition of a family of the GG kernels that consists of several common
conditions. Before proceeding, it could be beneficial to relate the definition to probability den-
sity estimation. Below we present a set of regularity conditions for asymmetric kernel density
estimation.

Assumption 1 The random sample {Xi}n
i=1 is drawn from a univariate distribution with a pdf

f having support on [0, ∞).

Assumption 2 f is twice continuously differentiable.

Assumption 3 The smoothing parameter b(= bn > 0) satisfies b + (nb)−1 → 0 as n → ∞.

To generate a kernel from the pdf (1), we allow (α, β, γ ) to be a function of the design point
x > 0 and the smoothing parameter b, as in Chen (2000), Jin and Kawczak (2003) and Scaillet
(2004). To put it another way, whenever we refer to the triplet (α, β, γ ), it should be interpreted
as a short-handed notation of (α, β, γ ) = (αb(x), βb(x), γb(x)) unless otherwise noted. Let the
crude GG kernel be KGG0(u; x, b) := p(u; α, β, γ ). Given the random sample {Xi}n

i=1, we have
the density estimator f̂GG0(x) = (1/n)

∑n
i=1 KGG0(Xi; x, b).

Let ϑx
d= GG(α, β, γ ). Under Assumptions 2 and 3, a second-order Taylor expansion of

E{f̂GG0(x)} around ϑx = x yields E{f̂GG0(x)} = f (x) + E(ϑx − x)f ′(x) + (1/2)E(ϑx − x)2f ′′(x) +
o{E(ϑx − x)2}. It follows that unless E(ϑx) = x exactly (at least for interior x), the leading bias
of f̂GG0 would contain the term involving f ′, which is less desirable. Although there are numer-
ous choices of (α, β, γ ) that can achieve E(ϑx) = x, we adopt the simplest resolution that we
set β = x for interior x and employ the pdf of GG(α, β�(α/γ )/�{(α + 1)/γ }, γ ) (which can
be obtained by the change of variable Z := [�(α/γ )/�{(α + 1)/γ }]Y in Equation (1)) as the
kernel. In the end, we reach the following definition of a family of the GG kernels.
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Definition 1 Let (α, β, γ ) = (αb(x), βb(x), γb(x)) ∈ R
3
+ be a continuous function of the

design point x and the smoothing parameter b. For such (α, β, γ ), consider the pdf of
GG(α, β�(α/γ )/�{(α + 1)/γ }, γ ), i.e.

KGG(u; x, b) =
γ uα−1 exp[−{ u

β�(α/γ )/�((α+1)/γ )
}γ ]

{β�(α/γ )/�((α + 1)/γ )}α�(α/γ )
1{u ≥ 0}. (3)

This pdf is said to be a family of the GG kernels if it satisfies each of the following conditions:

Condition 1.

β =
{

x for x ≥ C1b

ϕb(x) for x ∈ [0, C1b)
,

where 0 < C1 < ∞ is some constant, the function ϕb(x) satisfies C2b ≤ ϕb(x) ≤ C3b for
some constants 0 < C2 ≤ C3 < ∞, and the connection between x and ϕb(x) at x = C1b is
smooth.

Condition 2. α, γ ≥ 1, and for x ∈ [0, C1b), α satisfies 1 ≤ α ≤ C4 for some constant 1 ≤
C4 < ∞. Moreover, connections of α and γ at x = C1b, if any, are smooth.

Condition 3.

Mb(x) := �(α/γ )�((α + 2)/γ )

{�((α + 1)/γ )}2
=
{

1 + (C5/x)b + o(b) for x ≥ C1b

O(1) for x ∈ [0, C1b)

for some constant 0 < |C5| < ∞.

Condition 4.

Hb(x) := �(α/γ )�(2α/γ )

21/γ �((α + 1)/γ )�((2α − 1)/γ )
=
{

1 + o(1) for interior x

O(1) for boundary x
.

Condition 5.

Ab,ν(x) :=
{

γ�((α + 1)/γ )

β

}ν−1
�{(ν(α − 1) + 1)/γ }

ν(ν(α−1)+1)/γ {�(α/γ )}2ν−1

∼
{

VI(ν)(xb)(1−ν)/2 for interior x

VB(ν)b1−ν for boundary x
, ν ∈ R+,

where constants 0 < VI(ν), VB(ν) < ∞ depend only on ν.

Conditions 1 and 2 form a legitimate kernel from the GG pdf. It follows from ϕb(x) = O(b)

uniformly on [0, C1b) in Condition 1 that the kernel is well defined in the vicinity of the origin.
While α ≥ 1 in Condition 2 also ensures boundedness of the kernel near the origin, γ ≥ 1 con-
trols the tail-behaviour of the kernel and establishes an exponential rate of the tail decay. The
condition also allows for each of α and γ to be a piecewise function of (x, b) like β, where the
connection is made at x = C1b; the common connection point simplifies asymptotic analyses
substantially. In addition, smooth connection requirements in Conditions 1 and 2 are inspired by
the construction of the MG kernel; see Chen (2000, p. 473) for details. Moreover, Condition 3
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and Conditions 4 and 5 are the requirements for valid approximations to the bias and variance of
the GG density estimator

f̂GG(x) = 1

n

n∑
i=1

KGG(Xi; x, b),

respectively. Although all the common conditions appear to be high-level ones, it is not hard to
find a few special cases that satisfy them. Examples of the GG kernels are provided shortly.

2.2. Convergence properties of probability density estimators using the GG kernels

2.2.1. Local property

Bias-variance tradeoff. Before providing examples of the GG kernels, readers may wonder
whether the kernels are a truly legitimate one, that is, they can yield a consistent density estima-
tor. To answer this question, we begin this section with presenting the theorem on approximations
to the bias and variance of f̂GG(x).

Theorem 1 Under Assumptions 1–3, the bias of f̂GG(x) can be approximated by Bias{f̂GG(x)} ∼
B1(x, f )b, where

B1(x, f ) =
⎧⎨
⎩
(

C5

2

)
xf ′′(x) for x ≥ C1b

ξb(x)f ′(x) for x ∈ [0, C1b)

,

and ξb(x) = {ϕb(x) − x}/b = O(1). On the other hand, the variance of f̂GG(x) can be approxi-
mated by

Var{f̂GG(x)} ∼
{

(nb1/2)−1VI(2)f (x)/
√

x for interior x,

(nb)−1VB(2)f (x) for boundary x.

The theorem states that Conditions 1–5 do lead to familiar properties of asymmetric kernel
density estimators.1 By construction, f̂GG(x) is free of boundary bias and nonnegative every-
where. The bias of f̂GG(x) is O(b), and its variance is O{(nb1/2)−1} for interior x and O{(nb)−1}
for boundary x. Furthermore, as pointed out by Chen (2000) and Scaillet (2004), a unique feature
of asymmetric kernel density estimators is that the variance coefficient decreases as x increases.
This is shared with f̂GG(x) in that VI(2)f (x)/

√
x decreases as the design point x moves away from

the boundary. The shrinking variance coefficient reflects that more data points can be pooled to
smooth in areas with fewer observations. This property is particularly advantageous to estimat-
ing the distributions that have a long tail with sparse data, such as those of the economic and
financial variables mentioned at the beginning of Section 1.

Mean-squared error (MSE). For interior x, the MSE of f̂GG(x) can be approximated by

MSE{f̂GG(x)} ∼ b2

(
C2

5

4

)
{xf ′′(x)}2 + VI(2)

nb1/2

f (x)√
x

. (4)

The smoothing parameter value that minimises the right-hand side of Equation (4) is

b∗
GG =

{
VI(2)

C2
5

}2/5 [ f (x)/
√

x

{xf ′′(x)}2

]2/5

n−2/5. (5)

Observe that the MSE-optimal smoothing parameter is O(n−2/5) = O(h∗2), where h∗ is the MSE-
optimal bandwidth for density estimators using nonnegative symmetric kernels. Therefore, when
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best implemented, the approximation to the MSE becomes

MSE∗{f̂GG(x)} ∼ 5
4 [C5{VI(2)}2]2/5[f ′′(x){f (x)}2]2/5n−4/5. (6)

Observe that MSE∗{f̂GG(x)} depends only on f (x) and not on x itself. The optimal MSE of f̂GG(x)
for interior x becomes O(n−4/5), which is also the optimal convergence rate in the MSE of non-
negative symmetric kernel density estimators. On the other hand, for boundary x, MSE{f̂GG(x)} =
O(b2 + n−1b−1), which yields the MSE-optimal smoothing parameter b†

GG = O(n−1/3) and the
optimal MSE of O(n−2/3).

2.2.2. Global property

The inferior rate in the optimal MSE of f̂GG(x) for boundary x does not affect its global property.
If
∫∞

0 {xf ′′(x)}2 dx and
∫∞

0 {f (x)/√x} dx are both finite, then applying the trimming argument in

Chen (2000, p. 476) approximates the MISE of f̂GG(x) as

MISE{f̂GG(x)} ∼ b2

(
C2

5

4

)∫ ∞

0
{xf ′′(x)}2 dx + VI(2)

nb1/2

∫ ∞

0

f (x)√
x

dx. (7)

The smoothing parameter value that minimises the right-hand side of Equation (7) is

b∗∗
GG =

{
VI(2)

C2
5

}2/5
[∫∞

0 {f (x)/√x} dx∫∞
0 {xf ′′(x)}2 dx

]2/5

n−2/5. (8)

Therefore, when best implemented, the approximation to the MISE becomes

MISE∗∗{f̂GG(x)} ∼ 5

4
[C5{VI(2)}2]2/5

[∫ ∞

0
{xf ′′(x)}2 dx

{∫ ∞

0

f (x)√
x

dx

}4
]1/5

n−4/5.

Note that O(n−4/5) is the optimal convergence rate of the MISE within the class of nonnegative
kernel estimators in Stone’s (1980) sense.

2.2.3. A note on implementation

Choosing the smoothing parameter b is an important practical issue. Below we consider a very
simple, Silverman’s (1986) rule-of-thumb type choice rule. Although in principle the rule is built
on the MISE (7) as the criterion, we make a couple of modifications. First, the unknown f is
replaced by a known reference density. For simplicity, we choose the pdf of G(μ, ω) (μ, ω > 0),
that is, g(x) = xμ−1 exp(−x/ω)1{x ≥ 0}/{ωμ�(μ)}, as the reference. Second, the criterion is
modified to the asymptotic weighted mean integrated squared error (AWMISE)

AWMISE{f̂GG(x)} := b2

(
C2

5

4

)∫ ∞

0
{xg′′(x)}2w(x) dx + VI(2)

nb1/2

∫ ∞

0

g(x)√
x

w(x) dx,

where the weighting function w(x) ≥ 0 must be chosen to ensure finiteness of two integrals.
Given the specification of g(x), it turns out that w(x) = x3 fulfills this requirement. Then, the
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AWMISE is simplified to

AWMISE{f̂GG(x)} = b2

{
C2

5Cμ�(2μ)

4μ�2(μ)

}
+ 1

nb1/2

{
VI(2)ω5/2�(μ + 5/2)

�(μ)

}
,

where

Cμ = 1
4 (μ − 2)2(μ − 1)2 − (μ − 2)(μ − 1)2(μ)

+ 1
2 (3μ − 4)(μ − 1)(μ)

(
μ + 1

2

)− (μ − 1)(μ)
(
μ + 1

2

)
(μ + 1)

+ 1
4 (μ)

(
μ + 1

2

)
(μ + 1)

(
μ + 3

2

)
.

As a consequence, the AWMISE-optimal smoothing parameter is given by

b‡‡
GG =

{
4μ−1VI(2)ω5/2�(μ)�(μ + 5/2)

C2
5Cμ�(2μ)

}2/5

n−2/5.

In practice, parameters (μ, ω) need to be replaced by their method-of-moments estimates
(μ̂, ω̂).2

It would be possible to choose b in a more sophisticated manner. For instance, replacing two
integrals in Equation (7) with their nonparametric estimators using the GG kernels, we could
derive an analog to the solve-the-equation plug-in method by Sheather and Jones (1991). Alter-
natively, we may rely on the cross-validation method (e.g. Bouezmarni and Rombouts 2010,
p. 250). Investigating these methods is left for our future research.

2.3. Examples of the GG kernels

This section introduces three special cases of the GG kernels. The sole reason why the three
kernels are listed as examples is that for each of these kernels, approximations to the gamma
functions that appear in Mb(x), Hb(x) and Ab,ν(x) in Conditions 3–5 are readily available; see the
proof of Theorem 2 in the Appendix for details.

It is worth emphasising that there could be many other examples belonging to this family. As
Stacy (1962, p. 1187) states, for instance, functions of a standard normal variate (e.g. its positive
even powers, its modulus, and all positive powers of its modulus) will generate the GG kernels.
Moreover, for a given pdf, choices of the functional forms of (α, β, γ ) may not be unique, as
long as they satisfy Conditions 1–5; in other words, we could even generate two or more kernels
from the same pdf by making changes in (α, β, γ ).

2.3.1. Examples

MG kernel. The MG kernel in Chen (2000) turns out to be an immediate example of the GG
kernels. Put

(α, β) =

⎧⎪⎨
⎪⎩
( x

b
, x
)

for x ≥ 2b(
1

4

( x

b

)2
+ 1,

x2

4b
+ b

)
for x ∈ [0, 2b)
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and γ = 1 in Equation (3). Then, it collapses to

KGG(u; x, b) = uα−1 exp{−u/(β/α)}
(β/α)α�(α)

1{u ≥ 0}, (9)

which is the pdf of the gamma distribution G(α, β/α). Observe that α = ρb(x) in Chen (2000,
p. 473) and β/α = b. It follows that the above kernel finally reduces to the MG kernel

KMG(ρb(x),b)(u) = uρb(x)−1 exp(−u/b)

bρb(x)�{ρb(x)} 1{u ≥ 0}.

Weibull kernel. To obtain the Weibull (W) kernel, let

(α, β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(√
2x

b
, x

)
for x ≥ 2b(

1

2

( x

b

)
+ 1,

x2

4b
+ b

)
for x ∈ [0, 2b)

and γ = α in Equation (3). Then, it becomes

KGG(u; x, b) = αuα−1 exp[−{u/(β/�(1 + 1/α))}α]

{β/�(1 + 1/α)}α 1{u ≥ 0}.

Because the right-hand side is the pdf of the Weibull distribution W(α, β/�(1 + 1/α)), the W
kernel can be defined as3

KW(α,β/�(1+1/α))(u)

= α

β/�(1 + 1/α)

{
u

β/�(1 + 1/α)

}α−1

exp

[
−
{

u

β/�(1 + 1/α)

}α]
1{u ≥ 0}.

Nakagami-m kernel. Use exactly the same (α, β) as for the MG kernel but put γ = 2 in
Equation (3). Then, it reduces to

KGG(u; x, b) = 2uα−1 exp[−{u/(β�(α/2)/�((α + 1)/2))}2]

{β�(α/2)/�((α + 1)/2)}α�(α/2)
1{u ≥ 0},

which is the pdf of the Nakagami-m distribution NM(α/2, (α/2)[β�(α/2)/�{(α + 1)/2}]2) due
to Nakagami (1943, 1960).4 This distribution is frequently applied in telecommunications engi-
neering as the distribution that can describe signal intensity of short-wave fading. In the end, the
Nakagami-m (NM) kernel is defined as

KNM(α/2,(α/2)[β�(α/2)/�{(α+1)/2}]2)(u) = 2(α/2)α/2

[(α/2){β�(α/2)/�((α + 1)/2)}2]α/2�(α/2)
u2(α/2)−1

× exp

[
− α/2

(α/2){β�(α/2)/�((α + 1)/2)}2
u2

]
1{u ≥ 0}.

2.3.2. Asymptotic results on density estimators using the MG, W and NM kernels

Figure 1 plots the shapes of the MG, W and NM kernels at four different design points (x =
0, 1, 2, 4) at which the smoothing is performed. For reference, the gamma (G) kernel (Chen 2000)
is also drawn in each panel.5 It is worth noting that for all plotted functions, the value of the
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(a) (b)

(c) (d)

x = 0

x = 2

x = 1

x = 4

Figure 1. Shapes of the GG kernels when b = 0.2.

smoothing parameter is fixed at b = 0.2. When smoothing is made at the origin (Panel (a)), the
NM kernel collapses to a half-normal pdf, whereas all others reduce to an exponential pdf. As
the design point moves away from the boundary (Panels (b)–(d)), the shape of each kernel varies
and becomes flatter; in other words, each kernel changes the amount of smoothing in a locally
adaptive manner. It is worth emphasising that unlike variable bandwidth methods (e.g. Abramson
1982), adaptive smoothing for these kernels is achieved by a single smoothing parameter, which
makes them much more appealing in empirical work. We can also observe that the more distant
the design point is from the boundary, the closer the shapes become to a symmetric one; in
particular, shapes of the NM kernel become almost symmetric for a large x, as its functional
form suggests.

Convergence properties of density estimators using the MG, W and NM kernels are presented
in Theorem 2 below. Obviously, the functional form of (α, β, γ ) for each of the three kernels
satisfies Conditions 1–2. Hence, to demonstrate Theorem 2, it suffices to check that Conditions
3–5 hold for each kernel.

Theorem 2 Let f̂j(x) be the probability density estimator using the kernel j ∈ {MG, W , NM }.
Then, under Assumptions 1–3, the bias and variance of f̂j(x) can be approximated by
Bias{f̂j(x)} ∼ B1,j(x, f )b and

Var{f̂j(x)} ∼
{

(nb1/2)−1VI,j(2)f (x)/
√

x for interior x,

(nb)−1VB,j(2)f (x) for boundary x,

where VB,j(2) can be found in the Appendix, and values of C5,j and explicit forms of B1,j(x, f ) and
VI,j(2) are as follows:
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B1,j(x, f )

j C5,j x ≥ 2b x ∈ [0, 2b) VI,j(2)

MG 1 (1/2)xf ′′(x) ξb(x)f ′(x) 1/(2
√

π)

W π2/12 (π2/24)xf ′′(x) ξb(x)f ′(x) 1/(2
√

2)

NM 1/2 (1/4)xf ′′(x) ξb(x)f ′(x) 1/
√

2π

Moreover, ξb(x) = {(1/2)(x/b) − 1}2 = O(1) in this case.

It follows from Equation (5) and Theorem 2 that the MSE-optimal smoothing parameters of
three kernel density estimators for interior x are

b∗
MG =

(
1

2
√

π

)2/5 [ f (x)/
√

x

{xf ′′(x)}2

]2/5

n−2/5,

b∗
W =

{
(12/π2)2

23/2

}2/5 [
f (x)/

√
x

{xf ′′(x)}2

]2/5

n−2/5,

b∗
NM =

(
23/2

√
π

)2/5 [
f (x)/

√
x

{xf ′′(x)}2

]2/5

n−2/5.

Recognise that b∗
NM = 2b∗

MG holds; even b∗∗
NM = 2b∗∗

MG is the case by Equation (8), where b∗∗
NM and

b∗∗
MG are MISE-optimal smoothing parameters of the NM and MG kernels, respectively. Then, by

Equation (6), the optimal-MSEs of f̂MG(x) and f̂NM(x) for interior x have the relation

MSE∗{f̂MG(x)} ∼ MSE∗{f̂NM(x)}

∼ 5

4

(
1

4π

)2/5

[f ′′(x){f (x)}2]2/5n−4/5. (10)

The right-hand side is also the optimal-MSE of the density estimator using the Gaussian kernel.
In other words, when best implemented, density estimators using these kernels become first-order
asymptotically equivalent, and both kernels on [0, ∞) are in a sense equivalent to the Gaussian
kernel on (−∞, ∞). In contrast, when best implemented, the MSE of f̂W(x) for interior x can be
approximated by

MSE∗{f̂W(x)} ∼ 5

4

(
π2

96

)2/5

[f ′′(x){f (x)}2]2/5n−4/5. (11)

Comparing the factors of Equation (10) and (11) reveal that (5/4){1/(4π)}2/5 ≈ 0.454178 . . .

and (5/4)(π2/96)2/5 ≈ 0.503178 . . . Therefore, we can see that f̂W(x) is slightly inefficient than
f̂MG(x) and f̂NM(x) under the best-case scenario.

3. Properties of the GG density estimator

This section explores three properties of the GG density estimator other than those described
in Section 2.2. After demonstrating applicability of MBC techniques for independent observa-
tions, we show the remaining two properties for weakly dependent observations, namely, validity
of the first-order bias and variance approximations in GG density estimation that are stated in
Theorem 1, and weak consistency of GG density estimators when the true density is unbounded
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at the origin. It is known that the G and MG kernels possess all these properties. Therefore, this
section establishes that these appealing properties essentially inhere in the GG kernels.

3.1. Nonparametric MBC for GG density estimation

We start with examining whether GG density estimators in general admit MBC techniques. While
Hagmann and Scaillet (2007) and Gustafsson, Hagmann, Nielsen, and Scaillet (2009) propose
semiparametric MBC procedures using asymmetric kernels, we concentrate on two classes of
nonparametric MBC methods studied in Hirukawa (2010) and Hirukawa and Sakudo (2014).
The first class of MBC estimators, originally proposed by Terrell and Scott (1980), is defined as

f̃TS,GG(x) = {f̂GG,b(x)}1/(1−c){f̂GG,b/c(x)}−c/(1−c),

where f̂GG,b(x) and f̂GG,b/c(x) signify GG density estimators using smoothing parameters b and
b/c, and c ∈ (0, 1) is some predetermined constant that does not depend on the design point x.
The second class of MBC estimators due to Jones, Linton, and Nielsen (1995) is implied by the
identity f (x) = f̂GG,b(x){f (x)/f̂GG,b(x)} and defined as

f̃JLN,GG(x) = f̂GG,b(x)

{
1

n

n∑
i=1

KGG(Xi; x, b)

f̂GG,b(Xi)

}
.

Both f̃TS,GG(x) and f̃JLN,GG(x) always generate nonnegative density estimates everywhere by
construction.

To develop convergence properties of MBC estimators, we modify Assumptions 2 and 3 as
follows. Discussions on these assumptions can be found in Hirukawa (2010) and Hirukawa and
Sakudo (2014).

Assumption 2a f has four continuous and bounded derivatives, and f (x) > 0 for a given
design point x > 0.

Assumption 3a The smoothing parameter b satisfies b + (nb3)−1 → 0 as n → ∞.

The next theorem refers to acceleration in bias convergence via the bias correction methods.
The proof is similar to the ones for Theorems 1 and 2 of Hirukawa and Sakudo (2014), and this
it is omitted.

Theorem 3 If Assumptions 1, 2a and 3a hold, and E{f̂GG(x)} admits the expansion E{f̂GG(x)} =
f (x) + B1(x, f )b + B2(x, f )b2 + o(b2), where B1(x, f ) (which can be found in Theorem 1) and
B2(x, f ) are kernel-specific functions depending on x and derivatives of f , then the biases of
f̃TS,GG(x) and f̃JLN,GG(x) can be approximated by

Bias{f̃TS,GG(x)} ∼ 1

c
p(x)b2 := 1

c

[
1

2

{
B2

1(x, f )

f (x)

}
− B2(x, f )

]
b2,

Bias{f̃JLN,GG(x)} ∼ q(x)b2 := −f (x)B1(x, h)b2,

where B1(x, h) is obtained by replacing f in B1(x, f ) with h = h(x, f ) := B1(x, f )/f (x).6 In
addition, the variance of each estimator is O{(nb1/2)−1} for interior x and O{(nb)−1} for
boundary x.
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The main point of the theorem is that under sufficient differentiability of f , the bias conver-
gence of each MBC estimator is accelerated from O(b) to O(b2) with the order of magnitude
in variance left unchanged. Whether the bias convergence may speed up depends crucially on
whether the second-order term in Bias{f̂GG(x)} is O(b2). It is worth noting that Conditions 1–5
provide no guidance on the order of magnitude in the second-order bias term. For instance, as
indicated in the proof of Theorem 2, the second-order term in Bias{f̂W(x)} is O(b3/2). Because
both MBC techniques merely improve the bias convergence up to O(b3/2), the theorem excludes
such inferior cases.7 In contrast, for the MG and NM kernels, each MBC technique ameliorates
their bias convergence to O(b2). Explicit forms of p(x) and q(x) for the NM kernel are

pNM(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2

32

{f ′′(x)}2

f (x)
− 1

8

{
1

2
f ′(x) + x

3
f ′′(x) + x2

4
f ′′′(x)

}
for x ≥ 2b,

1
2

[
{ξb(x)f ′(x)}2

f (x)
−
{(

ξb(x) + x

b

)2 �(
ξb(x)+x/b

2 )�(
ξb(x)+x/b

2 + 1)

(�(
ξb(x)+x/b+1

2 ))2

− 2
( x

b

)
ξb(x) +

( x

b

)2
}]

for x ∈ [0, 2b),

qNM(x) =

⎧⎪⎪⎨
⎪⎪⎩

−f (x)
x

4

{
x

4

f ′′(x)
f (x)

}′′
for x ≥ 2b,

−f (x)ξb(x)

{
ξb(x)f ′(x)

f (x)

}′′
for x ∈ [0, 2b),

where ξb(x) can be found in Theorem 2; see Hirukawa and Sakudo (2014) for functional forms
of p(x) and q(x) for the MG kernel.

To provide the variance approximation of each MBC estimator, we must additionally specify
the functional form of (α, β, γ ) = (αb(x), βb(x), γb(x)). For example, for each of the MG and NM
kernels, Var{f̃TS,GG(x)} ∼ (nb1/2)−1λ(c)VI(2)

f (x)/
√

x and Var{f̃JLN,GG(x)} ∼ (nb1/2)−1VI(2)f (x)/
√

x for interior x, where

λ(c) = (1 + c5/2)(1 + c)1/2 − 2
√

2c3/2

(1 + c)1/2(1 − c)2

is increasing in c ∈ (0, 1) with limc→0 λ(c) = 1 and limc→1 λ(c) = 27/16. In other words,
Var{f̃TS,MG(x)} and Var{f̃TS,NM(x)} at interior design points tend to inflate slightly after the bias
correction, whereas Var{f̃JLN,MG(x)} and Var{f̃JLN,NM(x)} are first-order asymptotically equivalent
to Var{f̂MG(x)} and Var{f̂NM(x)}, respectively.

As a consequence, we can find an interesting relation between f̃JLN,MG(x) and f̃JLN,NM(x) once
again. The MSEs of these estimators for interior x can be approximated by

MSE{f̃JLN,MG(x)} ∼
[
−f (x)

x

2

{
x

2

f ′′(x)
f (x)

}′′]2

b4 + 1

nb1/2

f (x)

2
√

π
√

x
,

MSE{f̃JLN,NM(x)} ∼
[
−f (x)

x

4

{
x

4

f ′′(x)
f (x)

}′′]2

b4 + 1

nb1/2

f (x)√
2π

√
x

= 1

16

[
−f (x)

x

2

{
x

2

f ′′(x)
f (x)

}′′]2

b4 +
√

2

nb1/2

f (x)

2
√

π
√

x
.
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The smoothing parameter values that minimise these approximations are

b∗
JLN,MG = 1

22/3

{
f (x)

2
√

π
√

x

}[
f (x)

x

2

{
x

2

f ′′(x)
f (x)

}′′]−4/9

n−2/9,

b∗
JLN,NM = 21/3

{
f (x)

2
√

π
√

x

}[
f (x)

x

2

{
x

2

f ′′(x)
f (x)

}′′]−4/9

n−2/9.

Observe that the relation b∗
JLN,NM = 2b∗

JLN,MG holds once again. Moreover, when best imple-
mented, the optimal-MSEs of two estimators for interior x are first-order asymptotically
equivalent, that is,

MSE∗
{
f̃JLN,MG(x)

}
∼ MSE∗{f̃JLN,NM(x)}

∼ 9

28/3

{
f (x)

2
√

π
√

x

}8/9 [
f (x)

x

2

{
x

2

f ′′(x)
f (x)

}′′]2/9

n−8/9.

3.2. Bias and variance approximations of GG density estimators using weakly dependent
observations

The second property is concerned with estimating the marginal density from nonnegative time-
series data. Examples include estimation of the distribution of important financial variables such
as short-term interest rates or trading volumes, and even the baseline hazard in financial duration
analysis.

To allow for weakly dependent observations in GG density estimation, we replace Assump-
tions 1 and 2 with the regularity conditions below. While similar conditions can be found, for
instance, in Bouezmarni and Rombouts (2010), they assume strong mixing processes with an
exponentially decaying mixing coefficient and exclusively study the MG kernel.8 We relax the
mixing condition and prove that their result holds for a broader class of asymmetric kernels
which includes the MG kernel.

Assumption 1b {Xi} is a nonnegative, strictly stationary and strong mixing process with the
mixing coefficient α(�) of size −(2r − 2)/(r − 2) for some r > 2.

Assumption 2b Let f (·) and fj(·, ·) be the marginal and joint densities of Xi and (Xi, Xi+j),
respectively. Then, f is twice continuously differentiable, and fj is uniformly bounded.

The next theorem states that results in Theorem 1 are carried through even when positive
weakly dependent observations are used.

Theorem 4 Results in Theorem 1 still hold under Assumptions 1b, 2b and 3.

3.3. Convergence properties of the GG density estimator for the density unbounded at the
origin

As the third property we obtain convergence results of f̂GG(x) when the true density f (x) is
unbounded at x = 0. Often a clustering of observations near the boundary can be found in intra-
day trading volumes or realised volatilities, for instance. In this case, it is highly likely that the
true density has a pole at x = 0 (e.g. Malec and Schienle 2014). Such shapes also appear in many
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Figure 2. GG density estimates when the true distribution is G(0.75, 1.25).

other applications including spectral densities of long memory processes. The following two the-
orems demonstrate weak consistency and the relative convergence of f̂GG(x) as x → 0, provided
that the assumption on the smoothing parameter is replaced by Assumption 3c.

Assumption 3c The smoothing parameter b satisfies b + (nb2)−1 → 0 as n → ∞.

Theorem 5 If the true density f (x) is unbounded at x = 0 and Assumptions 1b and 3c hold,

then f̂GG(0)
p→ ∞.

Theorem 6 Suppose that the true density f (x) is unbounded at x = 0 and continuously
differentiable in the neighbourhood of the origin. If Assumptions 1b and 3c also hold, then∣∣∣∣∣ f̂GG(x) − f (x)

f (x)

∣∣∣∣∣ p→ 0

as x → 0.

Bouezmarni and Scaillet (2005, p. 399) focus exclusively on random samples and find that the
property in Theorem 5 is peculiar to the G and MG kernels and not shared with other asymmetric
kernels such as the inverse Gaussian and reciprocal inverse Gaussian kernels by Scaillet (2004).
To illustrate the result from this theorem, we prepare Figure 2, in which the W, NM, MG, and G
density estimates based on 500 independent observations drawn from G(0.75, 1.25) are plotted.
The figure indicates that estimates using three examples of the GG kernels, as well as the G
estimate, can indeed capture the shape of the density near the boundary reasonably well.

4. Finite sample performance

4.1. Set-up

This simulation study examines accuracy of GG density estimators. We compare finite sam-
ple performance of three GG estimators using the W, NM and MG kernels with that of three
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other density estimators, namely, (i) the density estimator using yet another asymmetric kernel,
(ii) the one obtained via back-transforming a symmetric kernel density estimate based on the log-
transformed (LT) data, and (iii) a symmetric kernel density estimator in the original scale with a
proper boundary correction. For (i), because of its popularity in empirical studies, the G kernel
is chosen as the asymmetric kernel that does not belong to the GG kernels. For (ii) and (iii), the
LT density estimator using the Gaussian kernel and the local linear (LL) density estimator using
the Epanechnikov kernel (e.g. Jones 1993) are chosen, respectively.

For each distribution in the list below, 1000 data sets of sample size n = 100, 200, or 500
are simulated. All density estimates are evaluated on an equally spaced grid of 500 points
over the interval [0, 5]. Following Chen (2000) and Scaillet (2004), as the performance mea-
sure for each estimator f̄ , we compute the root integrated squared error (RISE) RISE{f̄ (x)} =√∫∞

0 {f̄ (x) − f (x)}2 dx. In our report, the integral is approximated over the 500 points. The
smoothing parameter b (for W, NM, MG, and G) or the bandwidth h (for LT and LL) is cho-
sen as the minimiser of the (approximated) RISE, again as in Chen (2000) and Scaillet (2004).
Lastly, six distributions below are considered as truths, because of their popularity in parametric
modelling of income distributions, actuarial loss distributions and baseline hazards. Distribution
5, proposed by Buch-Larsen, Nielsen, Guillén, and Bolancé (2005) for modelling distributions
of insurance payments and operational risks, is known to have a Pareto-type tail. This distri-
bution is adopted in this simulation study, from the viewpoint that it is thought to mimic the
shape of income distributions well. Distribution 6, which is unbounded at the origin, is pre-
pared to investigate the property stated in Theorem 5. Figure 3 presents the shapes of these
densities.

(1) Gamma: f (x) = xα−1 exp(−x/β)1{x ≥ 0}/{βα�(α)},
(α, β) = (1.5, 1).

(2) Weibull: f (x) = (α/β)(x/β)α−1 exp{−(x/β)α}1{x ≥ 0},
(α, β) = (1.5, 1.5) .

(3) Half-Normal: f (x) = {2/(
√

2πσ)} exp{−(x − μ)2/(2σ 2)}1{x ≥ 0},
(μ, σ) = (0, 1.5) .

(4) Log-Normal: f (x) = {1/(x
√

2πσ)} exp{−(log x − μ)2/(2σ 2)}1{x ≥ 0},
(μ, σ) = (0, 0.75) .

(5) Generalised Champernowne: f (x) = α(x + c)α−1{(M + c)α − cα}1{x ≥ 0}
×{(x + c)α + (M + c)α − 2cα}−2,

(α, M , c) = (2.5, 0.5, 0.25).
(6) Gamma with Pole: f (x) = xα−1 exp(−x/β)1{x ≥ 0}/{βα�(α)},

(α, β) = (0.75, 1.25).

4.2. Simulation results

Table 1 presents averages and standard deviations of RISEs and averages of tuning parameter
values (i.e. smoothing parameter values for W, NM, MG, and G, and bandwidth lengths for LT and
LL) over 1000 Monte Carlo replications. For each distribution, results are qualitatively similar
across three sample sizes. A quick inspection reveals that overall the MG estimator performs
better than the G estimator; only exceptions can be found in Distribution 1 for n = 100 and
Distribution 6 for all sample sizes. This is congruous with the results in Chen (2000) and Scaillet
(2004).

Each of first three distributions is chosen so that one of the GG estimators can have clear
advantage. As expected, W and MG, as well as G, perform well for Distributions 1 and 2, whereas
NM dominates for Distribution 3. Poor performance of W, MG and G for Distribution 3 could be
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Figure 3. Shapes of true densities for Monte Carlo simulations.

attributed to their difficulty in capturing the shape of the pdf near the origin. The pdf is decreasing
and satisfies the shoulder condition f ′(0) = 0. Accordingly, the data suggest concavity of the
density in the vicinity of the origin. As a consequence, these kernels tend to misinterpret the local
concavity as an indication of a mode over the strictly positive region. We can also find that LL
exhibits comparable performance to the GG estimators, whereas LT is consistently outperformed.

The GG estimators perform satisfactorily even for Distribution 4, which is advantageous to LT,
or for Distribution 5, which could be unfavorable to all due to its Pareto-type tail. As predicted
by Theorem 5, the GG estimators also exhibit reasonably good performance for Distribution 6.
In contrast, LL and LT are dominated for Distributions 4 and 6 and Distribution 5, respectively.

A rationale as to why the LT estimator f̂LT(x) does not necessarily perform well (although it
is popularly applied in empirical works) may be found in its bias property. Following Wand,
Marron, and Ruppert (1991), we can approximate the bias and variance of the estimator as

Bias{f̂LT(x)} ∼ 1

2
{f (x) + 3xf ′(x) + x2f ′′(x)}h2,

Var{f̂LT(x)} ∼
{

(nh)−1f (x)/(2
√

πx) if x/h → ∞,

(nh2)−1f (x)/(2
√

πη) if x/h → η > 0.

While f̂LT(x) shares the shrinking variance property as the design point moves away from the
boundary (which comes from the fact that the variance coefficient is proportional to f (x)/x) with
asymmetric kernel estimators, its leading bias takes a less favourable form in that it contains
three terms involving the true density and its first two derivatives.

We also make a few remarks on tuning parameters b and h. First, both hLT and hLL appear to be
systematically long. Large values of the former may be attributed to the fact that LT observations
tend to spread out toward the large (in magnitude) negative side for each distribution. Second,
for each combination of the sample size and distribution (except Distribution 6), we can find
a consistent ordering of bG, bMG, bW, and bNM from the smallest to the largest. Third, whether
bNM becomes roughly twice the size of bMG as predicted in Section 2.3.2 depends crucially
on distributions and sample sizes. The derivation of Equation (7) (and thus Equation (8)) is
built on the trimming argument for the boundary region. Therefore, whether finite sample results
support the relation relies on how fast the shrinkage of b is and/or how small the weight that the
distribution puts near the boundary is. While it is hard to find the relation bNM ≈ 2bMG in Table 1,
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Table 1. Averages of performance measures and tuning parameter values.

n = 100 n = 200 n = 500

RISE b or h RISE b or h RISE b or h

(1) Gamma
GG W 0.0356 (0.0098) 0.2778 0.0294 (0.0081) 0.1701 0.0221 (0.0057) 0.0897

NM 0.0368 (0.0091) 0.3007 0.0306 (0.0076) 0.1861 0.0232 (0.0055) 0.0975
MG 0.0362 (0.0112) 0.1712 0.0289 (0.0088) 0.1105 0.0211 (0.0059) 0.0683

Non-GG G 0.0358 (0.0125) 0.1404 0.0290 (0.0098) 0.0962 0.0220 (0.0066) 0.0601
LT 0.0441 (0.0157) 0.4434 0.0348 (0.0114) 0.3820 0.0252 (0.0074) 0.3149
LL 0.0368 (0.0116) 1.0272 0.0302 (0.0088) 0.7524 0.0234 (0.0061) 0.5152

(2) Weibull
GG W 0.0374 (0.0119) 0.1870 0.0297 (0.0090) 0.1228 0.0214 (0.0058) 0.0809

NM 0.0385 (0.0116) 0.2090 0.0307 (0.0088) 0.1382 0.0222 (0.0058) 0.0911
MG 0.0367 (0.0127) 0.1272 0.0286 (0.0092) 0.0915 0.0204 (0.0060) 0.0634

Non-GG G 0.0368 (0.0140) 0.1137 0.0294 (0.0103) 0.0813 0.0218 (0.0069) 0.0526
LT 0.0470 (0.0154) 0.3730 0.0368 (0.0110) 0.3187 0.0267 (0.0073) 0.2584
LL 0.0367 (0.0127) 0.8234 0.0294 (0.0092) 0.6600 0.0217 (0.0060) 0.5098

(3) Half-Normal
GG W 0.0274 (0.0113) 0.3445 0.0225 (0.0083) 0.2745 0.0172 (0.0056) 0.1936

NM 0.0251 (0.0120) 0.3809 0.0207 (0.0088) 0.3152 0.0158 (0.0059) 0.2354
MG 0.0303 (0.0117) 0.2662 0.0245 (0.0087) 0.2039 0.0184 (0.0060) 0.1380

Non-GG G 0.0327 (0.0112) 0.1750 0.0262 (0.0087) 0.1325 0.0193 (0.0057) 0.0911
LT 0.0586 (0.0191) 0.4735 0.0457 (0.0140) 0.3997 0.0329 (0.0085) 0.3224
LL 0.0256 (0.0119) 1.4774 0.0203 (0.0094) 1.2598 0.0147 (0.0064) 1.0193

(4) Log-Normal
GG W 0.0429 (0.0153) 0.0830 0.0332 (0.0110) 0.0654 0.0242 (0.0080) 0.0471

NM 0.0447 (0.0152) 0.0932 0.0343 (0.0108) 0.0749 0.0245 (0.0078) 0.0562
MG 0.0416 (0.0158) 0.0624 0.0324 (0.0114) 0.0480 0.0238 (0.0081) 0.0334

Non-GG G 0.0458 (0.0150) 0.0535 0.0360 (0.0108) 0.0390 0.0263 (0.0075) 0.0261
LT 0.0401 (0.0166) 0.3207 0.0315 (0.0122) 0.2782 0.0232 (0.0082) 0.2310
LL 0.0482 (0.0147) 0.4415 0.0381 (0.0106) 0.3683 0.0282 (0.0073) 0.2937

(5) Generalised Champernowne
GG W 0.0477 (0.0169) 0.1324 0.0391 (0.0126) 0.0922 0.0295 (0.0101) 0.0547

NM 0.0477 (0.0161) 0.1448 0.0390 (0.0122) 0.1033 0.0294 (0.0099) 0.0637
MG 0.0504 (0.0190) 0.0881 0.0403 (0.0141) 0.0618 0.0298 (0.0106) 0.0388

Non-GG G 0.0504 (0.0195) 0.0676 0.0403 (0.0151) 0.0485 0.0301 (0.0107) 0.0318
LT 0.0700 (0.0246) 0.4451 0.0544 (0.0177) 0.3807 0.0394 (0.0117) 0.3118
LL 0.0513 (0.0183) 0.4850 0.0413 (0.0137) 0.3618 0.0308 (0.0101) 0.2637

(6) Gamma with Pole
GG W 0.0617 (0.0181) 0.0858 0.0494 (0.0136) 0.0591 0.0359 (0.0091) 0.0380

NM 0.0652 (0.0168) 0.0855 0.0523 (0.0128) 0.0586 0.0380 (0.0088) 0.0373
MG 0.0627 (0.0171) 0.0803 0.0500 (0.0131) 0.0554 0.0368 (0.0098) 0.0357

Non-GG G 0.0614 (0.0202) 0.0571 0.0494 (0.0157) 0.0389 0.0363 (0.0107) 0.0242
LT 0.0639 (0.0304) 0.7389 0.0498 (0.0213) 0.6298 0.0361 (0.0140) 0.5138
LL 0.0650 (0.0161) 0.5280 0.0549 (0.0125) 0.3905 0.0438 (0.0099) 0.2552

Note: Numbers in parentheses are simulation standard deviations of RISEs. “b or h” denotes simulation averages of the
values of smoothing parameters b for W, NM, MG, and G, or the lengths of bandwidths h for LT and LL.

in unreported simulations where the truth is GG(5, 2, 2.5) (that puts a very small weight over the
boundary region), we obtain (bNM, bMG) = (0.0884, 0.0452), (0.0658,0.0334), (0.0460,0.0232)
for n = 100, 200, 500 so that the relation is confirmed for each sample size.

5. Conclusion

Unlike symmetric kernels, exploring asymptotics on asymmetric kernels has relied on
kernel-specific, diversified approaches. To pursue a unified approach in their asymptotics, this
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paper has proposed a new class of asymmetric kernels that is built on the GG pdf and a few
common conditions and thus referred to as a family of the GG kernels. The family can generate
asymmetric kernels that share appealing properties with the MG kernel. Asymptotics on kernels
belonging to the family can be delivered by manipulating the conditions directly, as with sym-
metric kernels. As special cases, the family encompasses the W and NM kernels, as well as the
MG kernel. This paper also demonstrates three additional properties of the GG density estimator
including applicability of MBC and weak consistency for the density unbounded at the origin.
Monte Carlo simulations indicate good finite sample properties of GG density estimators.

There are two possible research extensions. First, choice methods of the smoothing parameter
b in GG density estimation need to be further investigated. Promising candidates include a more
sophisticated plug-in method like the solve-the-equation plug-in method by Sheather and Jones
(1991) and the cross-validation method. In particular, to the best of our knowledge, no equiv-
alent method to the former has ever been proposed for asymmetric kernel density estimation.
Second, goodness-of-fit tests can be built on the GG kernels. Fernandes and Grammig (2005)
and Fernandes, Mendes, and Scaillet (2011) obtain favorable finite-sample results from applying
the G kernel to specification testing for duration models and testing for symmetry, respectively.
Combining the GG kernels with these testing procedures appear to be another good application
of the kernels. These extensions are currently under authors’ investigation and will be addressed
in separate papers.
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Notes

1. Conditions 1–5 even establish approximations to the bias and variance of nonparametric regression estimators (e.g.
local constant and LL estimators) using the GG kernels.

2. Simulation results of GG density estimators with the rule-of-thumb smoothing parameters plugged in are available
on the first author’s webpage.

3. This definition differs from the one given in Kuruwita, Kulasekera, and Padgett (2010, Table 1), who construct
their Weibull kernel from a different motivation. Apparently, their definition

KW(u; x, b) = 1

bx

(u

x

)1/b−1
exp

{
−
(u

x

)1/b
}

1{u ≥ 0}

tends to be unbounded near the origin.
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4. The pdf of NM(μ, ω) (μ ≥ 1/2, ω > 0) is

p(y; μ, ω) = 2μμ

ωμ�(μ)
y2μ−1 exp

(
−μ

ω
y2
)

1{y ≥ 0}.

It is widely recognised that the Nakagami-m distribution was first proposed in Nakagami (1960). In reality, however,
the distribution originates as early as in Nakagami (1943).

5. This kernel does not belong to the GG kernels, because it can be obtained by setting (α, β) = (x/b + 1, x + b) in
Equation (9).

6. Because an error is found in the bias approximation for the Terrell and Scott (1980)-type MBC estimator in
Hirukawa (2010) and Hirukawa and Sakudo (2014), we have corrected the error here. We thank Dr Nabil Zougab
for pointing it out.

7. Because the third-order term in Bias{f̂W(x)} is O(b2), it would be possible in principle to improve the bias conver-
gence of this estimator from O(b) to O(b2) by employing one of the bias correction techniques twice. However, it
is doubtful whether there is much gain in practice from the bias correction via iteration, and thus we do not consider
such inferior cases any further.

8. Carrasco and Chen (2002) provide the conditions that make GARCH processes stationary and β-mixing with
exponential decay, whereas Chen, Hansen, and Carrasco (2010) discuss the conditions that can establish β-mixing
with exponential decay in scalar diffusion processes. In relation to the latter, Feller’s square-root process and its
inverse, which have been employed as models of short-term interest rates by Cox, Ingersoll, and Ross (1985) and
Ahn and Gao (1999), respectively, are examples of exponentially decaying β-mixing processes. Since β-mixing
implies strong mixing, their assumption can cover many important applications in economics and finance.
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Appendix

In order to approximate the gamma function, we frequently refer to the following well-known formulae:
Stirling’s formula (SF).

�(z + 1) =
√

2πzz+1/2 e−z
{

1 + 1

12z
+ 1

288z2
+ O(z−3)

}
as z → ∞.

Series expansion of the log gamma function (SELG).

log �(1 + z) = −γ z +
∞∑

k=2

(−1)kζ(k)

k
zk for |z| < 1,

where (only in this context) γ = limn→∞(
∑n

k=1 k−1 − log n) = 0.5772156649 . . . is Euler’s constant, and ζ(k) =∑∞
n=1 n−k (k > 1) is the Riemann zeta function.
Legendre’s duplication formula (LDF).

�(z)�

(
z + 1

2

)
=

√
π

22z−1
�(2z) for z > 0.

A.1. Proof of Theorem 1

Bias. Let θx
d= GG(α, β�(α/γ )/�{(α + 1)/γ }, γ ). Then, a second-order Taylor expansion of E{f̂GG(x)} around θx = x

yields E{f̂GG(x)} = f (x) + E(θx − x)f ′(x) + (1/2)E(θx − x)2f ′′(x) + o{E(θx − x)2}. It follows from Equation (2) that

E(θm
x ) = βm {�(α/γ )}m−1�{(α + m)/γ }

[�{(α + 1)/γ }]m
.

In particular, E(θx) = β (by construction) and

E(θ2
x ) = β2 �(α/γ )�{(α + 2)/γ }

[�{(α + 1)/γ }]2
= β2Mb(x).

Using Conditions 1 and 3, we have, for x ≥ C1b, E(θx) = x and E(θ2
x ) = x2 + C5xb + o(b), and thus E(θx − x) = 0

and E(θx − x)2 ∼ C5xb. As a consequence, Bias{f̂GG(x)} ∼ (C5/2)xf ′′(x)b. On the other hand, for x ∈ [0, C1b), E(θx) =
ϕb(x) = O(b) and x = O(b) hold, and thus E(θx − x) = [{ϕb(x) − x}/b]b := ξb(x)b, where ξb(x) = O(1). Moreover, it
follows from E(θ2

x ) = O(b2) that E(θx − x)2 = O(b2). Therefore, Bias{f̂GG(x)} ∼ ξb(x)f ′(x)b.
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Variance. As usual, we consider the approximation Var{f̂GG(x)} = (1/n)[E{K2
GG(Xi; x, b)} + O(1)]. A straightforward

calculation yields, for ν ∈ R+,

Kν
GG(u; x, b) =

[{
γ�((α + 1)/γ )

β

}ν−1
�{(ν(α − 1) + 1)/γ }

ν(ν(α−1)+1)/γ {�(α/γ )}2ν−1

]

·
γ u{ν(α−1)+1}−1 exp[−{ u

β�(α/γ )/(ν1/γ �((α+1)/γ ))
}γ ]

[β�(α/γ )/{ν1/γ �((α + 1)/γ )}]ν(α−1)+1�{(ν(α − 1) + 1)/γ }1 {u ≥ 0}

= Ab,ν(x) ·
{

pdf of GG

(
ν(α − 1) + 1,

β�(α/γ )

ν1/γ �((α + 1)/γ )
, γ

)}
.

Hence, Var{f̂GG(x)} ∼ (1/n)Ab,2(x)E{f (ςx)}, where

ςx
d= GG

(
2α − 1,

β�(α/γ )

21/γ �{(α + 1)/γ } , γ

)
.

By the mean-value theorem, E{f (ςx)} = f (x) + E(ςx − x)f ′(ς̄x) for some ς̄x joining ςx and x. It follows from Equation
(2) that

E(ςx) = β

[
�(α/γ )�(2α/γ )

21/γ �{(α + 1)/γ }�{(2α − 1)/γ }
]

= βHb(x).

Then, Condition 4, together with Condition 1, implies that E(ςx − x) = o(1) so that E{f (ςx)} ∼ f (x) regardless of the
position of x. Finally, Condition 5 establishes the approximation to the variance.

A.2. Proof of Theorem 2

A.2.1. The MG kernel

Condition 3. Observe that Mb(x) = 1 + 1/α. For x ≥ 2b, Mb(x) = 1 + (1/x)b so that C5,MG = 1. On the other hand, for
x ∈ [0, 2b), α = (x/b)2/4 + 1 = O(1), and thus Mb(x) = O(1) holds.

Condition 4. Substituting α = x/b into Hb(x) = 1 − (2α)−1 yields Hb(x) = 1 + O(b) = 1 + o(1) for interior x. On
the other hand, for boundary x, α = O(1) regardless of whether α = x/b (when x = O(b) and x ≥ 2b) or α = (x/b)2/4 +
1 (when x = O(b) and x ∈ [0, 2b)). It follows that Hb(x) = O(1).

Condition 5. Because β/α = b regardless of the position of x, we have

Ab,ν(x) = b1−ν �{ν(α − 1) + 1}
νν(α−1)+1{�(α)}ν .

For interior x, SF yields, as α = x/b → ∞, �(α) ∼ √
2παα−1/2 e−α and �{ν(α − 1) + 1} ∼ √

2π{ν(α −
1)}ν(α−1)+1/2 e−ν(α−1). Then,

Ab,ν(x) ∼ b1−ν(α − 1)(1−ν)/2

ν1/2(
√

2π)ν−1
.

The result immediately follows from defining VI,MG(ν) := {ν1/2(
√

2π)ν−1}−1 and recognising that (α − 1)(1−ν)/2 =
α(1−ν)/2(1 − 1/α)(1−ν)/2 ∼ (x/b)(1−ν)/2. For boundary x, the result is established by defining

VB,MG(ν) :=

⎧⎪⎪⎨
⎪⎪⎩

�{ν(κ − 1) + 1}
νν(κ−1)+1{�(κ)}ν if

x

b
→ κ ≥ 2

�((ν/4)κ2 + 1)

ν(ν/4)κ2+1{�(κ2/4 + 1)}ν if
x

b
→ κ ∈ (0, 2)

.

A.2.2. The W kernel

Condition 3. Observe that Mb(x) = �(1 + 2/α)/{�(1 + 1/α)}2. For x ≥ 2b, we may pick an arbitrarily small b > 0 so
that |2/α| = |√2b/x| ≤ 1. Then, by SELG and ζ(2) = π2/6, two gamma functions admit the following approximations:

�

(
1 + 2

α

)
= exp

{
log �

(
1 + 2

α

)}
= 1 − 2γ

α
+ (π2/3) + 2γ 2

α2
+ O(α−3),

�

(
1 + 1

α

)
= exp

{
log �

(
1 + 1

α

)}
= 1 − γ

α
+ (π2/12) + (γ 2/2)

α2
+ O(α−3).
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Applying a geometric series expansion to the approximation to {�(1 + 1/α)}−2 finally delivers Mb(x) ∼ 1 +
(π2/6)/α2 = 1 + {π2/(12x)}b so that C5,W = π2/12. On the other hand, for x ∈ [0, 2b), α = (x/b)/2 + 1 = O(1), and
thus Mb(x) = O(1) is the case.

Condition 4. In this case, Hb(x) = {21/α(1 − 1/α)�(1 + 1/α)�(1 − 1/α)}−1. It is easy to see that Hb(x) = O(1) for
boundary x. On the other hand, for interior x, 21/α = exp{(1/α) log 2} = 1 + O(b1/2), and (1 − 1/α)�(1 + 1/α)�(1 −
1/α) = 1 + O(b1/2) by SELG. Therefore, Hb(x) = 1 + O(b1/2) = 1 + o(1) holds.

Condition 5. Ab,ν(x) reduces to

Ab,ν(x) =
(

α

β

)ν−1 {�(1 + 1/α)}ν−1�(ν + (1 − ν)/α)

νν+(1−ν)/α
.

For interior x, because α = √
2x/b → ∞, we may approximate �(1 + 1/α) ∼ 1, �{ν + (1 − ν)/α} ∼ �(ν) and

νν+(1−ν)/α ∼ νν . In addition, (α/β)ν−1 = 2(ν−1)/2(xb)(1−ν)/2, and thus

Ab,ν(x) ∼ 2(ν−1)/2 �(ν)

νν
(xb)(1−ν)/2 := VI,W(ν)(xb)(1−ν)/2.

For boundary x, the result is established by defining

VB,W(ν) :=

⎧⎪⎪⎨
⎪⎪⎩

(
2

κ

)(ν−1)/2 {�(1 + 1/
√

2κ)}ν−1�(ν + (1 − ν)/
√

2κ)

νν+(1−ν)/
√

2κ
if

x

b
→ κ ≥ 2,{

2(κ + 2)

κ2 + 4

}ν−1 {�(1 + 2/(κ + 2))}ν−1�{ν + 2(1 − ν)/(κ + 2)}
νν+2(1−ν)/(κ+2)

if
x

b
→ κ ∈ (0, 2).

A.2.3. The NM kernel

Condition 3. Observe that Mb(x) = (α/2)[�(α/2)/�{(α + 1)/2}]2. For x ≥ 2b, it follows from LDF that Mb(x) =
(α/2)[2α−1{�(α/2)}2/{√π�(α)}]2. Next, SF implies that, as α = x/b → ∞,

�(α) =
√

2παα−1/2 e−α

{
1 + 1

12α
+ O(α−2)

}
, (A1)

�
(α

2

)
=

√
2π
(α

2

)α/2−1/2
e−α/2

{
1 + 1

6α
+ O(α−2)

}
. (A2)

Then, we find that the approximation of Mb(x) takes a very simple form Mb(x) = 1 + (2α)−1 + O(α−2) = 1 +
(2x)−1b + o(b) so that C5,NM = 1/2. On the other hand, for x ∈ [0, 2b), α = (x/b)2/4 + 1 = O(1), and thus Mb(x) =
O(1) holds.

Condition 4. Hb(x) = (α − 1/2)�(α/2)�(α)/[21/2�{(α + 1)/2}�(α + 1/2)] is O(1) for boundary x because of the
same reason as in the proof for the MG kernel. For interior x, using LDF and then �(2α) ∼ √

2π(2α)2α−1/2 e−2α as
α = x/b → ∞, as well as Equations (A1) and (A2), yields

Hb(x) = α − (1/2)

21/2

23α−2

π

{�(α/2)}2�(α)

�(2α)
∼ 1 − 1

2α
= 1 + O(b) = 1 + o(1).

Condition 5. In this case,

Ab,ν(x) = β1−ν 2ν−1

νν(α−1)/2+1/2

{�((α + 1)/2)}ν−1�{ν(α − 1)/2 + 1/2}
{�(α/2)}2ν−1

.

For interior x, by LDF, Ab,ν(x) reduces to

Ab,ν(x) = β1−ν 2ν−1

νν(α−1)/2+1/2

(
√

π)ν{�(α)}ν−1�{ν(α − 1)}
2(ν−1)(α−1)+ν(α−1)−1�{ν(α − 1)/2}{�(α/2)}3ν−2

.

Next, by SF, as α = x/b → ∞, �{ν(α − 1)} ∼ √
2π{ν(α − 1)}ν(α−1)−1/2 e−ν(α−1) and �{ν(α − 1)/2} ∼ √

2π{ν(α −
1)/2}ν(α−1)−1/2 e−ν(α−1)/2. Substituting these approximations, as well as Equations (A1) and (A2), we finally deduce
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that

Ab,ν(x) ∼ β1−να(ν−1)/2 eν/2

ν1/2(
√

π)ν−1

(
1 − 1

α

)ν(α−1)/2

.

Moreover β1−να(1−ν)/2 = (xb)(1−ν)/2 and (1 − 1/α)ν(α−1)/2 ∼ e−ν/2, and thus

Ab,ν(x) ∼ 1

ν1/2(
√

π)ν−1
(xb)(1−ν)/2 := VI,NM(ν)(xb)(1−ν)/2.

For boundary x, the result is established by defining

VB,NM(ν) :=

⎧⎪⎪⎨
⎪⎪⎩

(
2

κ

)ν−1 {�((κ + 1)/2)}ν−1�{(ν(κ − 1) + 1)/2}
ν(ν(κ−1)+1)/2{�(κ/2)}2ν−1

if
x

b
→ κ ≥ 2,(

8

κ2 + 4

)ν−1 {�(κ2/8 + 1)}ν−1�((ν/8)κ2 + 1/2)

ν(ν/8)κ2+1/2{�(κ2/8 + 1/2)}2ν−1
if

x

b
→ κ ∈ (0, 2).
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