Supplement to “Nonparametric Estimation of
Splicing Points in Skewed Cost Distributions:
A Kernel-Based Approach”

Benedikt Funke* Masayuki Hirukawa!
TH Koln Ryukoku University

8th April 2025

S.1 Introduction

In the proofs of lemmata below, equation numbers starting from “A” correspond to
those in the Appendix. Before proceeding, we reproduce Appendix A.1 and A.2 as

S.1.1 and S.1.2, respectively, for convenience.

S.2 Useful Formulae on the Gamma Function

Stirling’s Formula.

I'(a+1) =v2ra® 2 exp (—a) {1 + ﬁ +0 (a2)} as a — oo. (S1)

Recursive Formula for the Lower Incomplete Gamma Function.

v(a+1,2) =ay(a,z) — 2%exp (—2) for a,z > 0. (S2)

Recursive Formula for the Polygamma Function.

(m) _pm () 4 D!
U (g +1) = 0™ (a) + e for a >0 and m € {0,1,2,...}. (S3)
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S.3 Additional Notation

The following notation is adopted in the proofs: R(a,z) = 2%exp (— )/ I'(a+1)
for a,z > 0; K (u) = 0K (u) /0w],_; K (u) = 0°KF (u) j02%,_; K. (u) =
PK= (u) /03| H; = Kto (X;) — K;g (Xi); and 25 = (tg £ A) /b.

xc’

S.4 Proofs of Lemmata

S.4.1 Proof of Lemma A1l

First two statements are direct outcomes from the proof of Lemma A.3 in Funke and
Hirukawa (2024). The last statement can be obtained by equation (2.5) of Guo and
Qi (2010) and (S1). W

S.4.2 Proof of Lemma A2

The proof closely follows the one of Lemma 3(ii) in Funke and Hirukawa (2025).
However, we provide the proof in full in order to make this supplement self-contained.

In what follows, the cases of u = 0 and u > 0 are considered separately. For
u = 0, it suffices to show that lim,jo K (u) = lim, o K7 (u) = 0. If this is the case,
then KF (u) = 0 and the result trivially holds. The zero left limit can be immediately
established by K (u) = 0 for u < 0. To evaluate the right limit, observe that for
u > 0,

K* (u ——{lnu—lnb—\lf(ai+1)}Kf(u)
:—{lnu )K, (u) = {Inb+ ¥ (a™+ 1)} K; (u)}. (S4)
It follows from a* > 0 that lim, ;o KF (u) = 0. By L’Hopital’s rule, lim, o (Inu) K= (u) =

0 also holds. Hence, the right limit is shown to be zero.
For u > 0, it follows from (S4) that

‘Ki (< (| K2 (u) + [Inb+ @ (a* + 1) KF (u)} . (S5)

We work on the uniform bound of |[Inb+ ¥ (a* + 1)| KF (u) first.  Observe that
Inb+ V¥ (a* + 1)| = |Inz| + o (1), where the o (1) approximation error is uniform on
Iy by Lemma Al. Tt is also the case that [Inz| < max {z~!, 2}, and we may take the
0(1) term no greater than 1 for a sufficiently large n. Then, |Inb+ ¥ (a* + 1)| <
max {z~!,z} + 1. It follows from (z + A)™"? =27Y/2{1 4+ 0(1)} and 0 (1) < 1 for a



sufficiently large n in (A6) that

b2 {14 0(1)}
V2T

< 61/2\/2 [max {53/2,21/2} + 271/2] (S6)

The relation |Inu| < max {u~!, u} again helps find the uniform bound of [In u| K= (u).

Suppose that |Inu| < u~!. Because v 'K (u) is maximized at u = x £ A — b, it

holds that [Inu| KF (u) < u 'KF (u) < (£ A —b)"" KF (r+ A —b). By (S1),

|1nb+\If (ai+1)}K§f (u) < [max {x_S/z,xl/Z} +x_1/2}

(z+A—-b)""KX¥(z+A-b)

+

b 2e{l+0(1)} L] ¢ 1
- Vor (_a_i> (z+A—b)Vz A’

where

+

(1 _ aii) — e {1+0(1)} and !

(x+xA-b)Vx+A

It follows from 27%/2 < ¢t73/2 and o (1) < 1 for a sufficiently large n that

b1/2{1 1 2
|lnu| Kxi (U) S { + 0( )} S b—1/2\/jt—3/2.
\V2ma3/? s

Alternatively, suppose that [Inu| < u. In this case, uK= (u) is maximized at
w=x+A+b, and thus |Inu| K* (u) < uKE (u) < (£ A+b)" KX (z+ A+D).
Again by (S1),

= x3/2 {1+0(1)}.

(z£A+b) " KE(x+A+b)
b2 {14 0(1)} (1 1 )aixiAer

V2T a* VrtA’
where N
1\ rEA+b
1+—) =e{l+o(1)} and ———" = /z {1 +0(1)}.
(1+55) =ctirom) and "5 = vE (o)
Therefore,

12/ {1 1 2_
o] K () < TV LL O e, 20

V2T ™

by z'/? < /% and again o (1) < 1 for a sufficiently large n. Combining these two

scenarios, we have

2 _
Inu| K (u) < max {u 'K (u),uk; (u)} < 51/2\/imax {273/2, t1/2} . (S7)

™
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In the end, substituting (S6) and (S7) into (S5) yields

. 2 _ 2
Kxi (U)‘ < b_g/Z\/j [2 max {§_3/2,t1/2} +§_1/2] —. p3/2 20,
Y

™

sup
(z,u)eloxRy

This completes the proof. W

S.4.3 Proof of Lemma A4

The lemma is proven by induction. The case for m = 0 is obvious by (S2) and
I'(a+ 1) = al'(a). Next, suppose that the statement holds for some m > 0. Then,

(et (a+m 2,
I'(a+1)
a+m+1)y(a+m+1,2)— 24 exp (—2)
I'(a+1)
= XNa+m+ 1) {pnP (a,2) —rmR(a,2)} — (X\2)"" R(a, 2)

={Aa+m+1)pn}Pla,z) — {A(a+m+1)r, +(A)""} R(a,z),

_ )\erl (

where the first and second equalities come from (S2) and the assumption of induc-
tion, respectively. The statement for m + 1 is established by the correspondence of
coefficients on P (a,z) and R (a,z). W

S.4.4 Proof of Lemma A5

The first statement can be obtained by setting = = to in (A15) and then substituting
®(0) = 1/2, ¢(0) = 1/v/2x and ¢V (0) = 0. For the second statement, putting
x =ty in (A17) gives

+ _[1+0(1/z5)) 1 oxp {2+ (In £ e
R(z,%)—{ L }\@; plz (e +1- ¢},

for £ := 2y/2* = to/ (to £ A). When z = to, (A16) reduces to
I A
==t {iE g o).
VzE Vi { i 2t ( )

Moreover, exp {zi (ln 41— §i)} can be approximated by

1 [A?
exp{zi (lnii—i—l—gi)} :1—2—750 (7) +0

)

Then, the second statement can be obtained by recognizing that 1 + O (1/2%) =
1+0(). W



S.4.5 Proof of Lemma A6
Observe that

E ng / K (u du+do/ K (u)du=: ES + E3,
where
K, (u

—{lnu—lnb—\ll(
Then,

E {j<1> (to)} —E {K—

o0} - B{KS (00} = (B; - B)) + (B, - BY)

We start from approximating (E — E*) and then proceed to (Ed_o

+1)} K (u)

Ef). A
minor modification of the proof for Theorem 2.1(i) of Funke and leukawado()2024)
yields

E; =g (to)) £ 9% (t)) A+ O (b).
It follows that
By — By =

—29® (to) A+ O (b).
Next, by Lemma A1 and a second-order Taylor expansion of Inu around u = ty,

lnu—lnb—\Il(zi—o—l)

A b

lnu—lntOZF%—z—to—i-O(bZ)

u—to 1 U—to 2 A b 9

~ - = —— —+0(b

(to) 2(t0>$t0 2, O )

Then,
to 1 to - 2
E;EDN@ / <u to)ng(u)du——/ (u to) (u) du
b |Jo to 0

Also observe that

to
v +m+1,2)
MK (u) du =: b"
/0 u to (u) U = 1—1 (Z:t + 1)
for m > 0. Then, by Lemma A4 and straightforward calculations, we can obtain
to

/ ng (u)du =P (zi, zo) - R (zi, zo) ,
0

to _
/ (—“ to)Kfo(u)du:(iAjLb>P(zi,zo)—<1iA+b)R(Zi>ZO)7
0 to to  to

to | to




and

to _ 2
/ (u fo ) Kit (u) du
0 to

b 202 3Ab A? 3pb A 202 3Ab A2
=+ttt | PR a) - (ot e+ | R (25, %0).

It follows that
g B [{q:?i‘f L0 (A2)} P (%, 2) — {1 A (A2)} R (zi,zo)]
o 212 to 2t

Substituting Lemma A5 and then making straightforward but tedious calculations,

_ 2 dy A A3
Edo — Ec—l; = —\/;tgw (1)17) +O (M) .
In the end,

E{j(l) (to)} —0(A) + {—\F ;Z?2 <51A/2> +0 <Z§_/32>}
-2 () vo (%)
2 ().

This completes the proof. W

we have

S.4.6 Proof of Lemma A7

Observe that
Var {J 1) (to)} - %Var (H;) = % (E(H?) — B? (H)}

where E (H;) = E; — E; = O (A/b"/?) as shown above. Below we concentrate on

approximating . )
p() = [ {0 -k @} f

A difficulty arises at this stage because of asymmetry in K (-) — K (). If it were

x

symmetric, we could first approximate the right-hand side by

[{DEIEN [ 5 - s )



However, it is not obvious whether this type of manipulation is still valid for
the asymmetric case. Instead, our proof strategy is to decompose f (-) into two
components so that F (H?) =: V, 4+ Vj,, where

V= [ {0~ K @) g0 du, and
Vi = do /Oto [ ()~ K, (u)}2du.

Below it is demonstrated that two integrals can be individually approximated by

V. t 3 a° d S8
g~ g( 0) 2\/7_Tt8/2 b5/2 , an ( )

do 3 A?
Vay ~ <5) 2t @%) ' (59)

It should be recognized that (S8) and (S9) jointly establish the lemma, because g (t)+
do/2={f(tg) + f(t5)} /2.

S.4.6.1 Proof of (S8)

2
Define V* := [ {ng } g(u)duand V,7~ == [¥ K, (u) K;} (u) g (u) du. Then,
V, can be decomposed into V, = V>~ +V>+ — 2Vg+_. In what follows, approximations
to V;i and V;r‘ are derived separately, and (S8) can be obtained in the end.

(i) Approximation to V*. For Y= L G (22 +1,b/2) and A% (z) defined in

(A7), we can express V>* as

v = b_lz/ooo{mu—lnb—\lf(zi+1)}2{K£(u)}2g(U)du
A (ty)
b2

By (S1) and b = 0 (A), A% (¢y) can be approximated by

E{ny* —Inb—w (=5 +1)} g (v*)]. (S10)

b1l (22F + 1)
22zF 172 (Z:i: + 1)
b71/2
= AR tOiA{lJrO(b)}
b—1/2
NN {1+0(A)}. (S11)

A (ty) =




In addition, a mean-value expansion of g (Y*) around Y* = t, yields
E{ny* —Inb—w (=5 +1)}" g (v*)]
= g(t) E{lnY* —Inb— ¥ (z* + 1)}’
B [{nyF b - 0 (=% 1)} g (7F) (VF - o)
= Wi+ Wy

for some 7 on the line segment joining Y* and ¢,. For Wi, it follows from the proof
for Theorem 2.1(ii) of Funke and Hirukawa (2024) and Lemma A1 that

E{nY* —Inb— 0 (z* +1)}’
= {240 (25 +1) =¥ (225 + 1)} + 0O (2:* 1)
b Nk b b ;
ity 00} HomEy sarar 0]
b
= S a 1TOO)
It follows from b = o (A) that

Wit = (bti (iO)A) [1+0b)} = —bgzi?) [1+0(A)}.

Next, |W;"| = O (b*?) is demonstrated. By the Cauchy-Schwarz in equality,

Wi < swp o @) B{InyF b - @ (F 4+ 1) P [yE bl |
zeR

011/2
< sup ‘g(l) (z)] [E {lnY* —Inb— T (25 +1)} }

X [E{(lnyi —Inb— U (£ 1)) (VE - to)Q}]m,

where sup,cg, |9 (z)| < 0o by Assumption 2(ii), and E {InY* — Inb — ¥ (2* + 1)}’
O (b) as shown above. A straightforward extension of Lemma A.l in Funke and

Hirukawa (2024) yields

m

E(Xm"*X) =p"[[(a+k—1) [{InB+ ¥ (a+m)}’ + T (a+m)]

for X £ G (a, ) and m > 1. Using this and Lemma Al and making straightforward

but tedious calculations, we finally have £ {(ln YE—Inb— W (22 4+ 1)) (VE - tO)Q} =

O (b?), which establishes that |W5"| = O (b*?). Therefore, by A = o (b'/?),

B[y —mb—w (% + 1)} (1v4)] = bf;fj;o) [Ly0(@)).  (S12)

8



Substituting (S11) and (S12) into (S10) and using A = o (b"/?) again, we may

conclude that

—1/2 0 1/2
g2i:i 23_\/%{1+0(A)}} {bg (to) {1+O(b/)}
b=3/2 1/2
4\/_ 4 /r3? {g(t) +0 (')} 519

(ii) Approximation to V*~. Let Y} La (220 +1,b/2). Then,

Vi o= Béf‘))E {InYy—Inb— T (2~ +1)}
x {InYy—Inb—V (2" +1)} g (¥o)], (S14)
where .

~ 2201[ (z-+ 1) (zt+1)
It follows from (S1) and b = o (A?/b) that

B (to)

=Z_lf(zf0Az)l/2{(t0t_°A)M( : )t°*A}l/b{18_f;0+o<A2>}
o () o (Dom
()

Moreover, by a mean-value expansion of g (Y;) around Yy = t,

E{lnYy—Inb—¥ (2~ + 1)} {lnYy —Inb— ¥ (2" +1) } g (¥p)]
= g(to) E[{lnYy—Inb— ¥ (2 + 1)} {lnYy —Inb— T (z* +1)}]
FE [{nY* —nb - @ (=% + 1)} g (o) (¥ — to)]
= WY + Wy

for some ty on the line segment joining Y, and ¢y. It can be deduced again from the



proof for Theorem 2.1(ii) of Funke and Hirukawa (2024) and Lemma A1l that

E [{lnYo —Inb— WU (z_ +1)} {lnYO—lnb— v (z++ 1)}}
={In24+V(z7+1) =¥ 22+ 1)} {ln2+ ¥ (2" +1) =V (2 + 1)}
+ W (225 +1)

_ {_%+o(b)} {%+O(b>}+{2—lzo+0(52)}

@)

Therefore,
bg (o) A? A2
0
= 1-— — ).
M= { t ( 5 ) T\

It can be also shown that [WJ| = O (b*?), and thus

E[{lnYy—Inb—¥ (2~ + 1)} {lnYy —Inb— ¥ (27 +1) } g (¥p)]
Sl (3) e (3) o0
g GRS

by b'/2 = 0 (A?/b).
Substituting (S15) and (S16) into (S14) finally yields

v = et (5) ()]
Pt () (3]
Sl B () () e

(iii) Proof of (S8). By (S13), (S17) and bY/2 = o (A2/b),

Vo= (Vg +V5") =2V,
b~ 3/2

4\/_753/2 {29 (to) + O (b"*)} — 4\6/_3;/2 {2g (to) — th(oto) <%2> + o0 (%2)}

y 3 A?
~ g (to) 2ﬁt8/2 B2 )

Therefore, (S8) is established.

10



S.4.6.2 Proof of (S9)

. 2 . .
Denote V" := dy . {ng (u)} du and V7~ := dy " Ky (u) K (u) du so that
Vio = Vi 4+ VT =2V~ As above, V" and V;/~ are approximated separately.

(i) Approximation to Vfoi. Observe that

oe _ oA (o) [0 e > exp {~u/ (b/2)} "
Vi = 5 /O {lnu—Inb— (2 +1)} (b/2)2zi+1r(2zi+1)d' (S18)

Lemma A1 implies that
{lnu —Inb— U (zi + 1)}2

A b ’
{lnu—lntoiF%—Q—to—l—O(AQ)}

2
:ln2u—2{lnt0iA+%+O(A2)}1nu+{lntoj:A—i—%—FO(Az)} :
0 0

Combining this with a second-order Taylor expansion of In"™ u for m > 1 around

u = to, i.e.,

—1
In™u = lnmto —&—mlnm*l to <ut 0)
0

2
+ % {(m—1)In"?t;, —In™ 't} (u —_ t0> + o (Ju— t0|2) : (S19)

to
we have

{lnu—lnb— (z +1 }2

2A A b u—to\>
_— = — A2 1+ — A? 0
{qcto 0+O }( > { t0+2t0+0( )}( to )

A
=+ — +0(A?)
+{ +2t0+0 }

Observe that

/to o w2 exp {—u/ (b/2)} i (g)m v (22 +m +1,2z)
o (/2T (2% + 1) (2% +1)

2

11



for m > 0. Then, Lemma A4 and straightforward calculations lead to

/to w2t exp {—u/ (b/2)} du

0 (b/2)" T (2% 4 1)

=P (22i, 220) - R (2Zi> 220) ’

/to (u — to) e o i/ b2} du
o to (b/2)% 1T (2% + 1)

— é i + _ é i +
= (ito + 2t0> P (227", 2z) <1i ot 2t0> R (22", 22),

and

/to (u—t0)2 w2 exp {—u/ (b/2)} p
U
0 to ) (b/2)% D (2% + 1)
b b 3Ab A?
= —+ =+ = +=) P(2:%2
(2t0+2t3 2 tg) (267, 220)
3 A B 3AbL A2
==+ 5+ + = | R(22F,22) .
(2t0 ST R tg) (27, 220)

It follows that

/to {lnu Cnb— U (Z:I: + 1)}2 u22i2e)ipf—U/ (b/?)} du
0 (b/2)° T (22% + 1)
b Ab , N
A

_ {Zito == P +0 (A2)} R (22%,22) . (S20)

Replacing b by b/2 in Lemma A5 also yields
1 1 A A2
+ - P R —
P (22 ,zzo)_zzpﬁm <b1/2>+0<bl/2>, and (S21)

R (227,22)) = % {1 F 2% — % (%2) +0 {max (b, %) H . (S22)

Substituting (S11), (S20), (S21), and (S22) into (S18) and then recognizing that the
O (A) term in (S11) and the O (A?/b'/?) term in (S21) are both at most o (b'/?), we

can obtain 3/2
b~ 1 1 A
24 2
Vi = o7 v (i) £ 0} )
0

12



(ii) Approximation to Vng’. Our next task is to find an approximation to

Bgo) /to [{lnu—Inb—(z~+1)} {lnu—Inb— T (2" +1)}

u?* exp (—2u/b) ] T
(b/2)° T (229 4+ 1)

Vi, = do

By Lemma A1,
_ b A’ >
2mb+ W (27 +1) + W (27 +1) = 2Intg + = — — +0 (A7),
0 0
and

{mo+ ¥ (z-+ 1)} {lnb+ ¥ (2" +1)}
= In*t, + (?) b— <1+tint0> A% +0(A?).

0 0

Combining these with (S19) yields

{lnu—Inb—¥ (2~ +1)} {lnu—Inb—V (2" +1)}
=1In’u — {21nb+\lf(z_+1) —|—\If(z++1)}lnu
+{1nb+\11(z_+1)}{1nb+\11(z++1)}

b AZ 9 ’LL—tO
”{‘%W“(A)}( ? )

b A? n) (u—to\® AZ )
+{1+2_t0_2_t2+0(A)}( o ) —¥+0(A).

Notice that

/to o u?® exp {—u/ (b/2)} dy — (é)m v (220 + m+ 1,22)
o (b/2)”T'T (22 + 1) 2 T (22 + 1)

for m > 0. Again by Lemma A4 and straightforward calculations, we have

/to 2220 ixpi_U/ (b/2)} du = P (22, 220) — R (220, 220) ,
o (b/2)"°7° T (229 + 1)

/Oto (u — tg) u? exp {—u/ (b/2)} du — iP(on,on) _ (1 n i) R (229, 20) .

to (b/2)*°*' T (229 4+ 1) 2ty 2tg

and

/to (u — to)2 w exp {—u/(b/2)} .
0 to (b/2)° T (229 4 1)
b b 3b b2
(2t0 i 2t3) (220, 220) <2t0 * 2t3> R (220, 220)

13



Hence,

/to [{nu—Inb— ¥ (=~ +1)} {lnu— lnb— ¥ (% + 1))

u? exp {—u/ (b/2)} }
(b/2)*°7' T (220 +

1)
~ {i A +0(A2)} (220,220) — {i +0(A2)} R (22, 22) .

2to t2 2t

In addition, letting = | 0 in equation (1) of Pagurova (1965), we have

P (229,22) = 6;1/\2/_ O (b*?).
Moreover, by (S1), R (229, 22) can be approximated as
1/2
R(220,22) = NN {1+0(b)}.

It follows from (S15), (S24), (S25), and (S26) that

b3/2 (1 3 (A2 A2
+—:d— - _ 2= -
i = (e () o (5) )

(iii) Proof of (S9). It follows from (S23), (S27) and b'/2 = 0 (A?/b) that

b—3/2 p—3/2 3 /A2 A2
Vip =do———+ {1+ 0 (b"?)} —d 1——(=— —
o =ty g 04007 iy {1 (5) o

4\/_t3/2

do 3 A2
2 ) oymtd? \b? )

which establishes (S9). This completes the proof. W

S.4.7 Proof of Lemma A8

It holds that
bB/2 -2) \/5 do
(o (155)
b3/2
< [ Z—
<(%)
b2 . 2 d
()t} (+f28)

= D1 —|—D2 +D3 (say).

+

14

(S24)

(S25)

(S26)

~

S27)



Then, the proof boils down to establishing the following three statements:

b3/2
vi=('y)

Dy — <b3/z) )J@ (to) — E{j<2> (tO)H — 0, (1). (S29)

Dy = | (%) B{J® (1)} - (-@%) ’ —0(1). (S30)

We work on (S30) first and then proceed to (S28) and (S29).

T (€)= JO (to)| = 0, (1). (528)

S.4.7.1 Proof of (S30)

The proof is similar to that of Lemma A6, and thus we provide only its outline.

Because

E / du+do/ K (u)du=: TF + I3,
where

KF (u) [{lnu—lnb—\lf(zi—i—l)}Q—\I/(l) (=*+1)| Kt (),
it holds that

B{7®w)} = B{i;, (x0} - B{K (X0} = (1, — 1)) + (1, — 14
A similar procedure to the proof of Lemma A6 yields
[gi P (to) £ ¢ (te) A+ 0(A)

so that
Ig_—]; —2g (tO)A—i—O(A)

It can be also found via straightforward but tedious calculations that
d A% 3Ab A b
+ 0 + +
IdowﬁH—Ttg:I:Tt%—i—o(Ab)}P(z ,%0) — {:F +t0+0(b)}R(z ,zo)}.
Then, using Lemma A5 yields
_ dy A3 bl/2 2A
Ido—];):ﬁ[{O(Ab)JrO(bl/Q)} NN —+O(Ab)

2.dy [ A A3
:_\/73/2(b3/2)+0(b17)'

15




Therefore,
5 2 d A A3
o (382 o[
2dy (A
_ _\[ a <b3/2) +0(A)
2dy (A
~ 3/2 2 )

and thus (S30) is demonstrated.

S.4.7.2 Proof of (S28)
A mean-value expansion of J® (&) around ¢ = ¢, yields

T (&) = J® (to) = T () (€ — t)
— JO) (t0) (€ — to) + { I (1) = TV (t0) } (¢ — o)
for some 7 on the line segment joining £ and ¢y,. It can be shown that the second term

is of smaller order than the first term by Lipschitz continuity of J®) (). To put it an-
other way, the order of magnitude in D; is determined by that of (b%2/A) )j @) (to) ‘ & — tol.

In what follows, the order of magnitude in J®) (to) can be found via the identity
J® (tg) = E {j(3) (to)} + [j(?’) (to) — E {j(?’) (tO)H . As in the proofs of Lemma A6
and (S30),

B{JOt)}| < B|R, (x) - K, (X)

tO cee— ..-J’_
Kto (u) - Kto (u) du?

o0 cee— ...+
= | i = o] s @ au+ao] |
where

Kj; (u) = bl?’ [{lnu—lnb— U (z* + 1)}3
—3p® (zi + 1) {lnu— Inb— W (zi + 1)} ~ @ (Zi + 1)} Ktjg (u),

and fooo ‘K;) (u) — K::) (u)‘ g (u) du is at most O (1) by Lemma Al and boundedness
of 9(3) () on Iy. It turns out that \do| foto

(u) — K:; (u)) du is the dominant term
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in ‘E’ {j (3) (to)}‘. A mean-value expansion of K i (u) around A = 0 implies that

Ky (u) — K, (u) ~2 <%> [~ {Inw—Inb— W (2 +1)}*

+60UW (20 + 1) {lnu —Inb— (2 + 1)}
+ 40P (29 + 1) {lnu —Inb— U (2 + 1)}
=3 {00 (20 + 1)} + 99 (9 4+ 1)| K ().
By extending Lemma A.1 of Funke and Hirukawa (2024) to higher-order moments of

the log-transformed gamma random variable, taking a similar procedure to the proof

of Lemma A7 and employing Lemma A1, it can be found that

/to
0

Therefore, ‘E {7 (t(])}‘ <O(1)+ 0 (A/B) = O (A)?).

Furthermore,

i (u) - K (u))du < /Uoo )K{ (u) — K, (u)‘du: 0 (%) O () =0 (z%) .

Var {09t} = 1 | B {i, (X0 - & 00} - 2 (i, 000 - i o

where

E {K; (X:) — K;r) (Xz)}‘ = |E {j(3) (to)}‘ = O (A/b?) as above. By Lemma

Al and a similar procedure to the proof of Lemma A7, it can be shown that

B{, (X) - K, (Xl-)}2 -0 (?—:) 0@ =0 (Zﬁ—;> .

It follows that Var {.J9 (to) } = O {2/ (nt*/?)}.

In conclusion,
. A A2
7 =0(5) +0 (V nb—/) |

Because ¢ lies between ¢ and to and | — to| = O, (c;) = 0, (b"/?) by Theorem 1, it
holds that £ — to| < |t — to| = 0, (b"/?). Therefore,

(%) O 1) 16—t (%) {0 ()0 <\/n§:/> } 0, (b2)

1 p
:Op<1>+0p W —>0,

which establishes (S28).
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S.4.7.3 Proof of (S29)

It suffices to show that Var {(b3/2/A) J® (tg)} = 0(1). To do so, again we focus

y 2
on the order of magnitude in F {th (X;) — K (Xz)} . By a mean-value expansion
of Kit (u) around A = 0,
Ky, () = Ky (u)
A
~ 2 (ﬁ) [—{lnu —Inb— U (2 + 1)}
+3{Inu—Inb— T (20 + 1)} TV (20 + 1) + @ (2 + 1] Ky, (u).

Then, by a similar procedure to the proof of (S28) above,

B{k, (x)- ki (x)} =0 (?—(52) O (1) =0 <bf—;) |

It follows that

b2\ . b3 A? 1

This completes the proof. W

S.4.8 Proof of Lemma A9

Basically, a similar strategy to the proofs of (S28) and (S29) in Lemma A8 may be
taken. The derivation is straightforward but much more tedious, and thus details

are omitted. W
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