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1 Introduction

The precise modelling of loss distributions is of fundamental importance in actuar-

ial science, signi�cantly in�uencing decisions in areas such as solvency assessment,

enterprise risk management, and the pricing of insurance products. For solvency

assessment, particularly under regulatory frameworks like Solvency II, the accurate

representation of the loss distribution, especially its tail, is paramount for develop-

ing internal models and determining economic capital. E¤ective risk management

relies on this understanding for setting appropriate risk appetite, establishing expos-

ure limits, and designing optimal reinsurance strategies. A particular challenge is

the adequate representation of the distribution�s tail, where rare but potentially very

high losses like large claims or extreme events occur. These large claims often follow

a di¤erent dynamic from small or medium-sized attritional claims and are critical for

the calculation of risk capital as well as for modelling of pricing risk. This is especially

decisive in excess-of-loss reinsurance contracts where the correct determination of lay-

ers and attachment points is crucial for both cedent and reinsurer, directly impacting

pro�tability and risk transfer e¤ectiveness.

In actuarial practice, it has become evident that single, simple distribution models

are often unable to satisfactorily represent the entire range of insurance losses, from

frequent small claims to catastrophic large events. Such inadequacy stems from the

fact that underlying risk drivers for attritional losses often di¤er from those for large

or extreme losses. For this reason, actuaries frequently resort to splicing or compos-

ite models (see, e.g., Klugman et al., 2019). In this approach, di¤erent distribution

functions are used for di¤erent segments of the loss data, typically one for the bulk of

the distribution and another for the tail, which contains the large claims (e.g., Cooray

and Ananda, 2005; Scollnik and Sun, 2012; Reynkens et al., 2017). A central and

di¢ cult problem in this procedure is to develop an objective and data-driven method

of detecting the point at which one distribution model transitions to another. An

inaccurate choice of the splicing point or threshold leads to critical model misspe-

ci�cation, with profound �nancial and strategic consequences for an insurer. These

impacts extend beyond reserving adequacy, particularly for incurred but not reported

(IBNR) claims in long-tailed lines of business, and the pricing of complex reinsurance

structures like stop-loss or aggregate covers, crucially a¤ecting solvency capital de-

termination (e.g., under Solvency II), the strategic design of reinsurance programs,
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and overall enterprise risk management and underwriting strategy.

The literature on determining thresholds in loss distributions is diverse. Tradi-

tionally, heuristic approaches or graphical diagnostic methods were often employed.

Heuristic methods include �xing a speci�c quantile (DuMouchel, 1983) or using for-

mulas depending on the sample size (Loretan and Phillips, 1994). Graphical methods

such as the Hill plot and its variants (Resnick, 1997; Kratz and Resnick, 1996) or

the mean excess plot (Davison and Smith, 1990) are widely used due to their intu-

itive nature. Comprehensive overviews of these and other methods are provided, for

example, by Scarrott and MacDonald (2012) and Reiss and Thomas (2007). How-

ever, these approaches often allow for considerable practitioner discretion, which can

be a limitation in contexts requiring auditable and objective methodologies, such as

regulatory reporting or internal model validation.

More recent research has increasingly focused on automated and more object-

ive procedures. Many of these methods are based on �tting the generalized Pareto

distribution (GPD) to losses exceeding a certain threshold in the context of ap-

proaches based on extreme value theory (EVT). Examples include the minimum

Kolmogorov-Smirnov distance procedure (Clauset et al., 2009; Drees et al., 2020),

sequential goodness-of-�t tests (e.g., Bader et al., 2018; Northrop and Coleman,

2014; Wadsworth, 2016), and criteria based on quantile discrepancies and automated

eye-balling methods (Danielsson et al., 2019). Mixture distribution models with the

threshold estimated as a part of model parameters have also been proposed (MacDon-

ald et al., 2011; Wadsworth and Tawn, 2012). Although these automated procedures

reduce subjectivity, they often depend on the speci�c assumption of a particular tail

model, such as the GPD. Additionally, the stability of the chosen threshold when

new data becomes available can present a challenge. An alternative methodological

approach to identify structural breaks in distributions is o¤ered by the statistical

literature on estimating jump points or change points (e.g., Chu and Cheng, 1996;

Couallier, 1999; Huh, 2002). Building upon such techniques, Funke and Hirukawa

(2025) propose a nonparametric kernel-based approach for skewed cost distributions,

which serves as a related starting point for the methodology developed herein.

This paper addresses the challenge of estimating splicing points in actuarial loss

distributions by introducing a novel nonparametric approach. As in Funke and

Hirukawa (2025), we interpret the splicing point as a jump location in the underlying

distribution. In this context, our proposal may be viewed as a natural extension of

theirs. However, there is a certain weakness in the approach by Funke and Hirukawa

(2025). When the splicing point is located in the right tail region in which data
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points are sparse and/or the associated jump size is small, their approach has di¢ -

culty in identifying the splicing point in the original scale. To estimate the location

of a splicing point precisely under such unfavorable environments, we propose trans-

forming the original, non-negative loss data onto the unit interval [0; 1]. The data

transformation has the advantage of magnifying the relative jump size at the splicing

point and compressing the distances between adjacent observations in the relevant

area, thereby facilitating the detection of the jump location.

Following Funke and Hirukawa (2025), we take the absolute di¤erence of two

nonparametric kernel density estimates �now in the transformed scale �as the dia-

gnostic function. The splicing point estimator can be obtained by back-transforming

the maximizer of the diagnostic function into the original scale. To compute density

estimates in the transformed scale, we employ the asymmetric beta kernel proposed

by Chen (1999). The kernel is de�ned as the probability density function (pdf) of the

beta distribution Betafy=b+ 1; (1� y)=b+ 1g and takes the form

KB(y;b)(u) =
uy=b(1� u)(1�y)=b

Bfy=b+ 1; (1� y)=b+ 1g1 fu 2 [0; 1]g (1)

for a data point u 2 [0; 1], a design point y 2 [0; 1], and a smoothing parameter

b > 0, where B(p; q) =
R 1
0
tp�1(1� t)q�1dt for p; q > 0 is the beta function, and 1f�g

denotes an indicator function. This kernel is particularly suitable as it is adapted to

the boundaries of the unit interval, thus avoiding boundary bias problems that can

occur with standard kernels. Furthermore, like the gamma kernel by Chen (2000), the

beta kernel possesses adaptive smoothing properties, o¤ering �exibility in capturing

various distributional shapes. The nonparametric nature of our approach o¤ers a key

advantage in situations of high model uncertainty or where distributional assumptions

for the tail are di¢ cult to verify.

It is demonstrated that our splicing point estimator is strongly consistent and

asymptotically normal. Remarkably, the estimator is super-consistent in the sense

that its convergence rate exceeds
p
n, where n is the sample size. Super-consistency

is bene�cial in many actuarial applications, for instance, in two-step estimation pro-

cedures for loss distributions or in post-estimation goodness-of-�t testing, as it does

not harm the convergence rates of subsequent analyses.

An appealing �nite-sample performance of our splicing point estimator is con-

�rmed through Monte Carlo simulations. Its practical relevance to the analysis on

actuarial loss distributions is also illustrated in several applications to real non-life

insurance datasets. These applications show that our method can be a valuable and

�exible addition to the existing toolkit for threshold detection in actuarial practice.
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It can be particularly useful in model validation processes or as a complementary

tool alongside existing methods, especially when it comes to identifying the point at

which the dynamics of large claims change signi�cantly.

The remainder of this paper is organized as follows. Section 2 introduces the

estimation of the splicing point based on data transformation and the beta kernel.

In Section 3, convergence properties of the proposed estimator, namely, strong con-

sistency and asymptotic normality, are presented. Section 4 conducts Monte Carlo

simulations to compare the �nite-sample behavior of our splicing point estimator with

those of several competing methods. In Section 5, the proposed estimation approach

is applied to real-world actuarial datasets. Section 6 concludes. Proofs of theorems

and propositions are provided in the Appendix. Proofs of lemmata are deferred to

the Supplementary Material, which is available on the second author�s webpage.

This paper adopts the following notational conventions: �an � bn�means that

an=bn converges to 1; �an = o (bn)�signi�es that an=bn converges to 0; �an = O (bn)�

means that an=bn is bounded; and we say that �an � bn� if there exist constants

0 < c1 < c2 < 1 so that c1an � bn � c2an. For a function h (x) and a point

c, h(c�) = limx"c h(x), h(c+) = limx#c h(x) and h(m) (x) = dmh (x) =dxm denote the

left and right limits, and the mth-order derivative, respectively. The abbreviation

�a:s:�stands for �almost surely�. Finally, the expression �X d
= Y �reads �A random

variable X obeys the distribution Y .�

2 Splicing Point Estimation Using Transformed Data

We tackle the problem of estimating the splicing point under the same setup as in

Funke and Hirukawa (2025). It is suspected that fX(x), the pdf of an actuarial loss

variable X 2 R+, is discontinuous at t0 on a prespeci�ed closed interval I0 := [t; t]

with 0 < t < t < 1. Throughout it is assumed that the interval I0 is located in the
right tail part of the underlying loss distribution. Prior knowledge on the interval is

not at all unrealistic, because quite often practitioners have a rough idea about the

location of the threshold through, for example, preliminary threshold estimates from

EVT methods, historical experiences, speci�c policy limits, or empirical quantiles

relevant for determining attachment points or layer boundaries. It is also assumed

that the pdf fX (x) for x 2 I0 can be modelled as

fX (x) = gX (x) + d01 fx < t0g ; (2)
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where gX (x) is a su¢ ciently smooth function, t0 2 I0 is the discontinuous, splicing

point. Moreover, the jump size

d0 := fX
�
t�0
�
� fX

�
t+0
�

(3)

is assumed to satisfy jd0j 2 (0;1). This setup allows for a potential discontinuity at
the threshold where the behavior of large claims might di¤er signi�cantly from the

bulk of the distribution.

Given n i.i.d. observations fXigni=1 representing individual insurance losses, we
aim to estimate the splicing point t0 nonparametrically. Suppose that the jump size

jd0j is so small that it is di¢ cult to estimate t0 precisely in the original scale R+.
This situation can arise in practice, particularly with sparse data in the tail or when

the change in density, while potentially signi�cant for risk assessment, is not abrupt.

In this environment, it is reasonable to consider a contraction of the data scale via

some transformation. Let T : R+ 7! [0; 1] be a known monotone transformation

function. An obvious example of T is the cumulative distribution function (cdf) of

a non-negative random variable, potentially chosen to re�ect typical shapes of loss

distributions. Also let fYigni=1 := fT (Xi)gni=1 2 [0; 1] be the transformed observations.
Accordingly, we reformulate our problem as one in the transformed scale. To be more

concrete, assume that fY (y), the pdf of the transformed loss variable Y 2 [0; 1],

admits the local structure

fY (y) = gY (y) + dT1 fy < tTg (4)

on a prespeci�ed interval IT := [tT ; �tT ] :=
�
T (t) ; T

�
t
��
� [0; 1], where gY (y) is a

su¢ ciently smooth function, tT := T (t0) 2 IT is the splicing point, and

dT := fY
�
t�T
�
� fY

�
t+T
�

(5)

is the jump size.

The correspondence between (2)-(3) and (4)-(5) can be immediately found. As-

sume that T has a continuous and uniformly bounded �rst-order derivative. Then,

by (4) and a straightforward calculation,

fX (x) = gX (x) + d01 fx < t0g
= gY fT (x)gT (1) (x) + dTT

(1) (x)1 fx < t0g : (6)

Because of continuity of T (�) and T (1) (�) at t0, we also have

d0 = dTT
(1) (t0) : (7)
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As will be documented in Assumption 3(ii) shortly, if 0 < T (1) < 1 on [0; 1] is the

case, then jd0j < jdT j holds and thus it becomes easier to estimate the splicing point
in the transformed scale.

The above argument ensures that we can recover the splicing point in the ori-

ginal scale by concentrating only on estimating the one in the transformed scale. In

what follows, we develop a nonparametric method of estimating tT using transformed

observations fYigni=1 2 [0; 1]. On the one hand, tT is likely to be estimated fairly

precisely if it is located in the middle part of [0; 1]. On the other hand, even if tT is

moved away from two boundaries 0 and 1, the region above tT is originally the tail

part and thus the number of observations falling into this region is small. There-

fore, splitting the entire sample into two sub-samples near tT results in imbalance

in sample sizes of two sub-samples and an imprecise density estimate from the right

sub-sample. Inevitably, it is highly desirable to take measures to estimate fY
�
t�T
�

using the entire sample. Then, following Funke and Hirukawa (2025), we propose to

use �shifted�beta kernels KB(y;b;��) (�), which are de�ned as pdfs of beta distributions
Beta f(y ��) =b+ 1; (1� y ��) =b+ 1g, i.e.,

KB(y;b;��) (u) =
u(y��)=b (1� u)(1�y��)=b

B f(y ��) =b+ 1; (1� y ��) =b+ 1g1 fu 2 [0; 1]g ;

where b (= bn > 0) is the smoothing parameter, and �(= �n > 0) plays the role of

a shift parameter. Notice that each parameter is common across two kernels and

shrinks toward zero at a certain rate; see Assumption 4 below for more details on

their rate requirements. Obviously, KB(y;b;��) (�) collapse to Chen�s (1999) original
beta kernel (1) when � = 0. The kernels can be interpreted as those designed to

smooth the data o¤ the target design point y by a margin of �. In addition, they put

the maximum weight at sightly left or right of y because they have their modes at

y ��.
We exploit as the source of our splicing point estimator the di¤erence between two

density estimates that is created by the shift parameter �. Let the shifted density

estimators be

f̂�Y (y) :=
1

n

nX
i=1

KB(y;b;��) (Yi) :

Also de�ne

Ĵ (y) := f̂�Y (y)� f̂+Y (y) :

We take
���Ĵ (y)��� as the diagnostic function for our splicing point estimation in the

transformed scale. Then, t̂T , the estimator of the splicing point tT , is de�ned as the
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maximizer of
���Ĵ (y)��� on y 2 IT , i.e.,

t̂T := argmax
y2IT

���Ĵ (y)��� :
Let t̂B

�
= t̂B (T )

�
be the estimator of t0, the splicing point in the original scale,

where the subscript �B� signi�es dependence of the estimator on the beta kernel.

Because tT = T (t0), it is natural to de�ne the estimator for t0 as T�1
�
t̂T
�
, i.e.,

t̂B := T�1
�
t̂T
�
:

3 Convergence Properties of the Splicing Point Es-
timator

This section presents large-sample properties of the splicing point estimator t̂B. Our

particular focus is on its strong consistency and asymptotic normality. In addition,

existence of the unique maximum in the probability limit of Ĵ (y) on y 2 IT is

demonstrated. This is a key condition for consistency of t̂B.

3.1 Regularity Conditions

Convergence results rely on the fact that Ĵ (y) can be approximated by the di¤erence

between two incomplete beta function ratios; see equations (12)-(14) below for more

details. To deliver the results, we impose the following regularity conditions.

Assumption 1. fXigni=1 2 R+ are i.i.d. random variables.

Assumption 2.

(i) The pdf fY (y) is uniformly bounded on y 2 [0; 1].

(ii) The local structure (4) holds, g(2)Y (y) is uniformly bounded on y 2 [0; 1], and
g
(3)
Y (y) is Lipschitz continuous and bounded on y 2 IT .

Assumption 3. The transformation T : R+ 7! [0; 1] satis�es the followings.

(i) T (x) is injective with T (0) = 0 and T (tM) = 1=2 for tM :=
�
t+ t

�
=2.
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(ii) T (1) (x) is Lipschitz continuous on x 2 R+, and there are constants 0 < T (1) �
1=2 � T

(1)
< 1 so that T (1) � T (1) (x) � T

(1)
holds for all x 2 I0.

Assumption 4. Tuning parameters b and � satisfy b;�! 0,

b3=4

�
+

�

b1=2+�1
+
b1=2�4�1

n1��2�2
! 0 (8)

for some arbitrarily small �1; �2 > 0, and

lnn

nb3=2��
= O (1) (9)

for some � 2 [0; 1), as n!1.

Assumptions 1, 2 and 4 are standard for uniform approximations to asymmetric

kernel estimators with support on [0; 1]. Similar conditions can be found, for example,

in Hirukawa et al. (2022). Assumption 1 ensures that fYigni=1 2 [0; 1] are also i.i.d.
random variables. Assumption 2(i) is a key condition for uniform approximation

of f̂�Y (y) on y 2 IT in Proposition 1. It also follows from Assumption 2(ii) that

f
(1)
Y (t

�
T ) = f

(1)
Y (t

+
T ). This type of condition has often been imposed in simulation

studies on change point detection (e.g., Chu and Cheng, 1996). Two boundedness

conditions on derivatives of the smoothed component gY (�) also serve as important
ingredients for approximations to E

n
Ĵ (p) (y)

o
on y 2 IT for p = 0; 1; 2. These

approximations in turn play an important role in establishing asymptotic normality

of t̂B.

Assumption 3(i) means that T is a one-to-one mapping, and thus the inverse

mapping T�1 exists. While T (0) = 0 is a normalization, T (tM) = 1=2 means that

T maps the midpoint of I0 to that of [0; 1] (and as a result, the entire part of the

transformed interval IT can be located roughly in the middle part of [0; 1]). The fact

that tT is located away from two boundaries 0 and 1 enables us to estimate tT more

easily, as will be explained after Proposition 2. Positivity of T (1) (x) in Assumption

3(ii) implies monotonicity of T . It follows from T (1) (x) < 1 for x 2 I0 and (7) that
jd0j < jdT j holds. This ensures that estimating tT in the transformed scale is easier
than estimating t0 in the original scale. There are many transformations that satisfy

Assumption 3. Table 1 lists examples of such transformations.

TABLE 1 ABOUT HERE

Assumption 4 controls the shrinkage rates of tuning parameters b and �. The

condition (8) draws the following important conclusions: (i) b = o (�); (ii) b1=2 =

8



o (�2=b); and (iii) � = o
�
�3=b3=2

�
. These are frequently used to controls remainder

terms in the asymptotic expansions. It also follows from b = o (�) and � = o
�
b1=2
�

that although the shift parameter � should shrink to zero more slowly than the

smoothing parameter b, the convergence rate of � must not be too slow (or must be

faster than b1=2, to be more precise). The condition (8) also implies that

lnn

nb1=2
=

�
b1=2�4�1

n1��2�2

��
lnn

n�2

��
�

b1=2+�1

�2
b6�1 ! 0:

This result serves as a prerequisite for Proposition 1, as will be revealed shortly.

The other condition (9) is an additional technical requirement for strong uniform

consistency of t̂B.

3.2 Approximation to the Diagnostic Function

Below asymptotic properties of the splicing point estimator t̂B are explored. Our

analysis starts from a uniform approximation to f̂�Y (y) on IT , which is documented

in the next proposition. To save space, we adopt the shorthand notation K�
y (u) =

KB(y;b;��) (u) whenever no confusion may arise.

Proposition 1. If Assumptions 1-4 hold, then

sup
y2IT

����E nf̂�Y (y)o��gY (y)� g
(1)
Y (y)� + dT

Z tT

0

K�
y (u) du

����� = O (b) ; (10)

and

sup
y2IT

���f̂�Y (y)� E
n
f̂�Y (y)

o��� = O

 r
lnn

nb1=2

!
a:s:; (11)

as n!1.

A direct outcome from Proposition 1 is that

sup
y2IT

���Ĵ (y)� E
n
Ĵ (y)

o��� = O

 r
lnn

nb1=2

!
a:s:

Because
������Ĵ (y)���� ���E nĴ (y)o������ � ���Ĵ (y)� E

n
Ĵ (y)

o���, it holds that
���Ĵ (y)��� = ���E nĴ (y)o���+O

 r
lnn

nb1=2

!
a:s: (12)

uniformly on IT . In short,
���E nĴ (y)o��� constitutes the dominant term in the dia-

gnostic function
���Ĵ (y)���, or the e¤ect of the location y on ���Ĵ (y)��� is governed by the
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value of
���E nĴ (y)o��� in a �rst-order asymptotic sense. This result also plays a key

role in the proof of Theorem 1 in the Appendix.

It follows from (10) that
���E nĴ (y)o��� can be further approximated by���E nĴ (y)o��� := jdT j J (y) +O (�) (13)

uniformly on IT , where

J (y) =

����Z tT

0

K�
y (u) du�

Z tT

0

K+
y (u) du

����
=

Z tT

0

K�
y (u) du�

Z tT

0

K+
y (u) du

=: B

�
y ��
b

+ 1;
1� y +�

b
+ 1; tT

�
�B

�
y +�

b
+ 1;

1� y ��
b

+ 1; tT

�
; (14)

and

B (p; q; r) =
1

B (p; q)

Z r

0

yp�1 (1� y)q�1 dy

for p; q > 0 and r 2 [0; 1] is the incomplete beta function ratio.
It is natural to verify whether J (y) on y 2 IT indeed has a unique maximum at tT

(or within a shrinking neighborhood of tT even if it is not maximized exactly at this

point). In reality, however, it is quite cumbersome to look into the local property of

J (y) analytically. It is well known that as p; q ! 1, the pdf of Beta (p; q) can be
approximated by a normal pdf. Lemma A1 in the Appendix formally o¤ers such

an approximation, which is a re�nement of Lemma A.1 of Moscovich, Nadler and

Spiegelman (2016). Based on Lemma A1, the next proposition refers to properties

of the approximation and the maximizer of the approximated function.

Proposition 2. If Assumption 4 holds, then the followings hold true.

(i) De�ne

Q (y) :=

"
(1 + 2b)

p
1 + 3b f(1� 2y) tT + (y + b)g

f(y + b) (1� y + b)g3=2

#

� �

(s
1 + 3b

b (y + b) (1� y + b)
(tT � y + (2tT � 1) b)

)
;

10



where � (�) is the pdf of N (0; 1). Then,

sup
y2IT

����J (y)�Q (y)

�
�

b1=2

����� = O

�
�3

b3=2

�
;

as n!1.

(ii) Q (y) on IT has a unique maximum at y = t�T = tT + 2 (2tT � 1) b+O (b2), as

n!1.

As a consequence of Propositions 1 and 2, it holds that���Ĵ (y)��� � jdT j J (y) � jdT jQ (y)� �

b1=2

�
(15)

on y 2 IT . Furthermore, Proposition 2(ii) suggests that t�T = tT + O (b2) when

tT = 1=2. In this case, the maximizer of Q (y) is considerably close to the true

splicing point in the transformed scale, so are the maximizers of J (y) and
���Ĵ (y)���.

Although the location of the splicing point in the original scale is unknown, we have

a high chance to estimate it precisely in the transformed scale as long as it is mapped

to (a neighborhood of) 1=2. This is a rationale of mapping the midpoint of I0 to 1=2

in Assumption 3(i).

3.3 Consistency

The theorem below documents strong consistency of t̂B for t0.

Theorem 1. Let cn := b1=2+�1 for �1 de�ned in Assumption 4. If Assumptions 1-4

hold, then
��t̂B � t0

�� = O (cn) a:s: as n!1.

It follows from (15) that maximizing the diagnostic function
���Ĵ (y)��� on y 2 IT

is a well-de�ned problem, and the relation is utilized as a fundamental part of the

proof of this theorem. As an intermediate product of the proof, we can also obtain��t̂T � tT
�� = Op (cn) = op

�
b1=2
�
. As will be seen in Lemma A7 in the Appendix, the

weak consistency of t̂T with this rate plays a key role in establishing the asymptotic

normality of t̂T (and thus that of t̂B).

3.4 Asymptotic Normality

The theorem below documents asymptotic normality of t̂B. As in Theorem 1 of Funke

and Hirukawa (2025), we derive the limiting distribution indirectly. The indirect de-

rivation comes from the fact that t̂T solves the �rst-order condition Ĵ (1)
�
t̂T
�
= 0.
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Then, by a mean-value expansion of the left-hand side around t̂T = tT and suit-

able approximations to the incomplete beta function ratio, digamma and polygamma

functions, we can obtain the asymptotic normality of t̂T as an intermediate result.

This is possible because unlike fY (y), its estimates f̂�Y (y) are smooth functions even

at tT due to di¤erentiability of shifted beta kernels K�
y (�) with respect to y. The

asymptotic normality of t̂B can be reached by back-transforming each part of the

intermediate result into the original scale.

Theorem 2. If Assumptions 1-4 hold, thenr
n

b1=2

�
t̂B � t0 �

�
1� T (t0) =2

T (1) (t0)

�
b f1 + op (1)g

�
d! N (0; VB)

as n!1, where

VB (= VB (T )) :=
3
p
�
p
T (t0) f1� T (t0)g
4d20T

(1) (t0)

�
fX(t

�
0 ) + fX(t

+
0 )

2

�
:

Remark 1. While it is di¢ cult to obtain asymptotic bias and variance of t̂B in light

of the indirect nature, the asymptotic distribution in Theorem 2 implies the �rst two

moments of t̂B. It can be immediately found that both bias and variance terms

are free of the shift parameter �, as in Theorem 2 of Funke and Hirukawa (2025).

In short, � does not a¤ect convergence properties of t̂B in a �rst-order asymptotic

sense.

In addition, the dominant bias term of t̂B depends on an unknown quantity t0.

This is a sharp contrast to Theorem 2 of Funke and Hirukawa (2025), in which the

leading bias coe¢ cient on t̂G, the splicing point estimator in the original scale based

on the gamma kernel, is free of unknowns. Therefore, an elementary bias correction

is applicable to t̂G with no price of additional spread. On the other hand, because

of the dependence of the bias of t̂B on t0, we do not pursue bias correction for t̂B.

Moreover, VB, the coe¢ cient of the dominant variance term, suggests that the

larger the magnitude of discontinuity jd0j, the easier the estimation of t0. The part
T (t0) f1� T (t0)g = tT (1� tT ) indicates that VB tends to be smaller as the splicing

point in the transformed scale is closer to either boundary of [0; 1]. However, this

interpretation is misleading. As shown in Lemma of Chen (1999), if the design point

at which smoothing is made by the beta kernel is located in the vicinity of a boundary,

then the convergence rate of the beta density estimator slows down. As a result, the

convergence rate of t̂B is also expected to decelerate.
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Remark 2. Theorem 2 also yields an approximation to the mean squared error

(AMSE) of t̂B as

AMSE
�
t̂B
�
=

�
1� T (t0) =2

T (1) (t0)

�2
b2 +

b1=2

n
VB = O

�
b2 +

b1=2

n

�
;

where O (b2) and O
�
b1=2=n

�
terms are leading squared bias and variance of t̂B, re-

spectively. Observe that orders of magnitude in leading squared bias and variance of

t̂B are the same as those of t̂G in Theorem 2 of Funke and Hirukawa (2025). In par-

ticular, the b1=2=n variance convergence rate is faster than the 1=n parametric rate,

or t̂B is super-consistent. Furthermore, no bias-variance trade-o¤ arises, because a

smaller b makes both squared bias and variance terms smaller.

Remark 3. One might naturally ask: can we estimate the splicing point more

precisely in the original scale or in the transformed scale? A comparison of asymptotic

variances of t̂B and t̂G could help answer this question. It follows from Theorem 2

of Funke and Hirukawa (2025) that

V ar
�
t̂G
�
� b1=2

n
VG :=

b1=2

n

3
p
�t
1=2
0

4d20

�
fX(t

�
0 ) + fX(t

+
0 )

2

�
:

Notice that the bias-corrected estimator ~tG = t̂G+b, which is advocated by Funke and

Hirukawa (2025), has the same asymptotic variance. Then, V ar
�
t̂G
�
=V ar

�
t̂B
�
�

VG=VB = T (1) (t0)
p
t0= [T (t0) f1� T (t0)g]. Now suppose that t0 � tM so that

T (t0) f1� T (t0)g � 1=4 by Assumption 3(i). In this case, V ar
�
t̂G
�
=V ar

�
t̂B
�
�

2T (1) (tM)
p
tM . Transformations T1 � T4 in Table 1 yield values of the right-hand

side as

2T (1) (tM)
p
tM =

8>><>>:
2=
�
�
p
tM
�

for T1
ln 2=

p
tM for T2

1=
�
2
p
tM
�

for T3
3 ln 3=

�
4
p
tM
�
for T4

:

For each of the four transformations, this quantity is less than unity when tM � 1, and
thus it appears that t̂B is less e¢ cient (and thus less appealing) than t̂G in realistic

settings with the splicing point on the right tail.

However, this comparison is based on the assumption that the smoothing para-

meter value b is common across two splicing point estimators. This is not the case in

reality. Once di¤erent values of b are allowed for the original and transformed scales,

e¢ ciency comparison between t̂G and t̂B becomes unclear. In the Monte Carlo study

in Section 4, we will make their e¢ ciency comparison in �nite samples.
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Remark 4. Some readers may wonder how to pick b and � for super-consistency

of t̂B under the constraints (8) and (9). For arbitrarily small �1; �2 > 0 as given

in Assumption 4, put � � b� for some � 2 (1=2 + �1; 3=4) and b � n�� for some

� 2 (0; (1� �2) = (2�� 1=2 + 4�1)). It is straightforward to see that such � and b

jointly satisfy (8). In addition, when � 2 (1=2; 3=4), we have

1� �2
1 + 4�1

<
1� �2

2�� 1=2 + 4�1
<
2 (1� �2)

1 + 12�1
;

where the two bounds (1� �2) = (1 + 4�1) and 2 (1� �2) = (1 + 12�1) are slightly below

1 and 2, respectively. Using this, we may draw the following three conclusions on

the convergence rate of t̂B:

1. We are always allowed to pick � > 1=2. Then, AMSE
�
t̂B
�
= o (n�1), or t̂B

becomes super-consistent.

2. It is even possible to set � = 2=3, in particular. This value balances orders

of magnitude in the squared bias and variance so that O (b2) = O
�
b1=2=n

�
=

O
�
n�4=3

�
. As a consequence, AMSE

�
t̂B
�
= O

�
n�4=3

�
. It is also clear that the

AMSE convergence rate of t̂B is determined by the exponent �. AMSE
�
t̂B
�
=

O (b2) (i.e., the squared bias dominates) for � � 2=3, and AMSE
�
t̂B
�
=

O
�
b1=2=n

�
(i.e., the squared bias becomes asymptotically negligible) otherwise.

The latter case corresponds to an �undersmoothing�scenario so that nb3=2 ! 0

holds. As a consequence, the asymptotic normality statement in Theorem 2

reduces to
p
n=b1=2

�
t̂B � t0

� d! N (0; VB).

3. The best possible rate is AMSE
�
t̂B
�
= O (n�2+") for an arbitrarily small " > 0.

The rate can be attained by setting � and � slightly above 1=2 and slightly below

2, respectively.

Furthermore, it is not hard to see that for � and b de�ned above, we can always

�nd some � 2 [0; 1) satisfying (9). To see this, observe that (9) holds if nb3=2�� !1
at a polynomial rate. The rate requirement is attained for case 1 by setting � slightly

above 1=2 and � = 0. For case 2, � = 2=3 and any � 2 (0; 1) can jointly establish
a polynomial divergence of nb3=2��. Finally, for case 3, � slightly below 2 and �

slightly below 1 lead to nb3=2�� !1 at a polynomial rate.

Remark 5. Remark 4 indicates that t̂B becomes super-consistent when suitably

implemented. Super-consistency is bene�cial in many applications. For example,
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Reynkens et al. (2017) study a two-step estimation of actuarial loss distributions. In

their procedure, the splicing point alone is initially estimated, and all remaining model

parameters are estimated in the second step. Our splicing point estimator t̂B �ts

well with their procedure, because its convergence rate is faster than the parametric

one. Furthermore, Clauset et al. (2009) argue that �tting a power law distribution

to the tail part has nothing to do with a plausible match of the distribution with

the data, and they recommend a goodness-of-�t test as a post-estimation analysis.

Super-consistency of t̂B does no harm to convergence rates of the test statistic, either.

4 Finite-Sample Performance

4.1 Monte Carlo Design

In the simulation study below, three alternative models are considered as the distribu-

tion of the univariate random variable X 2 R+. For each distribution, the common
splicing point t0 = 4 is maintained.

In the �rst model, labelled as Model A, X is drawn from a log-normal-like distri-

bution. What di¤ers from a usual log-normal distribution is that a quadratic term

is added to the pdf on the interval [0; t0) = [0; 4). Speci�cally, the pdf f (x) is

fX (x) =

�
1

1 + (2=3)Dt0

�"
1

x�
p
2�
exp

(
�(lnx� �)2

2�2

)
+ S (x)

#
; (�; �) =

�
3

5
;
1

2

�
;

where

S (x) := D

(
1�

�
x� t0
t0

�2)
1 fx < t0g

and

d0 = fX
�
t�0
�
� fX

�
t+0
�
=

D

1 + (2=3)Dt0
:

Speci�cally, we take D = 3=52 so that the jump size becomes d0 = 0:05. It also

follows from f
(1)
X (t

�
0 ) = f

(1)
X (t

+
0 ) that (2) is satis�ed in the neighborhood of t0.

The second and third models, labelled as Models B and C, share common struc-

ture. The distribution for each model is spliced exactly at t0 = 4, and the pdf of X

takes the general form

fX (x) = fL (x)1 fx < t0g+ (1� cL) fR (x)1 fx � t0g ;

where fL (x) is some density function truncated at t0, fR (x) is another density func-

tion with support on [t0;1), and cL :=
R t0
0
fX (x) dx =

R t0
0
fL (x) dx ensures unity
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of the integral of fX (x) over its entire support R+. To put it another way, fL (x)

and fR (x) represent bulk and tail models, respectively. The bulk model fL (x) is

common but the tail model fR (x) di¤ers across Models B and C. The bulk part is

modelled commonly as the Weibull distribution with density

fL (x) =
�

�

�x
�

���1
exp

n
�
�x
�

��o
; (�; �) =

�
9

4
;
5

2

�
:

The tail part for Model B is the GPD with density

fR (x) =
1

s

�
1 +

� (x� t0)

s

��(1+1=�)
1 fx � t0g ; (�; s) =

�
1

4
;
3

2

�
;

whereas the one for Model C is the (shifted) half-normal distribution with density

fR (x) =
1

&

r
2

�
exp

(
�(x� t0)

2

2&2

)
1 fx � t0g ; & =

3p
2�
:

These setups produce the common jump size d0 = fX
�
t�0
�
� fX

�
t+0
�
� 0:05. Drees

et al. (2020, p.83) argue that discontinuity of the density at the threshold is an easy

scenario for the threshold detection method by Clauset et al. (2009). Models B and

C violate (2) by construction but may be more realistic, because it is hard to judge

whether the local structure (2) indeed holds in real data. Considering that the GPD

is chosen as the tail model, Model B can be thought of as most favorable to existing

threshold detection methods. In contrast, Model C has a normal-type thin tail. Our

aim is to see how t̂B will behave when an important regularity condition is violated

and/or when tail thickness changes.

We simulate 1000 Monte Carlo replications of fXigni=1 with sample size n 2
f250; 500g from each model, and n observations fXigni=1 in the original scale are
transformed into fYigni=1 via T1�T4 in Table 1. Invoke that each of four transforma-
tion T1�T4 depends on the midpoint tM of the prespeci�ed interval I0 in the original

scale. It is also expected that tM = t0 would be the most ideal scenario for our

splicing point estimation method in the transformed scale. Because it is not possible

to know whether tM coincides with (or lies in the vicinity of) t0, we are motivated to

investigate how a particular choice of I0 will in�uence the �nite-sample performance

of t̂B. Then, the following three cases are examined:

I0 =

8<:
[t0 � 1; t0 + 1] = [3; 5] : Case (i)
[t0 � 1=2; t0 + 3=2] = [3:5; 5:5] : Case (ii)
[t0 � 3=2; t0 + 1=2] = [2:5; 4:5] : Case (iii)

:
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Observe that t0 = tM = 4, t0 = 4 < 4:5 = tM and t0 = 4 > 3:5 = tM hold for Cases

(i)-(iii), respectively. For convenience, Table 1 provides the magni�cation factor

dT=d0 = 1=T
(1) (t0) (see (7)) and its values in three cases for each transformation.

Before proceeding, Table 2 presents the mode of the distribution ofX, the constant

cL, left and right limits of the density at the splicing point fX
�
t�0
�
, and the jump

size d0 = fX
�
t�0
�
� fX

�
t+0
�
. In each model, roughly 95% of observations concentrate

on the interval [0; t0) (i.e., in the bulk region). The densities for Models A and B

have a polynomial decaying tail. These features reasonably mimic properties of cost

distributions.

TABLE 2 ABOUT HERE

Our estimation procedure for t0 is implemented as follows. For each of four

transformations T1 � T4 in Table 1, there are two optimizations required, namely, (i)
the one for tuning parameters (b;�) and (ii) the other for the search of the splicing

point. For (i), Remark 4 suggests � 2 (1=2; 3=4), and thus we restrict our attention to
four values, namely, � 2 f0:55; 0:60; 0:65; 0:70g. A few cross-validation (CV) methods
for b are investigated, and their details are deferred to the next section. For each

CV method, candidates of b are taken from 50 equally-spaced grids over the interval

[0:005; 0:250]. For (ii), after (b;�) are determined, the location of the splicing point

is searched via a numerical optimization routine for the diagnostic function
���Ĵ (y)��� on

the interval IT in the transformed scale.1

Finite-sample performance of t̂B is compared with those of splicing point estimat-

ors in the original scale and automated threshold detection methods. For the former,

the splicing point estimator in the original scale using the shifted gamma kernels t̂G
and its bias-corrected version ~tG = t̂G + b by Funke and Hirukawa (2025) are invest-

igated. For the latter, the followings are examined: (a) the minimum KS distance

procedure between the empirical and GPD-based distribution functions by Clauset

et al. (2009) [KS]; (b) the minimum quantile discrepancy criterion for the mean

absolute deviation between empirical and GPD-based quantiles by Danielsson et al.

(2019) [Q-MAD]; (c) the minimum quantile discrepancy criterion for the sup-norm

between empirical and GPD-based quantiles by Danielsson et al. (2019) [Q-SUP]; (d)

the automated Eye-Balling method based on tail index estimates by Danielsson et al.

1The reason why di¤erent algorithms are utilized for (i) and (ii) is as follows. While a numerical
optimization routine substantially reduces computation time for (i), it often �nds local extrema
and corner solutions because of a high degree of nonlinearity in CV criteria. A grid search can

circumvent these issues. In contrast, as (15) indicates,
���Ĵ (y)��� is concave on IT , and a numerical

optimization routine helps expedite computation for (ii).
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(2019) [AEB]; and (e) the Anderson-Darling sequential testing procedure by Bader et

al. (2018) [ADST]. For (e), candidates of thresholds are 20 empirical percentiles from

50:0% until 97:5% with an increment of 2:5%, i.e., f50:0%; 52:5%; : : : ; 95:0%; 97:5%g.
The 5% level of signi�cance is used for testing, and p-values for multiple tests are

adjusted by the ForwardStop procedure.

All simulations are conducted on R. In particular, R-packages �poweRlaw�, �tea�

and �eva�are employed to implement automated threshold detection methods (a),

(b)-(d) and (e), respectively..

4.2 Smoothing Parameter Selection

Selecting the smoothing parameter b is the most important practical issue. In our

context, values of (b;�) must be determined before threshold location search so that

the diagnostic function can be �xed on IT . The implementation methods below

largely follow those discussed in Section 4.2 of Funke and Hirukawa (2025).

Before proceeding, based on the dependence of � on b, put � = b� for a given

�. Accordingly, f̂�Y (y) are rewritten as f̂
�
Y;b (y;�), which signify the dependence of

density estimates on (b; �). Also let

f̂�Y;b;�i (y;�) :=
1

n� 1

nX
j=1;j 6=i

K�
y (Yj)

be density estimates using the sample with the ith observation eliminated. Finally,

denote the number of observations falling into IT as n0 :=
Pn

i=1 1 fYi 2 ITg. Using
these notations, we focus on the least-squares cross-validation (LSCV) criterion. It

is de�ned as

CVLS (b;�) = CV �
LS (b;�) + CV +

LS (b;�) ; (16)

where

CV �
LS (b;�) :=

Z
IT

n
f̂�Y;b (y;�)

o2
dx� 2

n0

X
i:Yi2IT

f̂�Y;b;�i (Yi;�) : (17)

Corresponding splicing point estimates are labelled �SB-LS�for each of transforma-

tions T1 � T4, where �SB�and �LS�abbreviate �shifted beta�and �least squares�,

respectively.

Alternatively we may rely on likelihood-based criteria. The likelihood cross-

validation (LCV) criterion, which is analogous to L̂2 (h) of Marron (1985) and equa-

tion (2.1) of Van Es (1991), is given by

CVL (b;�) = CV �
L (b;�) + CV +

L (b;�) ;

18



where

CV �
L (b;�) := �

X
i:Yi2IT

ln
n
f̂�Y;b;�i (Yi;�)

o
is the negative log-likelihood. Moreover, it is possible to turn to the modi�ed LCV

(MLCV) criterion, which corresponds to L̂5 (h) of Marron (1985) and equation (2.2)

of Van Es (1991). It takes the form of

CVML (b;�) = CV �
ML (b;�) + CV +

ML (b;�) ;

where

CV �
ML (b;�) := �

" X
i:Yi2IT

ln
n
f̂�Y;b;�i (Yi;�)

o
�

nX
i=1

Z
IT

K�
Yi
(u) du

#

= �
" X
i:Yi2IT

ln
n
f̂�Y;b;�i (Xi;�)

o
�

nX
i=1

�
B

�
Yi ��
b

+ 1;
1� (Yi ��)

b
+ 1; �tT

�
�B

�
Yi ��
b

+ 1;
1� (Yi ��)

b
+ 1; tT

���
;

and the second term is intended to eliminate the endpoint e¤ect of the interval IT =

[tT ; �tT ]. However, LCV and MLCV tend to produce very similar and quite small

smoothing parameter values. As a result, splicing point estimates implemented by

these CV criteria become unstable and their performance measures are inferior to

those implemented by LSCV. Therefore, we abstain from reporting the results from

LCV or MLCV.

On the other hand, t̂G is implemented by MLCV with the exponent � �xed at

0:70. This particular implementation method is based on simulation results in Funke

and Hirukawa (2025), and the MLCV criterion for t̂G can be also found therein.

Candidates of b are taken from 100 equally-spaced grids over the interval [0:005; 0:500].

Finally, the bias-corrected estimator ~tG = t̂G + b can be obtained by simply adding

the smoothing parameter value chosen via MLCV to t̂G. Estimators t̂G and ~tG
are labelled �SG-ML�and �SG-ML-BC�, where �SG�, �ML�and �BC�abbreviate

�shifted gamma�, �modi�ed likelihood�and �bias corrected,�respectively.

TABLE 3 ABOUT HERE

4.3 Results

Table 3 presents several performance measures of splicing point or threshold estim-

ators. These include the bias (�Bias�), standard deviation (�SD�) and root mean
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squared error (�RMSE�) of each threshold estimator over 1000 Monte Carlo samples.

In addition, for SG and SB estimators, Monte Carlo averages and standard deviations

(in parentheses) of CV smoothing parameters (�̂b�) are reported for reference.

We start from examining the results from automated threshold detection methods

that are immune to the choice of I0. It can be found that Q-MAD generates the

smallest RMSE among �ve automated methods for each model and sample size. Al-

though Model B is thought to be more favorable than Model A for these automated

methods, RMSEs of all these methods become worse in the former case. Rather,

results from Model C are comparable with those from Model A. Furthermore, there

are general tendencies of underestimation by KS, Q-MAD and ADST and overestim-

ation by Q-SUP and AEB. In particular, the degree of overestimation by AEB is

often substantial.

Now we look into kernel-based splicing point estimators. It can be immediately

seen that two SG estimators are inferior to SB estimators in terms of SD and RMSE,

regardless of the choice of I0. A large SD in SG indicates that SG tends to be

less e¢ cient in �nite samples than SB. It is not surprising that the splicing point

estimate by SG becomes more volatile. Invoke that in our Monte Carlo design, the

discontinuous point, which is located over the right-tail region in the original scale,

has a tiny jump size. Under such circumstances, SG methods have di¢ culty in

spotting a vertical gap over the sparse and fairly �at region. It turns out that data

transformation is a better option than bias correction in the original scale.

While RMSEs from SG do not decrease with the sample size, those from SB do

so in many cases. The latter numerically con�rms consistency of SB. A closer look

also clari�es that results from SB are largely a¤ected by choices of the interval I0, the

transformation T and the exponent �. First, as regards the interval, Case (ii), i.e.,

I0 = [3:5; 5:5], produces the smallest RMSE for each SB estimator. This implies that

SB method can estimate the splicing point more precisely if it lies in the left-hand

side of the prespeci�ed interval. In this view, it could be ideal to set the interval

longer on the side of the right tail. Second, as regards the transformation, T3 has

a clear advantage in terms of RMSE. Superior performance of T3 can be attributed

to the largest magni�cation factor among four transformations. Therefore, it is

advisable to choose a transformation that yields a large magni�cation factor around

the midpoint of I0. Third, as regards the exponent, � = 0:70 outperforms other cases.

These general tendencies hold regardless of whether the local structure (2) holds in

the neighborhood of the true splicing point (Model A) or it is violated completely

(Models B and C).
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Before proceeding, it is worth giving readers a few words of warning about the

interpretation of results from Model C. SB-LS-T3 continues to dominate in terms

of RMSE over other competing methods. RMSEs of all �ve automated threshold

detection methods become smaller than those from Model B and comparable with

those from Model A. However, Model C has a normal-type thin tail. Accordingly,

such small estimation errors should be interpreted with caution. SB (and SG) meth-

ods are designed to �nd a vertical gap in the density, regardless of the degree of its

tail thickness. Improvement of RMSEs by �ve automated methods from Model B

(= their most favorable scenario) can be also regarded as paradoxical. These results

underpin the assertion by Clauset et al. (2009) that conducting a goodness-of-�t test

for the tail part is highly recommended after threshold detection; see Remark 5 for

reference.

At any rate, Monte Carlo results indicate that SB-LS-T3 with � = 0:70 con-

sistently outperforms automated threshold detection and other kernel-based splicing

point estimation methods in terms of RMSE. It is con�rmed that this estimator

has most practical relevance and importance, and thus it will be applied to real data

examples in the next section.

5 Real Data Examples

5.1 Data Description

We evaluate our proposed methodology using four openly available datasets of non-

life insurance losses. The datasets include: (A) Danish �re insurance losses; (B)

Norwegian �re insurance losses; (C) Belgian motor insurance losses; and (D) French

motor insurance losses. The dataset (A), which consists of 2; 492 observations of

�re-related losses recorded between 1980 and 1990, has achieved widespread recog-

nition in non-life actuarial mathematics following the in�uential analysis by McNeal

(1997). This dataset has played a signi�cant role in the development of statistical

methods for insurance mathematics, particularly in the modeling of loss distributions.

Its extensive adoption in the actuarial literature has made it a de facto benchmark

for evaluating new methodological approaches in non-life insurance modeling. The

dataset is available under the name �danish�in the R-package �SMPracticals�.

Datasets (B)-(D) correspond to �norfire�, �beMTPL97�and �freMTPL2sev� in

the R-package �CASdatasets�, respectively. For (B), the variable �Loss2012�(=

total loss amount denominated in 2012 constant Norwegian kroner) is chosen. Each

of these datasets has more observations than (A). To expedite computation, we select
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1=3, 1=6 and 1=10 subsamples randomly from full samples of (B)-(D), respectively,

so that the number of observations of each downsized sample is roughly the same as

that of (A).

The summary statistics presented in Table 4 con�rm that all four datasets exhibit

the characteristic features of loss distributions, including substantial right-skewness

and heavy tails. It can be also found that the downsized samples for (B)-(D) well

mimic distributional characteristics of their original samples.

TABLES 4-5 ABOUT HERE

5.2 Estimation Details

Judging from Monte Carlo results, we adopt SB-LS-T3 with � = 0:70 and compare it

with other competing methods, namely, �ve automated threshold detection methods

KS, Q-MAD, Q-SUP, AEB, ADST, and kernel-based splicing point estimation meth-

ods SG-ML(-BC) in the original scale. As in Section 4, CV smoothing parameters are

chosen over 50 equally-spaced grids over the interval [0:005; 0:250] for SB estimators

and 100 equally-spaced points over [0:005; 0:500] for SG estimators.

The selection of I0 builds on both theoretical considerations and previous empirical

�ndings. For (A), our choice incorporates insights from earlier studies, including the

parametric composite model estimates of Cooray and Ananda (2005) and Scollnik

and Sun (2012), who identify thresholds between 1 and 3 million kroner, as well as

the graphical analysis of Reynkens et al. (2017), who suggest a higher threshold

around 17 million kroner. Moreover, we prespecify the intervals for (B)-(D) to verify

threshold estimates from all automated methods but ADST.

ADST is also implemented as follows. The 5% level of signi�cance is adopted, and

p-values for multiple tests are adjusted by the ForwardStop procedure. Candidates of

thresholds are: 54 empirical percentiles from 20:0% until 99:5% with an increment of

1:5%, i.e., f20:0%; 21:5%; : : : ; 98:0%; 99:5%g, for (A) and (B); 14 empirical percentiles
from 80:0% until 99:5% with an increment of 1:5%, i.e., f80:0%; 81:5%; : : : ; 98:0%; 99:5%g,
for (C); and 34 empirical percentiles from 50:0% until 99:5% with an increment of

1:5%, i.e., f50:0%; 51:5%; : : : ; 98:0%; 99:5%g, for (D). The range of percentiles for
each dataset roughly coincides with the corresponding interval I0. Finally, if all

threshold candidates are rejected, then the largest (= 99:5%) empirical percentile is

chosen as the threshold estimate, as described on p.323 of Bader et al. (2018).
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5.3 Estimation Results

Table 5 presents the estimation results. Superscripts �y�on ADST indicate that the
99.5% empirical percentile is chosen because all threshold candidates are rejected. In

addition, superscripts �z�on SG-ML mean that an estimation failure occurs as the
diagnostic function is maximized at a boundary of I0.

No estimation problems arise for (A) and (B). In these cases, estimates from

SB-LS-T3 are close to those from KS, ADST and SG-ML(-BC). On the other hand,

for (C) and (D), both ADST and SG-ML exhibit estimation problems, whereas SB-

LS-T3 still yields splicing point estimates. For (C), the SB-LS-T3 estimate is close

to those of KS and Q-MAD, and for (D), it lies between those of Q-SUP and AEB.

The true location of the threshold or splicing point is unknown in each application.

Nonetheless, our approach can provide an estimate even when some other competing

methods fail to do so. Therefore, it represents a valuable complement to existing

methods for threshold detection, o¤ering enhanced capabilities for model validation.

6 Conclusion

This paper has introduced a novel nonparametric approach for estimating splicing

points in actuarial loss distributions, a critical task for accurate risk modeling, pricing,

and solvency capital determination. Recognizing the di¢ culties in detecting subtle

discontinuities in the tail of loss distributions, particularly when data are sparse, our

method leverages a data transformation technique. By mapping original loss ob-

servations onto the unit interval [0; 1], we e¤ectively magnify the jump size at the

splicing point and enhance the proximity of adjacent data points. The subsequent

estimation in this transformed scale is performed using the asymmetric beta kernel,

which adeptly handles boundary e¤ects inherent to the unit interval and o¤ers �ex-

ibility in capturing various distributional shapes without imposing strong parametric

assumptions.

We have established the key theoretical properties of our splicing point estimator,

including its strong consistency and asymptotic normality. Notably, the estimator

is super-consistent by achieving a faster convergence rate than the standard para-

metric
p
n-rate. This is particularly advantageous in actuarial tasks, where such an

estimator can be reliably used in multi-step estimation procedures or for subsequent

model validation without dominating the uncertainty of other parameter estimates.

Monte Carlo simulations have con�rmed the attractive �nite-sample performance of

our method, and its practical applicability has been demonstrated through real-world
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insurance loss datasets, showcasing its potential as a valuable and robust addition to

the actuary�s toolkit for threshold identi�cation.

Several avenues for future research emerge from this work. A natural extension

would be the development of a framework to detect and estimate multiple splicing

points, as complex loss dynamics may exhibit several distinct changes in their distri-

butional characteristics. Incorporating covariate information into the estimation of

splicing points could also provide deeper insights, allowing thresholds to vary based

on speci�c risk factors or policy characteristics. Further investigation into data-

driven methods for selecting the optimal transformation function T could enhance

the method�s objectivity and performance across diverse datasets.

A Appendix

The Appendix provides technical proofs of theorems and propositions. To save space,

we defer proofs of lemmata to the Supplemental Material. Before proceeding, the

following shorthand notation is adopted: for a > 0, � (a) =
R1
0
ta�1 exp (�t) dt is the

gamma function; 	(a) = d ln � (a) =da = �(1) (a) =� (a) and 	(m) (a) = dm	(a) =dam

signify the digamma and polygamma functions, respectively; _K�
c (u) = @K�

y (u) =@y
��
y=c
;

�K�
c (u) = @2K�

y (u) =@y
2
��
y=c
;
...
K
�
c (u) = @3K�

y (u) =@y
3
��
y=c
; and Hi = _K�

tT
(Yi) �

_K+
tT
(Yi). Finally, Z�b;y;m is the beta random variable so that Z

�
b;y;m

d
= Beta

�
p�b;y;m; q

�
b;y

�
:=

Beta f(y ��) =b+m+ 1; (1� (y ��)) =b+ 1g for m 2 f0; 1; 2; : : :g.

A.1 Proof of Proposition 1

This proposition can be established by a minor modi�cation of the proof of Theorem

2 in Hirukawa et al. (2022), and thus details are omitted. �

A.2 Proof of Proposition 2

The proof requires the following lemmata. While the case with m = 0 in Lemma

A2 is relevant for this proof, the cases with m � 1 will be employed for the proof of
Theorem 2. Moreover, Lemma A3 is known as the Komatsu inequality.

Lemma A1. Let Z d
= Beta (p; q), where p; q !1 and p � q so that both q = O (p)

and p = O (q) hold. Also suppose that the argument z in the pdf of the beta random

variable Z admits the location-scale transformation z := �+ �v, where

� = E (Z) =
p

p+ q
;
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and

�2 = V ar (Z) =
pq

(p+ q)2 (p+ q + 1)
:

Then, the pdf of Z can be approximated by

fZ (z) = fZ (�+ �v)

=
� (v)

�

�
1 +

vp
p+ q + 1

�r
p

q
�
r
q

p

�
+
v3

3

(�
q

p+ q

�3=2
1
p
p
�
�

p

p+ q

�3=2
1
p
q

)
+O

�
p�1
�#
:

Lemma A2. Let fZ�b;y;m (z), �
�
b;y;m and

�
��b;y;m

�2
be the pdf, the mean and the vari-

ance of the beta random variable Z�b;y;m, respectively, where

��b;y;m = E
�
Z�b;y;m

�
=
y ��+ (m+ 1) b
1 + (m+ 2) b

and �
��b;y;m

�2
= V ar

�
Z�b;y;m

�
=
b fy ��+ (m+ 1) bg f1� (y ��) + bg

f1 + (m+ 2) bg2 f1 + (m+ 3) bg
:

Then, as n!1, the incomplete beta function ratio B
�
p�b;y;m; q

�
b;y; tT

�
=
R tT
0
fZ�b;y;m

(z) dz

can be approximated byZ tT

0

fZ�b;y;m
(z) dz := C�b;y;m (0)+b

1=2
�
��b;y;mC

�
b;y;m (1) + ��b;y;mC

�
b;y;m (3)

	
+O (b) ; (A1)

where

C�b;y;m (k) =

Z A�b;y;m

B�b;y;m

vk� (v) dv for k = 0; 1; 3;

A�b;y;m =
tT � ��b;y;m
��b;y;m

=
[tT � y ��+ f(m+ 2) tT � (m+ 1)g b]

p
1 + (m+ 3) bp

b f(y ��) + (m+ 1) bg f1� (y ��) + bg
;

B�
b;y;m = �

��b;y;m
��b;y;m

=
f�y ��� (m+ 1) bg

p
1 + (m+ 3) bp

b f(y ��) + (m+ 1) bg f1� (y ��) + bg
;

��b;y;m =
b�1=2q

p�b;y;m + q�b;y + 1

 s
p�b;y;m
q�b;y

�

s
q�b;y
p�b;y;m

!
;

��b;y;m =
b�1=2

3

8<:
 

q�b;y
p�b;y;m + q�b;y

!3=2
1q
p�b;y;m

�
 

p�b;y;m
p�b;y;m + q�b;y

!3=2
1q
q�b;y

9=; ;
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and the O (b) rate in (A1) is uniform on y 2 IT . Furthermore, as n!1,

��b;y;m =
2y � 1p
y (1� y)

� �

2 fy (1� y)g3=2
+O (b) ;

and

��b;y;m =
1� 2y

3
p
y (1� y)

� �

6 fy (1� y)g3=2
+O (b) ;

where O (b) rates are again uniform on y 2 IT .

Lemma A3 (Komatsu, 1955). For x > 0,

2p
x2 + 4 + x

< e
x2

2

Z 1

x

e�
t2

2 dt <
2p

x2 + 2 + x
:

A.2.1 Proof of Proposition 2

Notice that it is easiest and fastest to verify all the calculations in this proof with the

aid of MapleTM or Mathematica R.

Proof of (i). Put m = 0 in (A1). In this case,
R tT
0
K�
y (u) du = B

�
p�b;y;0; q

�
b;y; tT

�
=R tT

0
fZ�b;y;0

(z) dz. Lemma A2 implies that each of ��b;y;0, &
�
b;y;0, C

�
b;y;0 (1), and C

�
b;y;0 (3)

is at most O (1) uniformly on y 2 IT . Then,Z tT

0

K�
y (u) du = C�b;y;0 (0) +O

�
b1=2
�
= �

�
A�b;y;0

�
� �

�
B�
b;y;0

�
+O

�
b1=2
�
;

where � (�) is the cdf of N (0; 1) and the O
�
b1=2
�
rate is uniform on y 2 IT .

We start from working on �
�
A�b;y;0

�
, where

A�b;y;0 =
ftT � y ��+ (2tT � 1) bg

p
1 + 3bp

b f(y ��) + bg f1� (y ��) + bg
:

By a third-order Taylor expansion of �
�
A�b;y;0

�
around � = 0,

�
�
A�b;y;0

�
= �

�
A�b;y;0

���
�= 0

+ �
�
A�b;y;0

� @A�b;y;0
@�

�����
�=0

�+O

�
�2

b

�
+O

�
�3

b3=2

�
;

where the coe¢ cient on the O (�2=b) term is shown to be common across �
�
A+b;y;0

�
and �

�
A�b;y;0

�
(although it is not speci�ed explicitly), and the O

�
�3=b3=2

�
rate is

uniform on y 2 IT . By straightforward calculations,

A�b;y;0
��
�= 0

=

s
1 + 3b

b (y + b) (1� y + b)
ftT � y + (2tT � 1) bg := Ab;y;0;
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and
@A�b;y;0
@�

�����
�=0

= �(1 + 2b)
p
1 + 3b f(1� 2y) tT + (y + b)g

2b1=2 f(y + b) (1� y + b)g3=2
:

It follows that

�
�
A�b;y;0

�
= �(Ab;y;0)� � (Ab;y;0)

(1 + 2b)
p
1 + 3b f(1� 2y) tT + (y + b)g

2b1=2 f(y + b) (1� y + b)g3=2

�
�

b1=2

�
+O

�
�2

b

�
+O

�
�3

b3=2

�
:

Next, we demonstrate that for each �xedm, �
�
B�
b;y;m

�
! 0 at an exponential rate

as n!1. It can be immediately found that B�
b;y;m = �b�1=2

p
y= (1� y) f1 + o (1)g

for each �xed m, where the o (1) term is uniform on y 2 IT . Hence, on y 2 IT ,

there are constants 0 < CB < CB < 1 so that CBb
�1=2 �

��B�
b;y;m

�� � CBb
�1=2. In

addition, Lemma A3 implies that

2e�x
2=2

p
2�
�p

x2 + 4 + x
� < Z 1

x

e�t
2=2

p
2�

dt <
2e�x

2=2

p
2�
�p

x2 + 2 + x
� :

When x =
��B�

b;y;m

��, lower and upper bounds of this double inequality are bounded
respectively by

2e�x
2=2

p
2�
�p

x2 + 4 + x
� � 2e�C

2
B=(2b)

p
2�

�q
C
2

B=b+ 4 + CB=b
1=2

� = O

(
b1=2 exp

 
�C

2

B

2b

!)
;

and

2e�x
2=2

p
2�
�p

x2 + 2 + x
� � 2e�C

2
B=(2b)

p
2�
�p

C2B=b+ 2 + CB=b
1=2
� = O

�
b1=2 exp

�
�C

2
B

2b

��
:

These converge to zero at an exponential rate as n ! 1, so does �
�
B�
b;y;m

�
=R1

jB�b;y;mj
�
e�t

2=2=
p
2�
�
dt.

Combining above results, we conclude thatZ tT

0

K�
y (u) du

= �(Ab;y;0)� � (Ab;y;0)
(1 + 2b)

p
1 + 3b f(1� 2y) tT + (y + b)g

2b1=2 f(y + b) (1� y + b)g3=2

�
�

b1=2

�
+O

�
�2

b

�
+O

�
�3

b3=2

�
:

Part (i) can be established because J (y) =
R tT
0
K�
y (u) du�

R tT
0
K+
y (u) du holds, the

O
�
�=b1=2

�
terms can be rewritten as � (1=2)Q (y)

�
�=b1=2

�
, and the O (�2=b) terms

are cancelled out.
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Proof of (ii). Q (y) can be further rewritten as

Q (y) :=
(1 + 2b)

p
1 + 3bp

2�
Q0 (y) ;

where

Q0 (y) =
(1� 2y) tT + (y + b)

f(y + b) (1� y + b)g3=2
exp

"
�(1 + 3b) ftT � y + (2tT � 1) bg2

2b (y + b) (1� y + b)

#
:

It follows that

Q
(1)
0 (y) :=

 (y)

2b f(y + b) (1� y + b)g7=2
exp

"
�(1 + 3b) ftT � y + (2tT � 1) bg2

2b (y + b) (1� y + b)

#
;

where

 (y) =  0 (y) +  1 (y) b+O
�
b2
�
;

 0 (y) = � (y � tT ) f(2tT � 1) y � tTg2 ;
 1 (y) = 7 (2y � 1)

2 t3T +
�
�20y3 � 12y2 + 9y + 1

�
t2T

+
�
8y4 + 4y3 + 16y2 � 5y

�
tT � 4y4 � 4y2;

and the O (b2) rate in  (y) is uniform on y 2 IT .
Heuristically,  (y) �  0 (y) = � (y � tT ) f(2tT � 1) y � tTg2 for b � 0, and it is

straightforward to see that Q (y) is maximized at y � tT . Let t�T solve  (y) = 0.

Our argument so far suggests that t�T � tT holds for a su¢ ciently small b > 0. Then,

it is reasonably conjectured that t�T can be expanded up to the O (b
2) term, taking the

form of t�T = tT + cb+ O (b2) for some jcj <1. The remaining task is to determine
c. Substituting t�T into  (y) gives

 (t�T ) =  
�
tT + cb+O

�
b2
�	
= 4t2T (tT � 1)

2 f�c+ 2 (2tT � 1)g b+O
�
b2
�
:

It su¢ ces to �nd c that makes the right-hand side at most O (b2), and this occurs

when c = 2 (2tT � 1). Then, we have t�T = tT+2 (2tT � 1) b+O (b2), which completes
the proof. �

A.3 Proof of Theorem 1

It follows from Assumption 3(ii) and the de�nitions of t̂B and tT that
��t̂B � t0

�� =��T�1 �t̂T �� T�1 (tT )
�� � ��t̂T � tT

�� =T (1). Because
��t̂T � tT

�� � ��t̂T � t�T
�� + jt�T � tT j

and Proposition 2(ii) implies that jt�T � tT j = O (b), we only need to demonstrate

that
��t̂T � t�T

�� = O (cn) a:s: However, this statement can be established by a similar

argument to the proof of Theorem 1 in Funke and Hirukawa (2025), and thus details

are omitted. �
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A.4 Proof of Theorem 2

The proof requires the following lemmata.

Lemma A4. Put y = tT in C�b;y;m (0), C
�
b;y;m (1) and C�b;y;m (3) de�ned in Lemma

A2. Then, as n!1,

C�b;tT ;m (0) =
1

2
� 1p

2�
p
tT (1� tT )

�
�

b1=2

�
+
(2tT � 1)�m (1� tT )p

2�
p
tT (1� tT )

b1=2

�
"

mp
2�
p
tT (1� tT )

+
1�m2 (1� tT )

2

2
p
2� ftT (1� tT )g3=2

+

#
�b1=2

+O

�
max

�
b3=2;

�2

b

��
; (A2)

C�b;tT ;m (1) = �
1p
2�
� (2tT � 1)�m (1� tT )p

2�tT (1� tT )
� +O (b) ; (A3)

and

C�b;tT ;m (3) = �
2p
2�
+O (b) : (A4)

Lemma A5. As n!1,

E

��
b1=2

�

�
Ĵ (1) (tT )

�
! dT (2� tT )p

2� ftT (1� tT )g3=2
:

Lemma A6. As n!1,

V ar

(r
nb5=2

�2
Ĵ (1) (tT )

)
! 3

2
p
� ftT (1� tT )g5=2

�
fY (t

�
T ) + fY (t

+
T )

2

�
:

Lemma A7. If
��t̂T � tT

�� = op
�
b1=2
�
, then, as n!1,�

b3=2

�

�
Ĵ (2) (&)

p! �
r
2

�

dT

ftT (1� tT )g3=2

for any & on the line segment joining t̂T and tT .

Lemma A8. As n!1, E jHij3 = O (�3=b4).
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A.4.1 Proof of Theorem 2

In this proof, the limiting distribution of t̂T in the transformed scale is �rst derived,

and then the result is converted to the one in the original scale. Taking a mean-value

expansion for the left-hand side of the �rst-order condition Ĵ (1)
�
t̂T
�
= 0, we have

0 = Ĵ (1) (tT ) + Ĵ (2) (�tT )
�
t̂T � tT

�
= E

n
Ĵ (1) (tT )

o
+
h
Ĵ (1) (tT )� E

n
Ĵ (1) (tT )

oi
+ Ĵ (2) (�tT )

�
t̂T � tT

�
(A5)

for some �tT on the line segment joining t̂T and tT .

Rearranging (A5), we obtain

r
n

b1=2

24t̂T � tT �

8<:�E
�
Ĵ (1) (tT )

�
Ĵ (2) (�tT )

9=;
35

= �
r

n

b1=2

24 Ĵ (1) (tT )� E
n
Ĵ (1) (tT )

o
Ĵ (2) (�tT )

35 : (A6)

Theorem 1 allows us to use Lemma A7, which is satis�ed. Then, in conjunction with

Lemma A5, the bias term can be simpli�ed as

�
E
n
Ĵ (1) (tT )

o
Ĵ (2) (�tT )

=

�
1� tT

2

�
b f1 + op (1)g :

To demonstrate asymptotic normality of
p
n=b1=2

�
b3=2=�

� h
Ĵ (1) (tT )� E

n
Ĵ (1) (tT )

oi
,

we also check Lyapunov�s condition. This quantity can be expressed as

nX
i=1

Ri :=

nX
i=1

r
b5=2

n�2
fHi � E (Hi)g :

Then, by Cr-inequality, Jensen�s inequality (due to the convexity of z3 for z � 0) and
Lemma A8,

E jRij3 � 8
�
b5=2

n�2

�3=2
E jHij3 = O

�
n�3=2b�1=4

�
:

It also follows from Lemma A6 that V ar (Ri) = O (n�1). Therefore,Pn
i=1E jRij

3

f
Pn

i=1 V ar (Ri)g
3=2
= O

�
1p
nb1=2

�
! 0;

and Lyapunov�s condition is established.
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By a central limit theorem, in conjunction with Lemma A6,r
n

b1=2

�
b3=2

�

�h
Ĵ (1) (tT )� E

n
Ĵ (1) (tT )

oi
d! N

 
0;

3

2
p
� ftT (1� tT )g5=2

�
fY (t

�
T ) + fY (t

+
T )

2

�!
:

Finally, using Lemma A7 for the right-hand side of (A6) yields

�
r

n

b1=2

24�b3=2=��
n
Ĵ (1) (tT )� E

n
Ĵ (1) (tT )

oo
(b3=2=�) Ĵ (2) (�tT )

35
d! N

 
0;
3
p
�
p
tT (1� tT )

4d2T

�
fY (t

�
T ) + fY (t

+
T )

2

�!
:

So far we have obtainedr
n

b1=2

�
t̂T � tT �

�
1� tT

2

�
b f1 + op (1)g

�
d! N

 
0;
3
p
�
p
tT (1� tT )

4d2T

�
fY (t

�
T ) + fY (t

+
T )

2

�!
: (A7)

By the de�nitions of t̂B and tT , the left-hand side of (A7) can be rewritten asr
n

b1=2

�
T
�
t̂B
�
� T (t0)�

�
1� T (t0)

2

�
b f1 + op (1)g

�
:

Now, by a mean-value expansion, T
�
t̂B
�
� T (t0) = T (1)

�
�t
� �
t̂B � t0

�
for some �t on

the line segment joining t̂B and t0. By Assumption 3(ii), T (1) is Lipschitz continuous

on R+, and thus we may also take M > 0 as the Lipschitz constant. Because �t lies

between t̂B and t0 and
��t̂B � t0

�� = Op (cn) = op
�
b1=2
�
by Theorem 1, it holds that���t� t0

�� � ��t̂B � t0
�� = op

�
b1=2
�
. Therefore,���T �t̂B�� T (t0)

	
� T (1) (t0)

�
t̂B � t0

���
=
��T (1) ��t�� T (1) (t0)

�� ��t̂B � t0
��

�M
���t� t0

�� ��t̂B � t0
�� �M

��t̂B � t0
��2 = op (b) :

In the end,r
n

b1=2

�
T
�
t̂B
�
� T (t0)�

�
1� T (t0)

2

�
b f1 + op (1)g

�
=

r
n

b1=2

�
T (1) (t0)

�
t̂B � t0

�
+ op (b)�

�
1� T (t0)

2

�
b f1 + op (1)g

�
=

r
n

b1=2
T (1) (t0)

�
t̂B � t0 �

�
1� T (t0) =2

T (1) (t0)

�
b f1 + op (1)g

�
: (A8)
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It also follows from (6) and (7) that

fY (t
�
T ) + fY (t

+
T )

2
= gY (tT ) +

dT
2

=
1

T (1) (t0)

�
gY fT (t0)gT (1) (t0) +

dTT
(1) (t0)

2

�
=

1

T (1) (t0)

�
fX(t

+
0 ) +

d0
2

�
=

1

T (1) (t0)

�
fX(t

�
0 ) + fX(t

+
0 )

2

�
:

Then, by (7) and the de�nition of tT , the asymptotic variance in (A7) reduces to

3
p
�
p
tT (1� tT )

4d2T

�
fY (t

�
T ) + fY (t

+
T )

2

�
=
3
p
�
p
T (t0) f1� T (t0)g

4 fd0=T (1) (t0)g2
1

T (1) (t0)

�
fX(t

�
0 ) + fX(t

+
0 )

2

�
=
3
p
�
p
T (t0) f1� T (t0)g

4d20
T (1) (t0)

�
fX(t

�
0 ) + fX(t

+
0 )

2

�
: (A9)

Substituting (A8) and (A9) into (A7) establishes the stated result. This completes

the proof. �
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Table 1: Examples of Transformations That Satisfy Assumption 3

Magni�cation Factor
Transformation dT =d0 = 1=T

(1) (t0) (i) (ii) (iii)

Arctangent: T1(x) =
2 arctan(x=tM )

�

�(t20+t
2
M )

2tM
12:5664 12:6536 12:6786

Exponential CDF: T2(x) = 1� exp
�
�x ln 2

tM

�
tM2t0=tM

ln 2
11:5416 12:0218 11:1501

Rational Function: T3(x) =
x

tM (1+x=tM )
(t0+tM )2

tM
16:0000 16:0556 16:0714

Hyperbolic Tangent: T4(x) =
expfx ln 3=(2tM )g�expf�x ln 3=(2tM )g
expfx ln 3=(2tM )g+expf�x ln 3=(2tM )g

tM

n
3t0=(2tM )+3�t0=(2tM )

o2
2 ln 3

9:7092 10:3055 9:2305

Table 2: Characteristic Numbers of Underlying Distributions

Model Distribution Mode cL fX
�
t�0
�

fX
�
t+0
�

d0
A Log-Normal + Quadratic 1:4382 0:9498 0:1002 0:0502 0:0500
B Splicing with Weibull & GPD 1:9252 0:9438 0:0910 0:0375 0:0535
C Splicing with Weibull & Half-Normal 1:9252 0:9438 0:0910 0:0375 0:0535
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Table 3: Monte Carlo Results

n = 250 n = 500
Estimator � Bias SD RMSE b̂ Bias SD RMSE b̂

Model A: Log-Normal + Quadratic

KS � �1:0402 0:5501 1:1767 � (�) �0:7721 0:4399 0:8886 � (�)
Q-MAD � �0:2391 0:3979 0:4642 � (�) �0:1964 0:3963 0:4423 � (�)
Q-SUP � 0:1116 0:6432 0:6528 � (�) 0:4523 0:8826 0:9918 � (�)
AEB � 0:5491 0:5357 0:7671 � (�) 0:6200 0:3490 0:7115 � (�)
ADST � �1:4147 0:7803 1:6156 � (�) �1:2834 0:7266 1:4748 � (�)

Case (i): I0 = [3; 5]

SG-ML 0:70 �0:5966 0:4652 0:7565 0:0608 (0:0234) �0:7394 0:4212 0:8510 0:0689 (0:0187)
SG-ML-BC 0:70 �0:5358 0:4520 0:7010 � (�) �0:6705 0:4104 0:7862 � (�)

SB-LS-T1 0:55 �0:5535 0:1371 0:5702 0:0397 (0:0064) �0:5598 0:0923 0:5674 0:0398 (0:0046)
0:60 �0:5276 0:1391 0:5456 0:0492 (0:0076) �0:5319 0:0944 0:5402 0:0494 (0:0052)
0:65 �0:5020 0:1400 0:5212 0:0590 (0:0086) �0:5070 0:0951 0:5158 0:0592 (0:0061)
0:70 �0:4794 0:1397 0:4994 0:0686 (0:0099) �0:4837 0:0950 0:4929 0:0689 (0:0069)

SB-LS-T2 0:55 �0:5954 0:1178 0:6070 0:0391 (0:0059) �0:6013 0:0797 0:6066 0:0392 (0:0043)
0:60 �0:5711 0:1208 0:5838 0:0487 (0:0069) �0:5777 0:0816 0:5834 0:0487 (0:0049)
0:65 �0:5489 0:1214 0:5622 0:0584 (0:0081) �0:5537 0:0827 0:5598 0:0584 (0:0058)
0:70 �0:5274 0:1227 0:5415 0:0680 (0:0093) �0:5319 0:0832 0:5384 0:0681 (0:0066)

SB-LS-T3 0:55 �0:4172 0:1671 0:4494 0:0233 (0:0049) �0:4187 0:1176 0:4349 0:0233 (0:0036)
0:60 �0:3857 0:1652 0:4196 0:0295 (0:0056) �0:3859 0:1159 0:4029 0:0295 (0:0041)
0:65 �0:3565 0:1631 0:3920 0:0358 (0:0064) �0:3586 0:1153 0:3767 0:0358 (0:0046)
0:70 �0:3323 0:1612 0:3693 0:0418 (0:0073) �0:3315 0:1122 0:3499 0:0420 (0:0053)

SB-LS-T4 0:55 �0:6742 0:0953 0:6809 0:0502 (0:0069) �0:6811 0:0652 0:6842 0:0501 (0:0048)
0:60 �0:6579 0:0991 0:6653 0:0620 (0:0080) �0:6642 0:0667 0:6675 0:0620 (0:0057)
0:65 �0:6411 0:1012 0:6491 0:0742 (0:0094) �0:6466 0:0695 0:6503 0:0742 (0:0066)
0:70 �0:6237 0:1037 0:6322 0:0864 (0:0108) �0:6281 0:0702 0:6320 0:0865 (0:0076)

Case (ii): I0 = [3:5; 5:5]

SG-ML 0:70 �0:2460 0:3369 0:4172 0:0474 (0:0162) �0:2921 0:3271 0:4385 0:0505 (0:0145)
SG-ML-BC 0:70 �0:1985 0:3302 0:3853 � (�) �0:2416 0:3186 0:3998 � (�)

SB-LS-T1 0:55 �0:3477 0:0981 0:3613 0:0524 (0:0072) �0:3573 0:0715 0:3643 0:0524 (0:0051)
0:60 �0:3364 0:1005 0:3511 0:0644 (0:0085) �0:3442 0:0715 0:3516 0:0644 (0:0059)
0:65 �0:3227 0:1029 0:3388 0:0768 (0:0099) �0:3300 0:0740 0:3382 0:0767 (0:0068)
0:70 �0:3076 0:1059 0:3253 0:0890 (0:0113) �0:3143 0:0745 0:3230 0:0890 (0:0077)

SB-LS-T2 0:55 �0:3620 0:0929 0:3737 0:0502 (0:0069) �0:3714 0:0695 0:3779 0:0501 (0:0048)
0:60 �0:3529 0:0955 0:3656 0:0619 (0:0081) �0:3613 0:0695 0:3679 0:0618 (0:0056)
0:65 �0:3405 0:0979 0:3542 0:0739 (0:0095) �0:3478 0:0707 0:3549 0:0739 (0:0065)
0:70 �0:3249 0:1006 0:3401 0:0861 (0:0110) �0:3333 0:0719 0:3409 0:0859 (0:0076)

SB-LS-T3 0:55 �0:2582 0:1220 0:2856 0:0320 (0:0057) �0:2637 0:0862 0:2774 0:0321 (0:0038)
0:60 �0:2371 0:1230 0:2671 0:0400 (0:0064) �0:2428 0:0874 0:2581 0:0400 (0:0045)
0:65 �0:2127 0:1214 0:2449 0:0482 (0:0075) �0:2196 0:0856 0:2357 0:0481 (0:0051)
0:70 �0:1907 0:1224 0:2266 0:0561 (0:0085) �0:1944 0:0847 0:2121 0:0562 (0:0059)

SB-LS-T4 0:55 �0:3995 0:0854 0:4085 0:0623 (0:0080) �0:4115 0:0615 0:4161 0:0620 (0:0055)
0:60 �0:3961 0:0854 0:4052 0:0767 (0:0095) �0:4090 0:0631 0:4139 0:0763 (0:0065)
0:65 �0:3910 0:0875 0:4007 0:0914 (0:0112) �0:4030 0:0651 0:4082 0:0911 (0:0076)
0:70 �0:3825 0:0910 0:3931 0:1064 (0:0129) �0:3931 0:0670 0:3987 0:1061 (0:0090)

Case (iii): I0 = [2:4; 4:5]

SG-ML 0:70 �1:1608 0:4941 1:2616 0:1161 (0:1162) �1:3476 0:3672 1:3967 0:1137 (0:0837)
SG-ML-BC 0:70 �1:0447 0:4801 1:1497 � (�) �1:2338 0:3618 1:2858 � (�)

SB-LS-T1 0:55 �0:6200 0:2251 0:6596 0:0293 (0:0053) �0:6190 0:1597 0:6393 0:0294 (0:0039)
0:60 �0:5842 0:2252 0:6261 0:0367 (0:0062) �0:5821 0:1597 0:6036 0:0369 (0:0046)
0:65 �0:5533 0:2231 0:5966 0:0443 (0:0073) �0:5504 0:1577 0:5726 0:0446 (0:0052)
0:70 �0:5269 0:2211 0:5714 0:0519 (0:0084) �0:5243 0:1563 0:5471 0:0522 (0:0060)

SB-LS-T2 0:55 �0:7289 0:1877 0:7526 0:0299 (0:0052) �0:7310 0:1308 0:7426 0:0300 (0:0039)
0:60 �0:6977 0:1885 0:7227 0:0374 (0:0062) �0:6977 0:1316 0:7100 0:0376 (0:0044)
0:65 �0:6683 0:1882 0:6943 0:0452 (0:0072) �0:6691 0:1328 0:6822 0:0454 (0:0052)
0:70 �0:6428 0:1877 0:6696 0:0529 (0:0083) �0:6424 0:1316 0:6558 0:0532 (0:0059)

SB-LS-T3 0:55 �0:4683 0:2400 0:5262 0:0171 (0:0038) �0:4559 0:1724 0:4874 0:0171 (0:0029)
0:60 �0:4327 0:2350 0:4923 0:0218 (0:0045) �0:4206 0:1688 0:4532 0:0219 (0:0032)
0:65 �0:4043 0:2311 0:4657 0:0267 (0:0051) �0:3939 0:1657 0:4274 0:0268 (0:0037)
0:70 �0:3807 0:2269 0:4432 0:0313 (0:0058) �0:3706 0:1627 0:4047 0:0315 (0:0043)

SB-LS-T4 0:55 �0:8635 0:1527 0:8769 0:0393 (0:0063) �0:8707 0:1036 0:8768 0:0393 (0:0044)
0:60 �0:8367 0:1551 0:8510 0:0489 (0:0075) �0:8430 0:1067 0:8498 0:0490 (0:0052)
0:65 �0:8114 0:1585 0:8268 0:0588 (0:0087) �0:8158 0:1088 0:8230 0:0590 (0:0062)
0:70 �0:7857 0:1590 0:8016 0:0687 (0:0100) �0:7897 0:1094 0:7973 0:0690 (0:0071)
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Table 3: (continued)

n = 250 n = 500
Estimator � Bias SD RMSE b̂ Bias SD RMSE b̂

Model B: Splicing with Weibull & GPD

KS � �1:1510 0:4794 1:2469 � (�) �1:0183 0:5832 1:1735 � (�)
Q-MAD � �0:3241 0:3500 0:4771 � (�) �0:3154 0:3797 0:4936 � (�)
Q-SUP � 0:1315 0:9630 0:9719 � (�) 0:5670 1:4624 1:5684 � (�)
AEB � 1:6324 1:1467 1:9949 � (�) 1:7231 0:7848 1:8934 � (�)
ADST � �1:0581 0:9258 1:4059 � (�) �0:7138 1:0491 1:2689 � (�)

Case (i): I0 = [3; 5]

SG-ML 0:70 �0:5461 0:4892 0:7332 0:0484 (0:0202) �0:5154 0:5629 0:7632 0:0499 (0:0197)
SG-ML-BC 0:70 �0:4976 0:4763 0:6888 � (�) �0:4655 0:5473 0:7185 � (�)

SB-LS-T1 0:55 �0:3760 0:1432 0:4023 0:0198 (0:0067) �0:3604 0:1079 0:3762 0:0198 (0:0049)
0:60 �0:3557 0:1378 0:3815 0:0256 (0:0080) �0:3426 0:1036 0:3579 0:0257 (0:0057)
0:65 �0:3392 0:1350 0:3651 0:0315 (0:0092) �0:3268 0:1003 0:3418 0:0318 (0:0066)
0:70 �0:3245 0:1340 0:3511 0:0373 (0:0105) �0:3131 0:0990 0:3284 0:0376 (0:0076)

SB-LS-T2 0:55 �0:4262 0:1281 0:4450 0:0207 (0:0064) �0:4163 0:0960 0:4272 0:0206 (0:0047)
0:60 �0:4089 0:1257 0:4278 0:0266 (0:0076) �0:3990 0:0927 0:4097 0:0267 (0:0055)
0:65 �0:3924 0:1255 0:4120 0:0328 (0:0089) �0:3839 0:0900 0:3943 0:0330 (0:0064)
0:70 �0:3794 0:1232 0:3989 0:0387 (0:0101) �0:3709 0:0895 0:3816 0:0390 (0:0073)

SB-LS-T3 0:55 �0:3114 0:1513 0:3462 0:0110 (0:0039) �0:2948 0:1133 0:3158 0:0109 (0:0030)
0:60 �0:2936 0:1431 0:3266 0:0142 (0:0047) �0:2782 0:1091 0:2989 0:0143 (0:0035)
0:65 �0:2759 0:1382 0:3086 0:0177 (0:0056) �0:2623 0:1046 0:2824 0:0178 (0:0041)
0:70 �0:2594 0:1370 0:2934 0:0210 (0:0065) �0:2449 0:1007 0:2647 0:0212 (0:0047)

SB-LS-T4 0:55 �0:5007 0:1194 0:5147 0:0294 (0:0080) �0:4944 0:0861 0:5018 0:0294 (0:0060)
0:60 �0:4862 0:1190 0:5005 0:0374 (0:0095) �0:4795 0:0854 0:4871 0:0377 (0:0070)
0:65 �0:4729 0:1178 0:4874 0:0457 (0:0111) �0:4682 0:0840 0:4757 0:0459 (0:0080)
0:70 �0:4606 0:1162 0:4750 0:0541 (0:0126) �0:4561 0:0829 0:4636 0:0544 (0:0091)

Case (ii): I0 = [3:5; 5:5]

SG-ML 0:70 �0:2494 0:4820 0:5427 0:0374 (0:0122) �0:2007 0:5973 0:6301 0:0367 (0:0132)
SG-ML-BC 0:70 �0:2120 0:4737 0:5190 � (�) �0:1639 0:5862 0:6087 � (�)

SB-LS-T1 0:55 �0:2452 0:1090 0:2684 0:0309 (0:0080) �0:2419 0:0794 0:2546 0:0309 (0:0055)
0:60 �0:2322 0:1058 0:2551 0:0398 (0:0096) �0:2306 0:0771 0:2431 0:0397 (0:0066)
0:65 �0:2181 0:1062 0:2426 0:0488 (0:0112) �0:2154 0:0767 0:2286 0:0489 (0:0077)
0:70 �0:2027 0:1057 0:2286 0:0578 (0:0129) �0:2005 0:0764 0:2146 0:0579 (0:0088)

SB-LS-T2 0:55 �0:2685 0:1021 0:2873 0:0311 (0:0076) �0:2683 0:0748 0:2786 0:0310 (0:0053)
0:60 �0:2572 0:1000 0:2760 0:0400 (0:0091) �0:2564 0:0736 0:2667 0:0400 (0:0064)
0:65 �0:2445 0:1004 0:2643 0:0490 (0:0108) �0:2440 0:0718 0:2543 0:0490 (0:0074)
0:70 �0:2299 0:1005 0:2509 0:0580 (0:0123) �0:2290 0:0719 0:2400 0:0582 (0:0085)

SB-LS-T3 0:55 �0:1759 0:1137 0:2095 0:0173 (0:0049) �0:1716 0:0886 0:1931 0:0172 (0:0035)
0:60 �0:1612 0:1111 0:1958 0:0226 (0:0059) �0:1543 0:0839 0:1756 0:0226 (0:0042)
0:65 �0:1404 0:1074 0:1768 0:0281 (0:0070) �0:1338 0:0812 0:1565 0:0282 (0:0050)
0:70 �0:1177 0:1082 0:1598 0:0335 (0:0082) �0:1134 0:0784 0:1379 0:0336 (0:0057)

SB-LS-T4 0:55 �0:3254 0:0954 0:3391 0:0422 (0:0094) �0:3284 0:0687 0:3355 0:0422 (0:0065)
0:60 �0:3191 0:0943 0:3327 0:0536 (0:0112) �0:3202 0:0677 0:3272 0:0538 (0:0077)
0:65 �0:3105 0:0947 0:3246 0:0655 (0:0132) �0:3119 0:0680 0:3193 0:0656 (0:0091)
0:70 �0:2999 0:0968 0:3152 0:0774 (0:0153) �0:3017 0:0683 0:3094 0:0775 (0:0105)

Case (iii): I0 = [2:4; 4:5]

SG-ML 0:70 �0:7643 0:4375 0:8806 0:0982 (0:1093) �0:7253 0:4562 0:8568 0:0878 (0:0745)
SG-ML-BC 0:70 �0:6661 0:4182 0:7865 � (�) �0:6375 0:4320 0:7701 � (�)

SB-LS-T1 0:55 �0:3657 0:2112 0:4223 0:0155 (0:0056) �0:3459 0:1487 0:3766 0:0155 (0:0042)
0:60 �0:3474 0:1995 0:4006 0:0199 (0:0067) �0:3288 0:1439 0:3589 0:0200 (0:0050)
0:65 �0:3343 0:1976 0:3883 0:0242 (0:0079) �0:3134 0:1404 0:3433 0:0245 (0:0056)
0:70 �0:3208 0:1942 0:3750 0:0285 (0:0089) �0:2983 0:1375 0:3285 0:0291 (0:0063)

SB-LS-T2 0:55 �0:4599 0:1915 0:4982 0:0161 (0:0058) �0:4396 0:1350 0:4599 0:0161 (0:0043)
0:60 �0:4425 0:1862 0:4801 0:0207 (0:0069) �0:4220 0:1320 0:4422 0:0208 (0:0050)
0:65 �0:4266 0:1823 0:4639 0:0254 (0:0081) �0:4065 0:1298 0:4267 0:0257 (0:0059)
0:70 �0:4132 0:1800 0:4507 0:0300 (0:0092) �0:3924 0:1265 0:4123 0:0305 (0:0065)

SB-LS-T3 0:55 �0:3197 0:2048 0:3796 0:0088 (0:0033) �0:3064 0:1493 0:3408 0:0085 (0:0027)
0:60 �0:3119 0:1977 0:3693 0:0110 (0:0040) �0:2940 0:1450 0:3278 0:0111 (0:0032)
0:65 �0:2998 0:1974 0:3590 0:0136 (0:0048) �0:2802 0:1385 0:3126 0:0137 (0:0035)
0:70 �0:2868 0:1918 0:3451 0:0160 (0:0056) �0:2661 0:1380 0:2998 0:0163 (0:0040)

SB-LS-T4 0:55 �0:5438 0:1827 0:5737 0:0232 (0:0077) �0:5244 0:1280 0:5398 0:0232 (0:0057)
0:60 �0:5251 0:1774 0:5543 0:0294 (0:0091) �0:5057 0:1262 0:5212 0:0299 (0:0065)
0:65 �0:5084 0:1733 0:5372 0:0361 (0:0104) �0:4907 0:1242 0:5062 0:0365 (0:0074)
0:70 �0:4933 0:1712 0:5221 0:0427 (0:0118) �0:4768 0:1229 0:4924 0:0432 (0:0084)
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Table 3: (continued)

n = 250 n = 500
Estimator � Bias SD RMSE b̂ Bias SD RMSE b̂

Model C: Splicing with Weibull & Half-Normal

KS � �0:9789 0:3837 1:0514 � (�) �0:8630 0:2805 0:9074 � (�)
Q-MAD � �0:3250 0:3040 0:4450 � (�) �0:3429 0:3064 0:4599 � (�)
Q-SUP � 0:3436 0:6683 0:7514 � (�) 0:8676 0:6395 1:0779 � (�)
AEB � 0:5004 0:4249 0:6565 � (�) 0:5785 0:2777 0:6417 � (�)
ADST � �1:4826 0:5377 1:5771 � (�) �1:3992 0:6323 1:5354 � (�)

Case (i): I0 = [3; 5]

SG-ML 0:70 �0:6078 0:4844 0:7772 0:0562 (0:0243) �0:5700 0:5669 0:8039 0:0577 (0:0234)
SG-ML-BC 0:70 �0:5515 0:4694 0:7242 � (�) �0:5123 0:5484 0:7504 � (�)

SB-LS-T1 0:55 �0:3317 0:1625 0:3694 0:0198 (0:0060) �0:3158 0:1220 0:3385 0:0197 (0:0043)
0:60 �0:3114 0:1540 0:3474 0:0257 (0:0071) �0:2998 0:1148 0:3211 0:0256 (0:0052)
0:65 �0:2942 0:1508 0:3306 0:0316 (0:0084) �0:2827 0:1124 0:3042 0:0316 (0:0060)
0:70 �0:2762 0:1494 0:3140 0:0374 (0:0098) �0:2651 0:1091 0:2867 0:0376 (0:0069)

SB-LS-T2 0:55 �0:3981 0:1409 0:4223 0:0212 (0:0058) �0:3889 0:1050 0:4028 0:0211 (0:0043)
0:60 �0:3805 0:1373 0:4045 0:0272 (0:0070) �0:3719 0:0997 0:3851 0:0272 (0:0051)
0:65 �0:3614 0:1343 0:3856 0:0335 (0:0082) �0:3545 0:0974 0:3676 0:0336 (0:0059)
0:70 �0:3442 0:1321 0:3687 0:0397 (0:0095) �0:3379 0:0964 0:3514 0:0398 (0:0068)

SB-LS-T3 0:55 �0:2661 0:1740 0:3180 0:0111 (0:0036) �0:2531 0:1317 0:2853 0:0109 (0:0027)
0:60 �0:2518 0:1625 0:2997 0:0143 (0:0043) �0:2346 0:1212 0:2640 0:0144 (0:0032)
0:65 �0:2302 0:1566 0:2784 0:0179 (0:0052) �0:2169 0:1167 0:2463 0:0179 (0:0037)
0:70 �0:2086 0:1554 0:2602 0:0214 (0:0061) �0:1956 0:1136 0:2262 0:0214 (0:0043)

SB-LS-T4 0:55 �0:4785 0:1279 0:4953 0:0302 (0:0075) �0:4743 0:0919 0:4831 0:0302 (0:0054)
0:60 �0:4637 0:1255 0:4804 0:0384 (0:0089) �0:4594 0:0899 0:4682 0:0384 (0:0063)
0:65 �0:4484 0:1242 0:4653 0:0469 (0:0102) �0:4444 0:0877 0:4530 0:0470 (0:0074)
0:70 �0:4343 0:1233 0:4514 0:0552 (0:0119) �0:4305 0:0882 0:4394 0:0555 (0:0085)

Case (ii): I0 = [3:5; 5:5]

SG-ML 0:70 �0:2616 0:5004 0:5647 0:0418 (0:0159) �0:2291 0:6028 0:6448 0:0426 (0:0167)
SG-ML-BC 0:70 �0:2197 0:4905 0:5375 � (�) �0:1865 0:5895 0:6183 � (�)

SB-LS-T1 0:55 �0:1578 0:1200 0:1982 0:0328 (0:0085) �0:1573 0:0860 0:1792 0:0325 (0:0061)
0:60 �0:1422 0:1171 0:1842 0:0424 (0:0101) �0:1443 0:0824 0:1662 0:0420 (0:0070)
0:65 �0:1270 0:1164 0:1723 0:0520 (0:0118) �0:1269 0:0817 0:1509 0:0518 (0:0083)
0:70 �0:1089 0:1162 0:1593 0:0615 (0:0136) �0:1084 0:0819 0:1358 0:0615 (0:0095)

SB-LS-T2 0:55 �0:1902 0:1151 0:2223 0:0331 (0:0079) �0:1953 0:0816 0:2117 0:0327 (0:0056)
0:60 �0:1781 0:1119 0:2103 0:0426 (0:0095) �0:1818 0:0785 0:1980 0:0423 (0:0066)
0:65 �0:1627 0:1120 0:1975 0:0523 (0:0112) �0:1639 0:0775 0:1813 0:0521 (0:0078)
0:70 �0:1440 0:1116 0:1822 0:0620 (0:0128) �0:1457 0:0772 0:1649 0:0618 (0:0090)

SB-LS-T3 0:55 �0:0846 0:1269 0:1525 0:0183 (0:0050) �0:0833 0:0948 0:1262 0:0180 (0:0037)
0:60 �0:0696 0:1222 0:1406 0:0240 (0:0061) �0:0664 0:0873 0:1096 0:0238 (0:0044)
0:65 �0:0473 0:1216 0:1305 0:0298 (0:0073) �0:0433 0:0854 0:0958 0:0298 (0:0052)
0:70 �0:0219 0:1205 0:1224 0:0356 (0:0085) �0:0198 0:0860 0:0882 0:0355 (0:0060)

SB-LS-T4 0:55 �0:2515 0:1087 0:2740 0:0452 (0:0098) �0:2578 0:0767 0:2690 0:0449 (0:0068)
0:60 �0:2440 0:1079 0:2668 0:0575 (0:0118) �0:2503 0:0736 0:2609 0:0571 (0:0082)
0:65 �0:2332 0:1078 0:2569 0:0701 (0:0138) �0:2376 0:0745 0:2490 0:0698 (0:0097)
0:70 �0:2198 0:1086 0:2451 0:0828 (0:0160) �0:2246 0:0749 0:2368 0:0825 (0:0111)

Case (iii): I0 = [2:4; 4:5]

SG-ML 0:70 �0:8056 0:4221 0:9095 0:1275 (0:1394) �0:7564 0:4502 0:8803 0:1080 (0:1005)
SG-ML-BC 0:70 �0:6781 0:4078 0:7913 � (�) �0:6484 0:4241 0:7748 � (�)

SB-LS-T1 0:55 �0:3191 0:2451 0:4024 0:0158 (0:0050) �0:3003 0:1778 0:3490 0:0158 (0:0038)
0:60 �0:3041 0:2323 0:3827 0:0201 (0:0059) �0:2843 0:1668 0:3296 0:0204 (0:0043)
0:65 �0:2905 0:2270 0:3686 0:0245 (0:0070) �0:2676 0:1613 0:3124 0:0250 (0:0049)
0:70 �0:2738 0:2234 0:3534 0:0288 (0:0080) �0:2502 0:1588 0:2963 0:0295 (0:0056)

SB-LS-T2 0:55 �0:4437 0:2115 0:4915 0:0169 (0:0054) �0:4269 0:1517 0:4530 0:0170 (0:0041)
0:60 �0:4260 0:2049 0:4728 0:0217 (0:0064) �0:4080 0:1455 0:4331 0:0218 (0:0047)
0:65 �0:4079 0:1996 0:4541 0:0264 (0:0074) �0:3895 0:1422 0:4146 0:0268 (0:0053)
0:70 �0:3916 0:1986 0:4391 0:0311 (0:0085) �0:3729 0:1405 0:3985 0:0316 (0:0061)

SB-LS-T3 0:55 �0:2820 0:2412 0:3711 0:0089 (0:0030) �0:2646 0:1777 0:3187 0:0090 (0:0024)
0:60 �0:2751 0:2299 0:3585 0:0114 (0:0037) �0:2581 0:1684 0:3082 0:0115 (0:0029)
0:65 �0:2591 0:2261 0:3439 0:0141 (0:0043) �0:2391 0:1602 0:2878 0:0143 (0:0032)
0:70 �0:2439 0:2214 0:3294 0:0165 (0:0050) �0:2234 0:1601 0:2748 0:0169 (0:0037)

SB-LS-T4 0:55 �0:5382 0:1971 0:5732 0:0242 (0:0072) �0:5201 0:1395 0:5385 0:0245 (0:0054)
0:60 �0:5173 0:1915 0:5516 0:0308 (0:0084) �0:5002 0:1359 0:5184 0:0311 (0:0061)
0:65 �0:4981 0:1878 0:5323 0:0376 (0:0097) �0:4827 0:1340 0:5009 0:0380 (0:0070)
0:70 �0:4807 0:1849 0:5150 0:0441 (0:0110) �0:4657 0:1324 0:4841 0:0447 (0:0078)
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Table 4: Descriptive Statistics of Datasets

Data n Mean SD SK Min. Q1 Q2 Q3 90% 95% 99% Max.

(A) Danish Fire Insurance Losses (in millions of Danish kroner)

Original 2; 492 3:063 7:975 19:884 0:313 1:157 1:634 2:646 5:080 8:406 24:614 263:250

(B) Norwegian Fire Insurance Losses (in millions of Norwegian kroner)

Original 9; 181 5:235 18:277 26:287 0:741 1:526 2:354 4:096 8:762 15:414 50:783 881:448
Downsized 3; 064 4:861 11:169 10:359 0:741 1:550 2:391 4:090 8:453 14:546 51:604 257:319

(C) Belgian Motor Insurance Losses (in thousands of Euros)

Original 18; 276 1:448 3:875 11:073 0:000 0:145 0:572 1:441 3:022 4:158 18:344 140:032
Downsized 3; 151 1:451 3:833 9:009 0:001 0:145 0:529 1:426 3:021 3:957 20:451 81:946

(D) French Motor Insurance Losses (in thousands of French francs)

Original 26; 444 2:266 29:371 109:524 0:001 0:686 1:172 1:212 2:768 4:766 16:510 4; 075:401
Downsized 2; 638 2:608 27:168 42:476 0:001 0:739 1:172 1:304 2:912 5:369 18:551 1; 301:173

Note: n = sample size; Mean = average; SD = standard deviation; SK = skewness;
Min. = minimum value; Q1 = �rst quartile; Q2 = median (i.e., second quartile); Q3
= third quartile; 90% = 90% quantile; 95% = 95% quantile; 99% = 99% quantile;
and Max. = maximum value.

Table 5: Results for Real Data Examples

Data Estimator Estimate of t0 Estimator � I0 Estimate of t0 b̂

(A) Danish Fire Insurance Losses (in millions of Danish kroner)

Original KS 1:375 SG-ML 0:70 [1; 30] 1:861 0:235
Q-MAD 29:037 SG-ML-BC � � 2:096 �
Q-SUP 11:123
AEB 25:288 SB-LS-T3 0:70 [1; 30] 1:808 0:005
ADST 1:406

(B) Norwegian Fire Insurance Losses (in millions of Norwegian kroner)

Downsized KS 2:221 SG-ML 0:70 [2; 50] 2:756 0:350
Q-MAD 35:794 SG-ML-BC � � 2:924 �
Q-SUP 123:274
AEB 47:528 SB-LS-T3 0:70 [2; 50] 2:702 0:005
ADST 2:121

(C) Belgian Motor Insurance Losses (in thousands of Euros)

Downsized KS 3:233 SG-ML 0:70 [2; 40] 40:000z 0:005
Q-MAD 3:022 SG-ML-BC � � 40:005 �
Q-SUP 40:035
AEB 18:592 SB-LS-T3 0:70 [2; 40] 2:435 0:060
ADST 29:451y

(D) French Motor Insurance Losses (in thousands of French francs)

Downsized KS 1:318 SG-ML 0:70 [1; 20] 20:000z 0:005
Q-MAD 3:204 SG-ML-BC � � 20:005 �
Q-SUP 7:000
AEB 18:900 SB-LS-T3 0:70 [1; 20] 11:247 0:005
ADST 37:149y

Note: Superscripts �y� on ADST indicate that the 99.5% empirical percentile is
chosen, whereas superscripts �z�on SG-ML mean that an estimation failure occurs.
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