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1 Introduction

This paper demonstrates weak and strong uniform consistency with rates of kernel-

smoothed estimators for partial derivatives of an unknown joint density. From the-

oretical and practical standpoints, we focus on first-order density derivatives among

all orders. In fact, first-order density derivative estimators are applied in many direc-

tions. A prominent example is that the estimators can be used to estimate density

scores, which are a key building block for indirect average derivative estimation of

nonparametric regression curves (e.g., Härdle and Stoker, 1989; Powell et al., 1989;

Rilstone, 1991); see Funke and Hirukawa (2024a; abbreviated as “FH24a” hereinafter)

for other applications.

Throughout it is assumed that the support of the joint density has at least one

boundary in each dimension. Let each dimension be either R+ or [0, 1], to be more

precise. There are indeed many economic and financial variables values of which

are either nonnegative or limited within a certain interval by definition. Examples

of the former are wages, incomes, consumption expenditures, and insurance claims

(or financial losses), whereas those of the latter are typically expressed in the forms

of shares or proportions, including expenditure and budget shares, unemployment

rates, and default and recovery rates. It has been known that asymmetric kernels

are viable devices that can capture density and regression curves of such economic

and financial variables well. Appealing properties of asymmetric kernels continue

to hold for density derivative estimation. For univariate cases, FH24a propose first-

order density derivative estimators smoothed by asymmetric kernels and report their

superior finite-sample performances to those using standard symmetric kernels.

In this paper, we extend the first-order derivative estimators by FH24a to mul-

tivariate cases. Before proceeding, joint density estimators must be defined. Let
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KJ (x,b) (u) be a univariate asymmetric kernel indexed by J that depends on the

data point u, the design point x and the smoothing parameter b (> 0). Among all

asymmetric kernels, we specialize in the gamma kernel (J = G)

KG(x,b) (u) =
ux/b exp (−u/b)

bx/b+1Γ (x/b+ 1)
1 {u ≥ 0}

for x ∈ R+ by Chen (2000), and the beta kernel (J = B)

KB(x,b) (u) =
ux/b (1− u)(1−x)/b

B {x/b+ 1, (1− x) /b+ 1}
1 {u ∈ [0, 1]}

for x ∈ [0, 1] by Chen (1999), where Γ (z) =
∫∞
0

tz−1 exp (−t) dt for z > 0 is the

gamma function, B (α, β) =
∫ 1

0
yα−1 (1− y)β−1 dy for α, β > 0 is the beta function,

and 1 {·} denotes an indicator function. Our preference on these kernels is based on

three reasons. First, as reported by Hirukawa (2018), the gamma and beta kernels are

frequently applied to empirical models in economics and finance due to their favorable

evidence. Second, these kernels have been discussed as examples of boundary kernels

in textbooks (e.g., Racine, 2019). Third, when convergence properties of asymmetric

kernel estimators are explored, kernel-specific and thus diversified approaches must

be taken. Inevitably, analytical tractability of the estimators is a key issue. The

gamma function is an essential component for the gamma and beta kernels, and there

is rich literature on approximation techniques to the gamma and related functions.

To cope with multivariate problems, we consider tensor product kernels

KJ (x,b) (u) =
d∏

j=1

KJ (xj ,bj) (uj)

=


∏d

j=1
uxj/bj exp(−uj/bj)

b
xj/bj+1

j Γ(xj/bj+1)
1 {uj ≥ 0} for J = G

∏d
j=1

u
xj/bj
j (1−uj)

(1−xj)/bj

B{xj/bj+1,(1−xj)/bj+1}1 {uj ∈ [0, 1]} for J = B

,

where u := (u1, . . . , ud)
⊤, x := (x1, . . . , xd)

⊤ and b := (b1, . . . , bd)
⊤ are d-dimensional

vectors of data points, design points and smoothing parameters, respectively. Now

let f (x) be the joint density of X with support on Rd
+ or [0, 1]d. Then, the estimator
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of f (x) using the product kernel J is defined as

f̂J (x) :=
1

n

n∑
i=1

KJ (x,b) (Xi) .

Also let Dx = ∂/∂x = (∂/∂x1, . . . , ∂/∂xd)
⊤ denote the d-dimensional first-order par-

tial derivative (or gradient) operator. The vector of d partial derivatives of f (x) can

be expressed as Dxf (x) = (∂f (x) /∂x1, . . . , ∂f (x) /∂xd)
⊤ =:

(
f
(1)
1 (x) , . . . , f

(1)
d (x)

)⊤
.

A natural estimator of f
(1)
p (x), the pth element of Dxf (x) for p ∈ {1, . . . , d}, smoothed

by the product kernel J can be defined as

f̂
(1)
J ,p (x) :=

∂f̂J (x)

∂xp

=
1

n

n∑
i=1

∂KJ (x,b) (Xi)

∂xp

,

where ∂KJ (x,b) (u) /∂xp = (1/bp)LJ (xp,bp) (up)KJ (x,b) (u),

LJ (x,b) (u) :=

{
lnu− ln b−Ψ

(
x
b
+ 1
)

for J = G
ln
(

u
1−u

)
−Ψ

(
x
b
+ 1
)
+Ψ

(
1−x
b

+ 1
)

for J = B
,

and Ψ (z) = d ln Γ (z) /dx = Γ(1) (z) /Γ (z) is the digamma function. When d = 1,

f̂
(1)
J ,p (x) collapses to the univariate density derivative estimator studied by FH24a.

Weak and strong uniform convergences with rates of f̂
(1)
J ,p (x) are established on a

d-hyperrectangle

SJ
X = SJ

X (η) :=

{ ∏d
j=1

[
ηj, η

−1
j

]
⊆ Rd

+ for J = G∏d
j=1 [ηj, 1− ηj] ⊆ [0, 1]d for J = B

,

where η := (η1, . . . , ηd)
⊤ and the boundary parameter ηj (> 0) for j ∈ {1, . . . , d} either

is fixed or shrinks to zero at a suitable rate. Observe that in the latter scenario, SJ
X

expands to the d-dimensional upper half-space (J = G) or unit hypercube (J = B).

This framework enables us to employ Stirling’s approximation to the gamma function

as a workhorse in technical proofs; see Section 3 for more details.

This paper can be positioned as a complement to Hirukawa et al. (2022; ab-

breviated as “HMP22” hereinafter) and Funke and Hirukawa (2024b; abbreviated as

“FH24b” hereinafter). HMP22 and FH24b provide sets of uniform convergence
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results with rates for nonparametric density and regression estimators using the

beta and gamma kernels, respectively. Furthermore, there is growing literature on

joint density estimation using asymmetric kernels. Examples include Bouezmarni

and Rombouts (2010), Funke and Kawka (2015), Ouimet (2021, 2022), Ouimet and

Tolosana-Delgado (2022), and Bertin et al. (2023), as well as HMP22 and FH24b.

This paper can be viewed as yet another contribution to the literature in this class.

It is worth emphasizing that this paper is the first work on uniform consistency of

partial derivative estimators of a joint density using asymmetric kernels, to the best

of our knowledge.

The remainder of this paper is organized as follows. Sections 2 delivers weak and

strong uniform consistency with rates of f̂
(1)
G,p (x) and f̂

(1)
B,p (x). All proofs are given

in Section 3.

This paper adopts the following notational conventions: ‘an = o (bn)’ signifies

that an/bn converges to 0; ‘an = O (bn)’ means that an/bn is bounded; we say that

‘an ≍ bn’ if there exist constants 0 < c1 < c2 < ∞ so that c1an ≤ bn ≤ c2an;

f
(2)
pq (x) = ∂2h(x)

∂xp∂xq
and f

(3)
pqr(x) = ∂3f(x)

∂xp∂xq∂xr
denote the second- and third-order partial

derivatives of the joint density f (x), respectively; Ψ1 (z) = Ψ(1) (z) = dΨ(z) /dz is

the trigamma function; ‘a.s.’ means “almost surely”; ∥A∥ is the Frobenius norm of

matrix A, i.e., ∥A∥ =
{
tr
(
A⊤A

)}1/2
; and the expression ‘X

d
= Y ’ reads “A random

variable X obeys the distribution Y .”

2 Main Results

2.1 Weak and Strong Uniform Consistency of f̂
(1)
G,p (x)

We start from demonstrating weak uniform consistency of f̂
(1)
G,p (x) on SG

X. This result

is built on the following regularity conditions.

Assumption G1. {Xi}ni=1 ∈ Rd
+ are i.i.d. random vectors.
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Assumption G2. There are constants C1, C2, C3, δ > 0 that satisfy the followings.

(i)
∣∣∣f (3)

jkℓ (x)
∣∣∣ ≤ C1

[
C

−2(1+δ)
2 1 {max (xk, xℓ) < C2}+ (xkxℓ)

−(1+δ) 1 {max (xk, xℓ) ≥ C2}
]

for all x ∈ Rd
+ and for all j, k, ℓ ∈ {1, . . . , d}.

(ii)
∣∣∣f (3)

jkℓ (x)− f
(3)
jkℓ (x

′)
∣∣∣ ≤ C3 ∥x− x′∥ for all x,x′ ∈ Rd

+ and for all j, k, ℓ ∈ {1, . . . , d}.

Assumption G3. Sequences bj (= bj (n)) , ηj (= ηj (n)) > 0 satisfy the followings

as n → ∞.

(i) bj, ηj → 0 for all j ∈ {1, . . . , d}.

(ii) There is a sequence ρ (= ρ (n)) > 0 that satisfies bj/ηj ≍ ρ for all j ∈ {1, . . . , d},

ρ → 0 and ρ = o
(
min1≤j≤d η

2
j

)
.

(iii) lnn/
(
nbpηp

√∏d
j=1 bjηj

)
→ 0 for all p ∈ {1, . . . , d}.

Assumption G2 is a suitably strengthened version of Assumption 2 in FH24b.

This assumption implies that third-order partial derivatives of f (x) are Lipschitz

continuous and uniformly bounded on Rd
+. It also follows from this assumption and

integrability of f (x) that there is a constant C0 > 0 that satisfies

sup
x∈Rd

+

f (x) ≤ C0. (1)

The condition (i) in Assumption G2 also regulates tail decay rates of third-order

partial derivatives of f (x). As given in Lemma 3 in Section 3, second- and higher-

order moments of the univariate gamma kernel around the design point x depend on

x, and the value of x is unbounded from above. Assumption G2(i) helps control the

order of magnitude in the leading bias term of f̂
(1)
G,p (x), because it ensures uniform

boundedness of
∣∣∣f (1)

j (x)
∣∣∣, ∣∣∣f (2)

jk (x)
∣∣∣, ∣∣∣f (3)

jjj (x)xj

∣∣∣, and ∣∣∣f (3)
jkk (x)xk

∣∣∣ on Rd
+.

Three conditions on the boundary parameter ηj in Assumption G3 are intended

for the case in which SG
X is expanding. The conditions (i) and (ii) are the same as
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those in Assumption 4W of FH24b. These jointly mean that ηj shrinks to zero more

slowly than bj does. As will be revealed in Section 3, this is crucial for Stirling’s

approximation to the gamma function. In addition, bj/ηj ≍ ρ in Assumption G3(ii)

merely indicates that the shrinkage rate of the ratio of bj to ηj is identical across

j. This does not automatically guarantee that the ratio bj/ηj itself, the numerator

bj, or the denominator ηj are identical across j. Moreover, ρ = o
(
min1≤j≤d η

2
j

)
is

a technical requirement for controlling orders of magnitude in the remainder terms

of the bias. An obvious sufficient condition for Assumption G3 is that sequences

b (= b (n)) , η (= η (n)) > 0 satisfy b1, . . . , bd ≍ b, η1, . . . , ηd ≍ η, and b + η + b/η3 +

lnn/
{
n (bη)d/2

}
→ 0 as n → ∞.

The next theorem documents weak uniform consistency of f̂
(1)
G,p (x).

Theorem 1. If Assumptions G1-G3 hold, then, as n → ∞,

sup
x∈SGX

∣∣∣f̂ (1)
G,p (x)− f (1)

p (x)
∣∣∣ = Op

 d∑
j=1

bj +

√√√√ lnn

nbpηp

√∏d
j=1 bjηj


for all p ∈ {1, . . . , d}.

Now we turn to strong uniform consistency of f̂
(1)
G,p (x). This result can be obtained

by suitably strengthening the condition (iii) of Assumption G3 while all others are

left unchanged.

Theorem 2. Let the condition (iii) in Assumption G3 be replaced by the following

stronger one: there is a constant κ ∈ [0, 1) that satisfies lnn

nbpηp

√∏d
j=1 bjηj

( d∑
j=1

1

bjηj

)1−κ

= O (1)

for all p ∈ {1, . . . , d}. If Assumptions G1-G3 hold, then, as n → ∞, the statement

in Theorem 1 can be strengthened to almost sure convergence.
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2.2 Weak and Strong Uniform Consistency of f̂
(1)
B,p (x)

We move on to weak uniform consistency of f̂
(1)
B,p (x) on SB

X. Before proceeding, a set

of regularity conditions are provided.

Assumption B1. {Xi}ni=1 ∈ [0, 1]d are i.i.d. random variables.

Assumption B2. Third-order derivatives of f (x) are Lipschitz continuous and

uniformly bounded on x ∈ [0, 1]d.

Assumption B3. Sequences bj (= bj (n)) , ηj (= ηj (n)) > 0 satisfy the followings

as n → ∞.

(i) bj, ηj → 0 for all j ∈ {1, . . . , d}.

(ii) max1≤j≤d bj/min1≤j≤d

√
bjηj → 0.

(iii) lnn/
(
nbpηp

√∏d
j=1 bjηj

)
→ 0 for all p ∈ {1, . . . , d}.

These assumptions are similar to Assumptions G1-G3 above. Assumption B2

and compactness of [0, 1]d again ensure that there is a constant L > 0 that satisfies

sup
x∈[0,1]d

f (x) ≤ L. (2)

Observe that Assumption B2 does not contain an equivalent of the condition (ii) in

Assumption G2. While moments of the univariate beta kernel around the design

point x also depend on x (see, e.g., the proof of Lemma 1 in HMP22), the value of x

is confined within the unit interval and thus this type of condition is unnecessary.

Furthermore, the condition (ii) in Assumption B3 helps control orders of magni-

tude in the remainder terms of E
{
f̂
(1)
B,p (x)

}
. As with the condition (ii) in Assumption

G3, this condition leads to bj/ηj → 0 for all j ∈ {1, . . . , d}. However, it does not

automatically guarantee that either b1, . . . , bd or η1, . . . , ηd are identical. Once again,
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a sufficient condition for Assumption B3 is that sequences b (= b (n)) , η (= η (n)) > 0

satisfy b1, . . . , bd ≍ b, η1, . . . , ηd ≍ η, and b + η + b/η + lnn/
{
n (bη)d/2+1

}
→ 0 as

n → ∞.

The next two theorems formally demonstrate weak and strong uniform consistency

with rates of f̂
(1)
B,p (x). In particular, strong uniform consistency can be obtained with

the condition (iii) of Assumption B3 replaced by the same one as given in Theorem

2. Also observe that weak and strong uniform convergence rates of f̂
(1)
B,p (x) concur

with those of f̂
(1)
G,p (x).

Theorem 3. If Assumptions B1-B3 hold, then, as n → ∞,

sup
x∈SBX

∣∣∣f̂ (1)
B,p (x)− f (1)

p (x)
∣∣∣ = Op

 d∑
j=1

bj +

√√√√ lnn

nbpηp

√∏d
j=1 bjηj


for all p ∈ {1, . . . , d}.

Theorem 4. Let the condition (iii) in Assumption B3 be replaced by the following

stronger one: there is a constant κ ∈ [0, 1) that satisfies lnn

nbpηp

√∏d
j=1 bjηj

( d∑
j=1

1

bjηj

)1−κ

= O (1)

for all p ∈ {1, . . . , d}. If Assumptions B1-B3 hold, then, as n → ∞, the statement

in Theorem 3 can be strengthened to almost sure convergence.

2.3 Optimal Uniform Convergence Rates

It is possible to derive the optimal uniform convergence rates of f̂
(1)
J ,p (x) for J ∈

{G,B} when SJ
X is fixed and a single smoothing parameter b is employed for each

dimension. In this scenario, both weak and strong uniform convergence rates of

f̂
(1)
J ,p (x) reduce to b +

√
lnn/ (nbd/2+1). It can be found that b∗ ≍ (lnn/n)2/(6+d)

balances two terms. The optimal weak and strong uniform convergence rates of
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the estimator under such b∗ become (lnn/n)2/(6+d). This rate coincides with Stone’s

(1983) optimal global rate for nonparametric first-order density derivative estimation.

3 Proofs

3.1 Proof of Theorem 1

This proof requires the following lemmata. Lemma 1 refers to a uniform version

of Stirling’s approximation to the gamma function, and uniform approximations to

the digamma and trigamma functions. Lemma 2 documents uniform bounds of the

univariate gamma kernel and its first- and second-order derivatives with respect to the

design point x. Lemma 3 presents moments of the univariate gamma kernel around

the design point x. Some odd moments are omitted because these are not used in

the proofs. Part (ii) in this lemma helps control orders of magnitude in remainder

terms of E
{
f̂
(1)
G,p (x)

}
. Lemma 4 states Bernstein’s inequality.

Lemma 1. Suppose that sequences b (= b (n)) , η (= η (n)) > 0 satisfy b, η → 0 and

b/η → 0 as n → ∞. Then, the followings hold true as n → ∞.

sup
x∈[η,η−1]

∣∣∣∣∣ Γ (x/b+ 1)
√
2π (x/b)x/b+1/2 exp (−x/b)

− 1

∣∣∣∣∣ = O

(
b

η

)
.

sup
x∈[η,η−1]

∣∣∣∣Ψ(x/b+ 1)− ln (x/b)

b/ (2x)
− 1

∣∣∣∣ = O

(
b

η

)
.

sup
x∈[η,η−1]

∣∣∣∣Ψ1 (x/b+ 1)

b/x
− 1

∣∣∣∣ = O

(
b

η

)
.

Lemma 2. Under the same condition as in Lemma 1, the followings hold true as

n → ∞.

sup
(x,u)∈[η,η−1]×R+

KG(x,b) (u) ≤
√

2

π
b−

1
2η−

1
2 . (3)

sup
(x,u)∈[η,η−1]×R+

∣∣∣∣∂KG(x,b) (u)

∂x

∣∣∣∣ ≤ 4

√
2

π
b−

3
2η−

3
2 . (4)

sup
(x,u)∈[η,η−1]×R+

∣∣∣∣∂2KG(x,b) (u)

∂x2

∣∣∣∣ = O
(
b−

5
2η−

5
2

)
. (5)
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Lemma 3. Let ξx
d
= G (x/b+ 1, b).

(i) The followings hold true.

(a) E (ξx − x) = b, E (ξx − x)2 = xb+ 2b2,

E (ξx − x)4 = 3x2b2 + 26xb3 + 24b4, and

E (ξx − x)6 = 15x3b3 + 340x2b4 + 1044xb5 + 720b6.

(b) E
{
LG(x,b) (ξx)

}
= 0, E

{
LG(x,b) (ξx) (ξx − x)

}
= b,

E
{
LG(x,b) (ξx) (ξx − x)2

}
= 3b2, and

E
{
LG(x,b) (ξx) (ξx − x)3

}
= 3xb2 + 11b3.

(ii) Under the same condition as in Lemma 1, the followings also hold true as n →

∞, uniformly on x ∈ [η, η−1].

E
{
L2

G(x,b) (ξx)
}
= O

(
b
η

)
, E

{
L2

G(x,b) (ξx) (ξx − x)2
}
= O (b2) ,

E
{
L2

G(x,b) (ξx) (ξx − x)4
}
= O

(
b3

η

)
, E

{
L2

G(x,b) (ξx) (ξx − x)6
}
= O

(
b4

η2

)
, and

E
{
L2

G(x,b) (ξx) (ξx − x)8
}
= O

(
b5

η3

)
.

Lemma 4. (Van der Vaart and Wellner, 1996, Lemma 2.2.9) Let X1, . . . , Xn

be independent random variables with bounded ranges [−M,M ] and zero means.

Then,

Pr

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > x

)
≤ 2 exp

{
− x2

2 (v +Mx/3)

}
for all x and v ≥ V ar (

∑n
i=1Xi).

3.1.1 Proof of Lemma 1

First two statements are the same as Lemma 2 of FH24b. The third statement

is established by the double inequality for the trigamma function in Theorem 4 of

Gordon (1994), equation (A2) of FH24a and x ∈ [η, η−1]. ■

3.1.2 Proof of Lemma 2

Because first two statements are the same as Lemma 3 of FH24b, we only show (5).

Observe that ∣∣∣∣∂2KG(x,b) (u)

∂x2

∣∣∣∣ = 1

b2

∣∣∣L2
G(x,b) (u)−Ψ1

(x
b
+ 1
)∣∣∣KG(x,b) (u) ,
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where∣∣∣L2
G(x,b) (u)−Ψ1

(x
b
+ 1
)∣∣∣

≤ |lnu|2 + 2
∣∣∣ln b+Ψ

(x
b
+ 1
)∣∣∣ |lnu|+ {ln b+Ψ

(x
b
+ 1
)}2

+
∣∣∣Ψ1

(x
b
+ 1
)∣∣∣ .

Using the fact that |ln z|2 ≤ max {z, z−1} for z > 0 and Lemma 1, jointly with

the arguments in the proof of Lemma 3(ii) in FH24b, we can reach the following

conclusions as n → ∞, uniformly on (x, u) ∈ [η, η−1]× R+.

|lnu|2KG(x,b) (u) = O
(
b−

1
2η−

3
2

)
.∣∣∣ln b+Ψ

(x
b
+ 1
)∣∣∣ |lnu|KG(x,b) (u) = O

(
b−

1
2η−

5
2

)
.{

ln b+Ψ
(x
b
+ 1
)}2

KG(x,b) (u) = O
(
b−

1
2η−

3
2

)
.∣∣∣Ψ1

(x
b
+ 1
)∣∣∣KG(x,b) (u) = O

(
b

1
2η−

3
2

)
.

Then, the result immediately follows. ■

3.1.3 Proof of Lemma 3

Part(i)-(a) is the same as Lemma 1 of FH24b, and Part(i)-(b) is given in the proof of

Theorem 2.1(i) by FH24a. For Part (ii), it follows from Lemma A.1 of FH24a and a

property of the gamma function that

E
{
L2

G(x,b) (ξx) ξ
m
x

}
= bm

m∏
k=1

(x
b
+ k
)[{

Ψ
(x
b
+m+ 1

)
−Ψ

(x
b
+ 1
)}2

+Ψ1

(x
b
+m+ 1

)]
for m ∈ N. Equations (A1) and (A2) of FH24a can further simplify this quantity as

E
{
L2

G(x,b) (ξx) ξ
m
x

}
= bm

m∏
k=1

(x
b
+ k
)Ψ1

(x
b
+ 1
)
+

(
m∑
k=1

1

x/b+ k

)2

−
m∑
k=1

1

(x/b+ k)2

 .

The stated results can be established by straightforward but tedious calculations,

Lemma 1 and x ∈ [η, η−1]. ■
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3.1.4 Proof of Theorem 1

The notations

anp =

√√√√ lnn

nbpηp

√∏d
j=1 bjηj

, Nnp = a−1
np

1

bpηp

(
d∏

j=1

bjηj

)− 1
2
(

d∑
j=1

1

bjηj

)
, and

ςJinp (x) =
1

nbp

[
LJ (xp,bp) (Xpi)KJ (x,b) (Xi)− E

{
LJ (xp,bp) (Xpi)KJ (x,b) (Xi)

}]
for J ∈ {G,B} are adopted, where Xpi is the pth element of the ith observation Xi.

Below we demonstrate the next two statements.

sup
x∈SGX

∣∣∣E {f̂ (1)
G,p (x)

}
− f (1)

p (x)
∣∣∣ = O

(
d∑

j=1

bj

)
. (6)

sup
x∈SGX

∣∣∣f̂ (1)
G,p (x)− E

{
f̂
(1)
G,p (x)

}∣∣∣ = Op (anp) . (7)

Proof of (6). We may write

E
{
f̂
(1)
G,p (x)

}
=

1

bp

∫
Rd
+

LG(xp,bp) (up)KG(x,b) (u) f (u)du

=
1

bp
E
{
LG(xp,bp)

(
ξxp

)
f (ξx)

}
,

where ξx := (ξx1 , . . . , ξxd
)⊤, ξxj

d
= G (xj/bj + 1, bj) and ξxj

⊥⊥ ξxk
for all j ̸= k. Then,

by a third-order Taylor expansion of f (ξx) around ξx = x,

E
{
f̂
(1)
G,p (x)

}
=

1

bp
f (x)E

{
LG(xp,bp)

(
ξxp

)}
+

1

bp

d∑
j=1

f
(1)
j (x)E

{
LG(xp,bp)

(
ξxp

) (
ξxj

− xj

)}
+

1

2bp

d∑
j=1

d∑
k=1

f
(2)
jk (x)E

{
LG(xp,bp)

(
ξxp

) (
ξxj

− xj

)
(ξxk

− xk)
}

+
1

6bp

d∑
j=1

d∑
k=1

d∑
ℓ=1

f
(3)
jkℓ (x)E

{
LG(xp,bp)

(
ξxp

) (
ξxj

− xj

)
(ξxk

− xk) (ξxℓ
− xℓ)

}
+

1

6bp

d∑
j=1

d∑
k=1

d∑
ℓ=1

E
[{

f
(3)
jkℓ (x̄)− f

(3)
jkℓ (x)

}
LG(xp,bp)

(
ξxp

) (
ξxj

− xj

)
(ξxk

− xk) (ξxℓ
− xℓ)

]
= D1 +D2 +D3 +D4 +D5 (say)

12



for some x̄ joining ξx and x.

By Lemma 3, D1 = 0 and D2 = f
(1)
p (x). Since

∣∣∣f (2)
jk (x)

∣∣∣, ∣∣∣f (3)
jjj (x)xj

∣∣∣ and∣∣∣f (3)
jkk (x)xk

∣∣∣ are all uniformly bounded, Lemma 3 also establishes that |D3| , |D4| =

O
(∑d

j=1 bj

)
uniformly on x ∈ SG

X. Finally, by combining Assumption G2(ii), the

Cauchy-Schwarz inequality, Lemma 3, and Assumption G3(ii), it can be shown that

|D5| = O
(
ρ3/2

)
= o

(∑d
j=1 bj

)
uniformly on x ∈ SG

X. Then, (6) is demonstrated.

Proof of (7). As in the proof of Theorem 1 in FH24b, our proof takes the following

two steps. The truncation step in the proof of Theorem 1 in FH24b is unnecessary.

1. Split each edge of the d-hyperrectangle SG
X into Nnp equally-spaced grids to

create Nd
np sub-hyperrectangles, and replace the supremum with a maximization

over the finite Nd
np sub-hyperrectangles.

2. Employ Lemma 4 (Bernstein’s inequality) to bound the remainder term.

Step 1. Let Ah be the hth sub-hyperrectangle for h ∈
{
1, . . . , Nd

np

}
. Also let

xh be the most distant point from the origin in Ah, i.e., xh := argmaxx∈Ah
∥x∥.

Suppose that the design point x falls into Ah. Then, the order of magnitude in

supx∈Ah

∣∣∑n
i=1 ς

G
inp (x)−

∑n
i=1 ς

G
inp (xh)

∣∣ is determined by

1

bp

∣∣∣LG(xp,bp) (Xpi)KG(x,b) (Xi)− LG(xph,bp) (Xpi)KG(xh,b) (Xi)
∣∣∣ ,

where xph is the pth element of xh. Now, by the mean-value theorem,

1

bp

∣∣∣LG(xp,bp) (up)KG(x,b) (u)− LG(xph,bp) (up)KG(xh,b) (u)
∣∣∣

=
1

bp

∣∣∣{DxLG(x̃p,bp) (up)KG(x̃,b) (u)
}⊤

(x− xh)
∣∣∣

≤ 1

bp
sup

(x,u)∈Ah×Rd
+

∥∥DxLG(xp,bp) (up)KG(x,b) (u)
∥∥ sup

x∈Ah

∥x− xh∥

for some x̃ joining x and xh.
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By (3) and (4), the jth element of (1/bp)DxLG(xp,bp) (up)KG(x,b) (u) for j ̸= p

satisfies

sup
(x,u)∈Ah×Rd

+

∣∣∣∣ 1

bpbj
LG(xp,bp) (up)LG(xj ,bj) (uj)KG(x,b) (u)

∣∣∣∣ = O

 1

bpηpbjηj

(
d∏

j=1

bjηj

)− 1
2

 .

Combining this with (5) yields

1

bp
sup

(x,u)∈Ah×Rd
+

∥∥DxLG(xp,bp) (up)KG(x,b) (u)
∥∥

= O

 1

bpηp

(
d∏

j=1

bjηj

)− 1
2
(

d∑
j=1

1

b2jη
2
j

) 1
2


≤ O

 1

bpηp

(
d∏

j=1

bjηj

)− 1
2
(

d∑
j=1

1

bjηj

) .

It follows from supx∈Ah
∥x− xh∥ = O

(
N−1

np

)
and the definition of Nnp that uniformly

on (x,u) ∈ Ah × Rd
+,

1

bp

∣∣∣LG(xp,bp) (up)KG(x,b) (u)− LG(xph,bp) (up)KG(xh,b) (u)
∣∣∣

≤ O

N−1
np

1

bpηp

(
d∏

j=1

bjηj

)− 1
2
(

d∑
j=1

1

bjηj

) = O (anp) .

Therefore,

max
1≤h≤Nd

np

sup
x∈Ah

∣∣∣∣∣
n∑

i=1

ςGinp (x)−
n∑

i=1

ςGinp (xh)

∣∣∣∣∣ = O (anp) .

Step 2. Two bounds M and v for Lemma 4 can be specified as follows. First,

(3), (4) and
∫
Rd
+
f (u)du = 1 lead to

1

bp

∣∣LG(xp,bp) (Xpi)KG(x,b) (Xi)
∣∣ ≤ 4

(
2

π

) d
2 1

bpηp

(
d∏

j=1

bjηj

)− 1
2

and ∣∣∣∣E [ 1bp {LG(xp,bp) (Xpi)KG(x,b) (Xi)
}]∣∣∣∣ ≤ 4

(
2

π

) d
2 1

bpηp

(
d∏

j=1

bjηj

)− 1
2

.
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Then, by the definition of anp,

∣∣ςGinp (x)∣∣ ≤ 8 (2/π)d/2

nbpηp

√∏d
j=1 bjηj

= 8

(
2

π

) d
2 a2np
lnn

=: M.

Second, by (1),

V ar

{
n∑

i=1

ςGinp (x)

}
=

n∑
i=1

V ar
{
ςGinp (x)

}
≤ 1

n2b2p

n∑
i=1

E
{
L2

G(xp,bp) (Xpi)K2
G(x,b) (Xi)

}
≤ C0

nb2p

∫
Rd
+

L2
G(xp,bp) (up)K2

G(x,b) (u)du. (8)

Following the argument in the proof of Theorem 2.1(ii) in FH24a, we may write∫
R+

L2
G(x,b) (u)K

2
G(x,b) (u) du =: AG(b,x)ΛG(b,x), where

AG(b,x) :=
b−1Γ (2x/b+ 1)

22x/b+1Γ2 (x/b+ 1)
≤ b−1/2x−1/2

2
√
π

by equation (3.4) of Chen (2000), and

ΛG(b,x) =

[{
Ψ
(x
b
+ 1
)
−Ψ

(
2x

b
+ 1

)
+ ln 2

}2

+Ψ1

(
2x

b
+ 1

)]
≤ b

2x
{1 + o (1)}

uniformly on x ∈ [η, η−1] by Lemma 1. Then, by o (1) ≤ 1 for a sufficiently large n

and x ∈ [η, η−1],∫
R+

L2
G(x,b) (u)K

2
G(x,b) (u) du ≤ b−1/2x−1/2

2
√
π

[
b

2x
{1 + o (1)}

]
≤ b1/2η−3/2

2
√
π

. (9)

It follows from (8), (9) and the definition of anp that

V ar

{
n∑

i=1

ςGinp (x)

}
≤ C0/ (2

√
π)

d

nbpηp

√∏d
j=1 bjηj

=
C0

(2
√
π)

d

a2np
lnn

=: v.

Lemma 4 establishes that for such M and v and an arbitrarily chosen K > 0,

Pr

{∣∣∣∣∣
n∑

i=1

ςGinp (x)

∣∣∣∣∣ > K

√
C0

(2
√
π)

d
anp

}
≤ 2 exp

− K2 lnn

2

{
1 +

(
8
3

) (
4√
π

)d/2
Kanp√

C0

}
 .
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Then, it follows from anp = o (1) that (8/3) (4/
√
π)

d/2
Kanp/

√
C0 ≤ 1 for a sufficiently

large n, and as a result,

Pr

{∣∣∣∣∣
n∑

i=1

ςGinp (x)

∣∣∣∣∣ > K

√
C0

(2
√
π)

d
anp

}
≤ 2n−K2

4

is the case. It holds that

Pr

{
max

1≤h≤Nd
np

∣∣∣∣∣
n∑

i=1

ςGinp (xh)

∣∣∣∣∣ > K

√
C0

(2
√
π)

d
anp

}

≤
Nd

np∑
h=1

Pr

{∣∣∣∣∣
n∑

i=1

ςGinp (xh)

∣∣∣∣∣ > K

√
C0

(2
√
π)

d
anp

}

≤ Nd
np × max

1≤h≤Nd
np

Pr

{∣∣∣∣∣
n∑

i=1

ςGinp (xh)

∣∣∣∣∣ > K

√
C0

(2
√
π)

d
anp

}
= O

(
Nd

nn
−K2

4

)
. (10)

Putting K = 2
√
5d and using the definitions of Nnp and anp, we have

Nd
npn

−K2

4 =

[
a9np (lnn)

−5 (bpηp)
4

(
d∏

j=1

bjηj

){
d∑

j=1

(
d∏

k=1,k ̸=j

bkηk

)}]d
→ 0

as n → ∞. Hence,

max
1≤h≤Nd

np

∣∣∣∣∣
n∑

i=1

ςGinp (xh)

∣∣∣∣∣ = Op (anp) .

The results from Steps 1 and 2 establishes (7). This completes the proof. ■

3.2 Proof of Theorem 2

While the definition of Nnp is changed to

Nnp = n1+ϵ 1

bpηp

(
d∏

j=1

bjηj

)− 1
2
(

d∑
j=1

1

bjηj

)
for an arbitrarily small ϵ > 0, all other notations used in the proof of Theorem 1

remain unchanged. Then, it suffices to demonstrate that

sup
x∈SGX

∣∣∣f̂ (1)
G,p (x)− E

{
f̂
(1)
G,p (x)

}∣∣∣ = O (anp) a.s. (11)
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By the definition of anp, it holds that n−(1+ϵ) ≤ O
(
n−1/2

)
≤ o (anp) ≤ O (anp).

Hence,

max
1≤h≤Nd

np

sup
x∈Ah

∣∣∣∣∣
n∑

i=1

ςGinp (x)−
n∑

i=1

ςGinp (xh)

∣∣∣∣∣
= O

N−1
np

1

bpηp

(
d∏

j=1

bjηj

)− 1
2
(

d∑
j=1

1

bjηj

)
= O (anp) . (12)

The strengthened condition (iii) in Assumption G3 also leads to

1

bpηp

(
d∏

j=1

bjηj

)− 1
2
(

d∑
j=1

1

bjηj

)
= O

n
1

1−κ

(bpηp)
κ
(∏d

j=1 bjηj

)κ
2

lnn


1

1−κ

 ≤ O
(
n

1
1−κ

)
,

because (bpηp)
κ
(∏d

j=1 bjηj

)κ/2
/ lnn = o (1). PuttingK = 2

√
(d+ 1) (1 + ϵ) + d/ (1− κ)

gives Nd
npn

−K2/4 = O
{
n−(1+ϵ)

}
. Finally, by (10),

∞∑
n=1

Pr

{
max

1≤h≤Nd
np

∣∣∣∣∣
n∑

i=1

ςGinp (xh)

∣∣∣∣∣ > K

√
C0

(2
√
π)

d
anp

}
≤

∞∑
n=1

O
{
n−(1+ϵ)

}
< ∞,

and thus

max
1≤h≤Nd

np

∣∣∣∣∣
n∑

i=1

ςGinp (xh)

∣∣∣∣∣ = O (anp) a.s. (13)

by the Borel-Cantelli lemma. The stated result can be established by recognizing

that (12) and (13) suffice for (11). ■

3.3 Proof of Theorem 3

This proof requires the following lemmata. Lemma 5 corresponds to Lemma 1, except

that the range of the design point x is modified. Lemma 6 documents uniform bounds

of the univariate beta kernel and its first- and second-order derivatives with respect to

the design point x. In particular, the O
(
b−3/2η−3/2

)
bound in (15) is sharper than the

O
(
b−5/2η−1/2

)
bound in Lemma 3 of HMP22, because it follows from b/η = o (1) that

b−3/2η−3/2 = o
(
b−5/2η−1/2

)
holds. Lemma 7 presents moments of the univariate beta
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kernel around the design point x. As before, some odd moments are not used in the

proofs and thus omitted.

Lemma 5. Under the same condition as in Lemma 1, the followings hold true as

n → ∞.

sup
x∈[η,1−η]

∣∣∣∣∣ Γ (x/b+ 1)
√
2π (x/b)x/b+1/2 exp (−x/b)

− 1

∣∣∣∣∣ = O

(
b

η

)
.

sup
x∈[η,1−η]

∣∣∣∣Ψ(x/b+ 1)− ln (x/b)

b/ (2x)
− 1

∣∣∣∣ = O

(
b

η

)
.

sup
x∈[η,1−η]

∣∣∣∣Ψ1 (x/b+ 1)

b/x
− 1

∣∣∣∣ = O

(
b

η

)
.

Lemma 6. Under the same condition as in Lemma 1, the followings hold true as

n → ∞.

sup
(x,u)∈[η,1−η]×[0,1]

KB(x,b) (u) ≤
9

4
√
π
b−

1
2η−

1
2 . (14)

sup
(x,u)∈[η,1−η]×[0,1]

∣∣∣∣∂KB(x,b) (u)

∂x

∣∣∣∣ ≤ 13√
π
b−

3
2η−

3
2 . (15)

sup
(x,u)∈[η,1−η]×[0,1]

∣∣∣∣∂2KB(x,b) (u)

∂x2

∣∣∣∣ = O
(
b−

5
2η−

5
2

)
. (16)

Lemma 7. Let θx
d
= Beta (x/b+ 1, b).

(i) The followings hold true as n → ∞, uniformly on x ∈ [0, 1].

(a) |E (θx − x)| = O (b) , E (θx − x)2 = O (b) , E (θx − x)4 = O (b2) ,

E (θx − x)6 = O (b3) , and E (θx − x)8 = O (b4) .

(b) E
{
LB(x,b) (θx)

}
= 0,

∣∣b−1E
{
LB(x,b) (θx) (θx − x)

}
− 1
∣∣ = O (b) ,∣∣E {LB(x,b) (θx) (θx − x)2

}∣∣ = O (b2) , and
∣∣E {LB(x,b) (θx) (θx − x)3

}∣∣ = O (b2) .

(ii) Under the same condition as in Lemma 1, the followings also hold true as n →

∞, uniformly on x ∈ [η, 1− η].

E
{
L2

B(x,b) (θx)
}
= O (b/η) , E

{
L2

B(x,b) (θx) (θx − x)2
}
= O (b2) ,

E
{
L2

B(x,b) (θx) (θx − x)4
}
= O (b3) , E

{
L2

B(x,b) (θx) (θx − x)6
}
= O (b4) , and

E
{
L2

B(x,b) (θx) (θx − x)8
}
= O (b5) .
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3.3.1 Proof of Lemma 5

This lemma can be established as minor modifications of Lemma 1. ■

3.3.2 Proof of Lemma 6

Because (14) is the same as Lemma 2 of HMP22, we only need to show (15) and (16).

Proof of (15). We consider the cases with u = 0, 1 and u ∈ (0, 1) separately.

If u = 0, 1, then x/b, (1− x) /b > 0 holds for x ∈ [η, 1− η], and thus KB(x,b) (0) =

KB(x,b) (1) = 0. Consequently, ∂KB(x,b) (0) /∂x = ∂KB(x,b) (1) /∂x = 0, and the result

trivially holds.

For u ∈ (0, 1), observe that

b

∣∣∣∣∂KB(x,b) (u)

∂x

∣∣∣∣ ≤ |lnu|KB(x,b) (u) +
∣∣∣ln b+Ψ

(x
b
+ 1
)∣∣∣KB(x,b) (u)

+ |ln (1− u)|KB(x,b) (u) +

∣∣∣∣ln b+Ψ

(
1− x

b
+ 1

)∣∣∣∣KB(x,b) (u)

= F1 + F2 + F3 + F4 (say) .

For F1, using |ln z| ≤ z−1 for z ∈ (0, 1) yields |lnu|KB(x,b) (u) ≤ u−1KB(x,b) (u).

Now, ux/b−1 (1− u)(1−x)/b is maximized at u = (x− b) / (1− b). Then, by equa-

tion (A2) of HMP22, Lemma 5, (x− b)x/b−1 = xx/b−1e−1 {1 + o (1)}, (1− b)1/b =

e−1 {1 + o (1)}, and x ∈ [η, 1− η],

u−1KB(x,b) (u) ≤
{(x− b) / (1− b)}x/b−1 {1− (x− b) / (1− b)}(1−x)/b

B {x/b+ 1, (1− x) /b+ 1}

=
b−1/2 (1− b2) {1 + o (1)}

√
2πx3/2 (1− x)1/2

≤ b−1/2 {1 + o (1)}
√
2πη3/2 (1− η)1/2

.

Finally, taking o (1) ≤ 1 and η ≤ 1/2 for a sufficiently large n leads to F1 ≤

(2/
√
π) b−1/2η−3/2.

For F2, it follows from Lemma 5, x ∈ [η, 1− η] and |ln z| ≤ z−1 for z ∈ (0, 1)

that |ln b+Ψ(x/b+ 1)| ≤ |lnx| + o (1) ≤ x−1 + o (1) ≤ η−1 {1 + o (η)}. Then,

putting o (η) ≤ 1 for a sufficiently large n and using (14), we have F2 ≤ 2η−1 ×

{9/ (4
√
π)} b−1/2η−1/2 = {9/ (2

√
π)} b−1/2η−3/2.
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We can also show that F3 ≤ (2/
√
π) b−1/2η−3/2 and F4 ≤ {9/ (2

√
π)} b−1/2η−3/2

by realizing that |ln (1− z)| ≤ (1− z)−1 for z ∈ (0, 1). Then, the result immediately

holds.

Proof of (16). Notice that

∂2KB(x,b) (u)

∂x2
=

1

b2

[
L2

B(x,b) (u)−
{
Ψ1

(x
b
+ 1
)
+Ψ1

(
1− x

b
+ 1

)}]
KB(x,b) (u) .

The result can be established by taking the same steps as in the proof of (15), rec-

ognizing that |ln z| , ln2 z ≤ z−1 and |ln (1− z)| , ln2 (1− z) ≤ (1− z)−1 for z ∈ (0, 1),

and utilizing Lemma 5 and (14) repeatedly. ■

3.3.3 Proof of Lemma 7

Part (i)-(a) comes from non-central moments of the beta random variable, and Part(i)-

(b) is implied by the argument in the proof of Theorem 2.1(i) by FH24a. Part (ii)

can be obtained by

E
{
L2

B(x,b) (θx) θ
m
x

}
=

∏m
k=1 (x/b+ k)∏m

k=1 (1/b+ 1 + k)

{
Ψ1

(x
b
+ 1
)
+Ψ1

(
1− x

b
+ 1

)

+

(
m∑
k=1

1

x/b+ k

)2

−
m∑
k=1

1

(x/b+ k)2


for m ∈ N, straightforward but tedious calculations, Lemma 5, and x ∈ [η, 1− η]. ■

3.3.4 Proof of Theorem 3

The notations used in the proof of Theorem 1 are maintained. In what follows, we

demonstrate the next two statements.

sup
x∈SBX

∣∣∣E {f̂ (1)
B,p (x)

}
− f (1)

p (x)
∣∣∣ = O

(
d∑

j=1

bj

)
. (17)

sup
x∈SBX

∣∣∣f̂ (1)
B,p (x)− E

{
f̂
(1)
B,p (x)

}∣∣∣ = Op (anp) . (18)
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Proof of (17). Observe that

E
{
f̂
(1)
B,p (x)

}
=

1

bp

∫
[0,1]d

LB(xp,bp) (up)KB(x,b) (u) f (u)du =
1

bp
E
{
LB(xp,bp)

(
θxp

)
f (θx)

}
,

where θx := (θx1 , . . . , θxd
)⊤, θxj

d
= Beta (xj/bj + 1, bj) and θxj

⊥⊥ θxk
for all j ̸= k.

Then, by a third-order Taylor expansion of f (θx) around θx = x,

E
{
f̂
(1)
B,p (x)

}
=

1

bp
f (x)E

{
LB(xp,bp)

(
θxp

)}
+

1

bp

d∑
j=1

f
(1)
j (x)E

{
LB(xp,bp)

(
θxp

) (
θxj

− xj

)}
+

1

2bp

d∑
j=1

d∑
k=1

f
(2)
jk (x)E

{
LB(xp,bp)

(
θxp

) (
θxj

− xj

)
(θxk

− xk)
}

+
1

6bp

d∑
j=1

d∑
k=1

d∑
ℓ=1

f
(3)
jkℓ (x)E

{
LB(xp,bp)

(
θxp

) (
θxj

− xj

)
(θxk

− xk) (θxℓ
− xℓ)

}
+

1

6bp

d∑
j=1

d∑
k=1

d∑
ℓ=1

E
[{

f
(3)
jkℓ (x̆)− f

(3)
jkℓ (x)

}
LB(xp,bp)

(
θxp

) (
θxj

− xj

)
(θxk

− xk) (θxℓ
− xℓ)

]
= H1 +H2 +H3 +H4 +H5 (say)

for some x̆ joining θx and x.

By Lemma 7, H1 = 0 and H2 = f
(1)
p (x) + O (bp) uniformly on x ∈ SB

X. This

lemma also establishes that |H3| , |H4| = O
(∑d

j=1 bj

)
uniformly on x ∈ SB

X. Finally,

it follows from Assumption B2, the Cauchy-Schwarz inequality and Lemma 7 that

|H5| ≤ O

{
(bpηp)

−1/2
(∑d

j=1 bj

)2}
. This bound is shown to be o

(∑d
j=1 bj

)
uniformly

on x ∈ SB
X by Assumption B3(ii). Therefore, (17) is shown.

Proof of (18). The proof takes the same steps as in the proof of (7). Following

the argument in Step 1 and using Lemma 6, we can show that

1

bp

∣∣∣LB(xp,bp) (Xpi)KB(x,b) (Xi)− LB(xph,bp) (Xpi)KB(xh,b) (Xi)
∣∣∣

≤ O

N−1
np

1

bpηp

(
d∏

j=1

bjηj

)− 1
2
(

d∑
j=1

1

bjηj

) = O (anp)
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uniformly on (x,u) ∈ Ah × [0, 1]d. Therefore,

max
1≤h≤Nd

np

sup
x∈Ah

∣∣∣∣∣
n∑

i=1

ςGinp (x)−
n∑

i=1

ςGinp (xh)

∣∣∣∣∣ = O (anp)

is established.

In Step 2, two bounds M and v for Lemma 4 can be found as follows. First, (14),

(15) and
∫
[0,1]d

f (u)du = 1 yield

1

bp

∣∣LB(xp,bp) (Xpi)KB(x,b) (Xi)
∣∣ ≤ 13√

π

(
9

4
√
π

)d−1
1

bpηp

(
d∏

j=1

bjηj

)− 1
2

and ∣∣∣∣E [ 1bp {LB(xp,bp) (Xpi)KB(x,b) (Xi)
}]∣∣∣∣ ≤ 13√

π

(
9

4
√
π

)d−1
1

bpηp

(
d∏

j=1

bjηj

)− 1
2

.

Then,∣∣ςBinp (x)∣∣ ≤ 26√
π

(
9

4
√
π

)d−1
1

nbpηp

√∏d
j=1 bjηj

=
26√
π

(
9

4
√
π

)d−1 a2np
lnn

=: M.

Moreover, by (2),

V ar

{
n∑

i=1

ςBinp (x)

}
≤ L

nb2p

∫
[0,1]d

L2
B(xp,bp) (up)K2

B(x,b) (u)du.

Now, by the proof of Theorem 2.1(ii) in FH24a,
∫ 1

0
L2

B(x,b) (u)K
2
B(x,b) (u) du =: AB(b,x)ΛB(b,x),

where

AB(b,x) =
B {2x/b+ 1, 2 (1− x) /b+ 1}
B2 {x/b+ 1, (1− x) /b+ 1}

,

and

ΛB(b,x) =

[
Ψ
(x
b
+ 1
)
−Ψ

(
1− x

b
+ 1

)
−Ψ

(
2x

b
+ 1

)
+Ψ

{
2 (1− x)

b
+ 1

}]2
+Ψ1

(
2x

b
+ 1

)
+Ψ1

{
2 (1− x)

b
+ 1

}
.

Using Lemma of Chen (1999) and η ≤ x and picking b ≤ 1 and η ≤ 1/2 for a

sufficiently large n, we have

AB(b,x) ≤
b−1/2 (1 + b)3/2

2
√
π
√
x (1− x)

≤ 2√
π
b−

1
2η−

1
2 .
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Applying Lemma 5 and a similar argument also yields ΛB(b,x) ≤ b/η, and thus

AB(b,x)ΛB(b,x) ≤ (2/
√
π) b1/2η−3/2 uniformly on x ∈ [η, 1− η]. Recognizing that∫ 1

0
K2

B(x,b) (u) du = AB(b,x) and using the definition of anp, we finally have

V ar

{
n∑

i=1

ςBinp (x)

}
≤ (2/

√
π)

d
L

nbpηp

√∏d
j=1 bjηj

=

(
2√
π

)d

L
a2np
lnn

=: v.

Lemma 4 implies that for M and v given above and an arbitrarily chosen K > 0,

Pr


∣∣∣∣∣

n∑
i=1

ςBinp (x)

∣∣∣∣∣ > K

√(
2√
π

)d

Lanp

 ≤ 2 exp

− K2 lnn

2

{
1 +

(
26
3

) (9/4)d−1Kanp

(2
√
π)

d/2√
L

}
 .

Then, it follows from anp = o (1) that (26/3) (9/4)d−1Kanp/
{
(2
√
π)

d/2√
L
}

≤ 1

holds for a sufficiently large n, and as a result,

Pr


∣∣∣∣∣

n∑
i=1

ςBinp (x)

∣∣∣∣∣ > K

√(
2√
π

)d

Lanp

 ≤ 2n−K2

4 .

so that

Pr

 max
1≤h≤Nd

np

∣∣∣∣∣
n∑

i=1

ςBinp (x)

∣∣∣∣∣ > K

√(
2√
π

)d

Lanp

 = O
(
Nd

npn
−K2

4

)
.

As before, K = 2
√
5d and the definitions of Nnp and anp lead to Nd

npn
−K2/4 = o (1).

Then,

max
1≤h≤Nd

np

∣∣∣∣∣
n∑

i=1

ςBinp (xh)

∣∣∣∣∣ = Op (anp)

is also demonstrated. This completes the proof. ■

3.4 Proof of Theorem 4

The proof is similar to that of Theorem 2, and thus details are omitted. ■
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